首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过锦州地区铬渣样品静态浸溶实验,测定不同固液比、浸出时间、浸取剂pH及组成、振荡速度、铬渣粒度大小、温度等因素对铬渣中Cr(VI)溶解释放的影响,揭示铬渣中Cr(VI)析出、释放机理。结果显示,稀释作用在不同固液比浸出中起主导作用,随固液比的降低,Cr(VI)浸出浓度逐渐降低,但是Cr(VI)浸出总量却在增加;随着浸出时间的增大,浸出Cr(VI)浓度随之增大;铬渣浸出液碱性很高,在铬渣溶解释放过程中,随酸性增强Cr(VI)溶解量相应增大,体现强的酸中和能力;随着振荡速度增加,Cr(VI)溶解释放速度明显加快;粒径越小,铬酸盐的溶解释放速度越快,溶解作用越充分;铬渣的浸出为吸热反应过程,铬渣溶解度随温度升高而增大。铬渣中Cr(Vl)溶解释放速率服从菲克(Fick)扩散定律。研究结果为铬渣危害的评价、监测及铬渣污染有效防治提供参考。  相似文献   

2.
采用直接淋浸法对风化铬渣及新鲜铬渣进行了六谷铬溶出的条件试验,60min的浸泡时间,80目以下的粒度对渣水比250g/200mL的新渣中Cr(VI)浸出率达69.4%,渣水比250g/200mL,500g/400mL,750g/600mL的风化渣中Cr(VI)的总溶出率分别为70.2%,86.3%,94.0%,其中第一次淋滤溶出率分别达48.1%,70.0%,81.6%,低PH值的淋浸水有利于Cr(VI)的浸出,在PH值为3时溶出率达高峰,Cr(VI)浸出质量比自然条件(近中性)高出14.1%-16.3%,增大管径和降低装置的滤面负荷可提高浸出效果,在直径80mm管径,500g铬渣装填料,滤面负荷9.95g/cm^2时,Cr(VI)溶出率达98.7%,真空抽滤可提高Cr(VI)浸出速率,但降低了滤液中Cr(VI)的浓度和溶出质量,上述试验结果表明了直接淋浸法回收铬渣中六价铬的可行性,并可作为工业化装置的设计参数。  相似文献   

3.
铬渣无序堆存造成的铬污染土壤迫切需要修复治理.本文以新筛选的功能微生物草酸青霉SL2(Penicillium oxalicum SL2)为材料,以重度铬污染土壤为研究对象,进行生物淋洗技术优化,并利用软X射线扫描透射显微光谱技术(STXM)及同步辐射X射线近边吸收结构谱学(XANES)分析淋洗后的草酸青霉SL2胞内铬空间分布化学形态.结果表明:分步处理并进行水洗预处理可明显提高草酸青霉SL2对高浓度铬污染土壤的总铬TCr淋出率(49.4%),淋出液中Cr(VI)在3 d内全部被还原;生物淋洗后,草酸青霉SL2胞内吸收累积了Cr(VI),部分被还原为Cr(III),两个价态的Cr在空间分布上具有一定的一致性;胞内铬形态主要为磷酸铬、草酸铬钾及半胱氨酸铬类化合物,其含量分别为46.9%、33.0%和20.1%.  相似文献   

4.
以硫代硫酸钠为还原剂,将铬渣中的六价铬(Cr(VI))解毒转化为三价铬(Cr(III)),并加入磷酸盐作为稳定剂稳定解毒后的铬渣,考察不同反应时间和药剂用量对铬渣中Cr(VI)去除效果的影响.结果表明:硫代硫酸钠可以有效去除铬渣中的Cr(VI),当其与Cr(VI)的摩尔比为理论摩尔比的12倍、处理时间15d时铬渣中Cr(VI)的去除率达到最高(70%),继续增加还原剂用量或延长反应时间均不能有效提高Cr(VI)的去除率.随后加入磷酸钠作为稳定剂,当其物质的量为生成Cr(III)的4倍时,硫代硫酸钠与磷酸钠分步加入(两步法)比同时加入(一步法)处理铬渣的效果较好,处理效果最好时总铬浸出浓度为6.1mg/L,低于危险废物浸出鉴别的总铬标准(15mg/L),而且形成稳定的铬的化合物(CrPO4·6H2O).铬渣pH值变化、五态变化、XRD及XPS分析等结果表明,两步法的处理效果好于一步法.  相似文献   

5.
在不同热解温度、热解时间及配比下,利用生活污泥与小麦秸秆共热解制备污泥基生物炭(WB),研究了不同条件对WB吸附性能的影响,并以吸附性能为评价指标,应用响应面分析法优化了WB的最佳工艺条件,并研究了最佳WB对水溶液中Cr(VI)的吸附规律。结果表明:1)热解温度、热解时间和配比对WB吸附能力均有显著影响;2)制备WB的最佳热解温度、热解时间、配比分别为503.19℃、120 min、m(麦秆)∶m(污泥)=1.2;3)Langmuir模型和Freundlich模型都能很好地表征WB对Cr(VI)的吸附特征,二级动力学模型可以更好地解释WB对Cr(VI)的吸附机制。  相似文献   

6.
改性生物炭负载nZVI对土壤Cr(VI)的修复差异研究   总被引:2,自引:0,他引:2  
考察了生物炭(BC)、酸洗生物炭(HCl-BC)和纳米零价铁负载生物炭(n ZVI-HCl-BC)对土壤中Cr(VI)还原和总Cr形态转化的影响.结果表明,生物炭对Cr(VI)还原率随土壤含水率的升高而显著提高.在较高土壤含水率(70%)条件下,各生物炭对Cr(VI)的最高还原率排序为:HCl-BC(97.26%)n ZVI-HCl-BC(88.36%)BC(87.61%).在不同Cr(VI)污染水平下(150、300、600和900 mg·kg~(-1)),HCl-BC对土壤中Cr(VI)的还原率最高.随Cr(VI)含量升高,BC和HCl-BC对Cr(VI)的还原率呈降低趋势,而n ZVI-HCl-BC对Cr(VI)的还原率为先降低后升高.形态分析表明,生物炭在不同程度上增加了土壤中Cr残渣态的比例:n ZVI-HCl-BC(11.58%)HCl-BC(9.53%)BC(1.42%),表明生物炭对土壤Cr起到稳定作用.综上,改性生物炭显著促进Cr(VI)还原及总Cr向残渣态转化,表明其具有修复Cr污染土壤的潜力.  相似文献   

7.
以某铬盐厂铬渣堆存场地内Cr(Ⅵ)污染土壤为研究对象,采用七水硫酸亚铁(Fe SO_4·7H_2O)、多硫化钙(Ca Sx)、Fe SO_4·7H_2O和Ca Sx、Fe SO_4·7H_2O和水泥4种药剂开展Cr(Ⅵ)污染土壤的还原稳定化实验,并利用BCR连续提取法进行铬形态分析。结果表明,Cr(Ⅵ)还原效果:Fe SO_4·7H_2O和Ca Sx复配药剂在4种药剂中对Cr(Ⅵ)的整体还原效果最好。铬稳定效果:Fe SO_4·7H_2O和水泥复配药剂在4种药剂中对土壤铬的稳定性最好,Fe SO_4·7H_2O和水泥复配药剂处理对铬的形态分布的影响是使弱酸提取态、可还原态和可氧化态转化成残渣态,处理后残渣态铬质量分数高达30.98%。污染土壤中铬的形态分布为可氧化态(63.67%)残渣态(23.29%)弱酸提取态(6.80%)可还原态(6.25%),4种药剂处理后土壤中铬的形态分布为可氧化态残渣态可还原态弱酸提取态。  相似文献   

8.
为了研究含铬浸出渣的调质解毒机理,建立了CaO-MgO-FeO-Na2O-SiO2-Al2O3-Cr2O3七元渣系活度模型,基于共存理论的活度模型得出了铬渣中主要组分及复合氧化物在不同条件下的活度。所得的结果表明,铬渣中Cr2O3主要形成了Na2Cr2O4和CaCr2O4,这两种复合氧化物不稳定,在自然环境中分别会被氧化为水溶性的铬酸钠(Na2CrO4)和酸溶性的铬酸钙(CaCrO4),释放出具有强毒性的Cr(Ⅵ),是造成铬污染的主要原因。温度、碱度以及渣中FeO含量都能影响渣系组分的活度。在1700K下,将铬渣碱度调至1.14,并加入30%的FeO能够使Cr2O3的有效固定率提高至88.2%,基本实现了铬渣的解毒。  相似文献   

9.
由工业生产引起的铬污染是环境领域面临的一大挑战。二氧化钛(TiO2)材料因其吸附催化的双重作用在铬的去除方面具有潜在应用前景。利用水热法合成高指数晶面TiO2{201},对其进行SEM、TEM、XRD、及XPS表征,并用于Cr(III/VI)的吸附及Cr(VI)的光催化还原,以达到从水体中去除铬的目的。所合成的TiO2{201}为锐钛矿相,呈蒲公英状的层级结构。Langmuir吸附等温线结果表明,TiO2{201}对Cr(III)和Cr(VI)的最大吸附量分别为22.7mg·g-1和13.2mg·g-1,Freundlich模型拟合结果表明TiO2{201}对Cr(III)和Cr(VI)的吸附均易于进行,其1/n均小于0.5。在紫外光照条件下,TiO2{201}作为光催化剂可将毒性较强且吸附去除效果较差的Cr(VI)还原成Cr(III),并以Cr(OH)3及Cr2O3的形式沉淀在TiO2表面,XPS表征结果进一步证实了表面沉淀的存在。为探明TiO2{201}光催化还原Cr(VI)的机制,分别研究光生空穴淬灭剂(EDTA-2Na)和光生电子淬灭剂(KBrO3)对Cr(VI)还原效率的影响,证明Cr(VI)的还原是由光生电子引起。  相似文献   

10.
生物硫铁复合材料处理含铬废水及铬资源化研究   总被引:4,自引:1,他引:3       下载免费PDF全文
研究了由硫酸盐还原菌(SRB)与其原位生成的纳米硫铁化合物组成的生物硫铁复合材料(生物硫铁)的耐铬性能和再生性能,并利用其再生特性,设计了处理高浓度含铬废水及铬资源化的还原-再生循环处理工艺.结果表明,生物硫铁处理含铬废水后,污泥中的SRB仍具有活性,能以反应产物Fe3+和S单质为电子受体,重新生成生物硫铁;而且SRB在Cr(VI)浓度600mg/L的废水中仍能存活并逐渐将Cr(VI)去除.还原-再生循环处理工艺处理含铬废水结果表明,出水Cr(VI)低于0.019mg/L,总Cr低于0.929mg/L,能达标排放.经10个循环处理后污泥中铬(Cr2O3)含量达到40.47%,铬铁比达到6.98,污泥达到冶金级(湿法冶炼铬)铬矿标准和化工级铬矿标准,可资源化利用.  相似文献   

11.
微波解毒含铬废渣   总被引:5,自引:0,他引:5  
宁平  刘天成  梁波  王亚明 《环境工程》2006,24(1):56-57,60
用褐煤作还原剂还原含铬废渣中Cr6+,考察了褐煤以及铬渣在微波场中的升温行为,研究了铬渣解毒的影响因素。实验结果表明,铬渣和褐煤在微波环境中都能升温达到还原反应温度,Cr6+的转化率和体系温度随着微波功率的增加、辐射时间延长、煤渣比增加、煤渣量增加Cr6+的转化率相应提高。在微波功率为700W,辐射时间为20min,煤渣比为20∶100,煤渣量为20g时,Cr6+的转化率达到99.12%,体系温度达到1050℃。  相似文献   

12.
不同温度和pH条件下,通过批式试验研究了苦杏仁酸、苹果酸、乳酸还原Cr(VI)的反应速率.结果表明,这3种α-OH酸还原Cr(VI)的能力表现为:苦杏仁酸>苹果酸>乳酸.苦杏仁酸对Cr(VI)的还原作用受pH变化的影响较大,而乳酸受温度变化的影响较大.同时研究了Mn(II)对3种α-OH酸还原Cr(VI)反应速率的影响.结果表明,Mn(II)对3种α-OH酸还原Cr(VI)均有催化作用,其中对苦杏仁酸表现更为明显.  相似文献   

13.
煤中微量有害元素的挥发性   总被引:2,自引:0,他引:2  
利用3 种热解反应装置(密闭模拟下落床、流动气氛模拟下落床和固定床)研究了 6种煤中 As、Pb、Cr、Cd 和 Mn等微量有害元素的挥发性随温度(300~1000℃)的变化规律,同时考察了热解装置的影响.结果表明,这 5 种元素的挥发性均随热解温度的升高而升高;6 种煤中 As、Pb、Cd均表现出与Cr 和 Mn相比具有较强的挥发性,但它们的挥发温度不同,其中 As 的挥发主要发生在 300~700℃,Cd 主要在 500℃以上挥发,Pb 主要在 800℃以上挥发.热解过程中,微量元素在半焦孔道内扩散时产生的反应是影响元素析出的重要因素之一.  相似文献   

14.
抗生素菌渣的热解行为受其热解条件的影响,而明确热解条件对抗生素菌渣热解特性的影响是其热解资源化和无害化的前提。通过在固定床反应器中热解抗生素菌渣(以土霉素菌渣为例),采用热重分析法研究升温速率、菌渣粒径、添加剂(CaO、CeO_2、Na_2CO_3)等热解条件对抗生素菌渣热解特性的影响,并利用傅里叶红外光谱仪(FTIR)分析了其热解过程中SO_2、HCN、NH_3、NO等气态污染物的排放规律。结果表明:抗生素菌渣的热解主要分为两个阶段,即在200~600℃温度区间,抗生素菌渣内有机质充分热解,挥发分大量析出,抗生素菌渣的质量损失从95%降低至40%左右,且在370℃达到最大失重速率9%/min,而在600~900℃温度区间,热解焦继续热解,抗生素菌渣的质量损失从40%降低至30%左右,直至稳定;升温速率的改变对热解焦剩余量的影响较小,但随着升温速率的提高,其热解速率加快;菌渣粒径越小,其热解速率越快,分解越彻底,热解焦的剩余量越少;添加剂能够改善抗生素菌渣的热解活性,降低热解反应的活化能,并可以促进氮、硫元素的转化,使热解气体中HCN、NH_3、NO、SO_2的排放浓度降低。  相似文献   

15.
采用连续反应器,考察了铬渣水浸工艺参数,研究了铬渣中Cr(VI)的水浸动力学。结果表明,铬渣水浸过程速率为通过固膜的扩散所控制,通过对整个过程分阶段分别进行拟合,建立了Cr(VI)水浸过程的动力学模型,后阶段反应模型在α=0.05上显著,两个反应阶段表观活化能分别为18 kJ/mol和10.25 kJ/mol。  相似文献   

16.
以治理铬渣中的Cr(Ⅵ)污染为目的,提出了硫酸浸出-硫酸亚铁还原的铬渣湿法解毒工艺,在对铬渣处理前后的表面形貌进行表征的基础上,探究了不同处理条件下铬渣中Cr(Ⅵ)的处理效果及其修复机理。结果表明:铬渣湿法球磨时间为20 min时,铬渣颗粒98.68%过200目筛,水溶性Cr(Ⅵ)的浸出率可达40.96%;铬渣硫酸添加量为60%,液固比为4∶1,酸溶时间为2.5 h时,Cr(Ⅵ)浸出趋于饱和,此时浸出终点pH为5.8,水溶性和酸溶性Cr(Ⅵ)总浸出率为95.38%;硫酸亚铁添加量为40%时,铬渣中Cr(Ⅵ)含量下降为1.38 mg/kg。铬渣中Cr(Ⅵ)的去除主要与硫酸对含Cr(Ⅵ)矿物的溶解、SO42-和CrO42-的离子交换以及Fe(Ⅱ)对溶液中Cr(Ⅵ)的还原作用有关。  相似文献   

17.
氧化环境中FeS修复重金属的稳定性变化与机制   总被引:1,自引:0,他引:1  
硫化亚铁(FeS)是良好的重金属修复剂,但它对氧化环境敏感.当环境氧气浓度升高时,FeS对重金属的固定效果可能发生改变.本研究考察了氧化环境中FeS与重铬酸根、铅和镉离子的反应规律和结合机制变化.结果表明,环境氧气浓度升高可促进Fe~(2+)的释放,且增加FeS表面S(-II)氧化态的比例(与Pb~(2+)反应:从24%增加到44%,与Cd~(2+)反应:从60%增加到78%).延长反应时间至30 d,虽然PbS和CdS结晶度提高,但两者表面出现Pb—O和Cd—O氧化形态,预示着重金属再释放的风险.有氧干燥条件下FeS表面矿物相转变为纤铁矿,对Cr(VI)的还原能力大幅下降.与未干燥FeS(FeS-Cr-3h)相比,当有氧干燥的FeS与Cr(VI)反应时,总铬的去除量下降约96%(由约100 mg·g~(-1)降至(3.74±1.12) mg·g~(-1)),Cr(VI)去除量下降约57%(由约100 mg·g~(-1)降至(43.28±0.46) mg·g~(-1)).FeS及重金属硫化物的氧化显然不利于重金属的长期稳定.如何延缓或抑制FeS与重金属硫化物的氧化因此成为未来研究需回答的问题.  相似文献   

18.
采用高温自蔓延技术处置铬渣,探讨了高温自蔓延技术还原解毒固化铬渣的机制。以铝粉和三氧化二铁作铝热剂,与铬渣充分混合,用镁条点燃引发自蔓延反应,最终得到铬渣固化体。实验结果表明:高温自蔓延技术能有效固化铬渣,铬渣的掺渣率高达44.94%。浸出实验结果表明:A组(铬渣原样)铬渣固化体总铬浸出浓度未检出;B组(铬渣原样+重铬酸钾)铬渣固化体总铬浸出浓度为0.117 76 mg/L,远远低于国标(GB 5085.3-2007)限值15 mg/L,六价铬浸出浓度未检出。XRD分析表明:铬渣还原解毒固化机制主要是六价铬在自蔓延反应中被还原为三价铬,再与其他金属化合物在高温熔融状态下生成含铬尖晶石,铬以离子键Cr—O的形式参与尖晶石的晶格形成。  相似文献   

19.
超积累植物热解中重金属迁移及渗滤特性研究   总被引:1,自引:0,他引:1  
在管式炉上研究了土壤修复后超积累植物蜈蚣草(Pteris vittata)热解过程中Zn、Cd、Cr、Cu、Pb和Ni的迁移规律和底渣的渗滤特性.结果表明,高温促进重金属的迁移,挥发强度依次是Pb≈CdZnCrCu≈Ni;热解温度在500~900℃有利于重金属在底渣中富集,有利于后续重金属回收利用,实现资源化;底渣的渗滤特性受温度影响,随温度升高,底渣的重金属浸出量减小;底渣中重金属浸出率整体呈现出下降趋势,说明热解使得底渣中重金属向更稳定形态转变.  相似文献   

20.
研究高效还原技术是去除废水中Cr(VI)的有效手段,本研究提出了一种新颖有前景的基于紫外(UV)活化甲酸(HCOOH)产还原性二氧化碳阴离子自由基(CO2•;-)去除Cr(VI)的方法.通过对比UV、HCOOH、UV/HCOOH三种体系对Cr(VI)还原效率和电子自旋共振(EPR)对体系中自由基的检测研究了其活化原理和还原机制.结果表明UV能显著活化HCOOH产生CO2•-(αH=19.08G,αN=15.86G,g=2.0036).此外,试验考察了主要影响因素对Cr(VI)去除效果的影响,包括初始Cr(VI)浓度、甲酸投加量、初始pH值、反应温度、有机污染物以及水中常见阴离子.结果显示当甲酸浓度为40mmol/L,Cr(VI)初始浓度为10mg/L,反应时间在60min内,UV/HCOOH体系对Cr(VI)的去除率能达到100%.在酸性条件下(pH≤3.5)能显著促进Cr(VI)的还原,且Cr(VI)去除效率随着初始HCOOH浓度和反应温度升高而增加.进一步研究表明,该体系下NO3-对Cr(VI)的还原有着显著的促进作用,而Cl-、HCO3-和对硝基苯酚(pNP)则有抑制作用.不同温度下Cr(VI)去除率与时间关系的拟合结果表明,当反应时间t³;40min,UV/HCOOH体系去除Cr(VI)过程遵循准一级反应动力学,根据不同温度下对应的反应速率常数k,结合阿伦尼乌斯方程,计算求得准一级反应的活化能为15.9kJ/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号