首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物气溶胶是悬浮在大气中直接来源于生物有机体的粒子,基于生物材料存在荧光的特性利用紫外诱导荧光技术对其监测是近年来的热门研究方法。该研究利用双波段荧光生物气溶胶(WIBS)分别以深圳南澳和韶关南岭监测点作为海陆源背景点进行了大气在线观测,得到了海陆源生物气溶胶特征。深圳南澳3个通道FL1、FL2和FL3的荧光粒子数浓度是0.067、0.067和0.057 cm~(-3),韶关南岭3个通道FL1、FL2和FL3的荧光粒子数浓度是0.012、0.032和0.016 cm~(-3)。进一步根据不同通道荧光阈值将粒子分为7种类型,深圳南澳总荧光气溶胶浓度是0.106 cm~(-3),其中主要是Type ABC和Type A。韶关南岭总荧光粒子浓度为0.053 cm~(-3),其中主要是Type B和Type AC。深圳南澳生物气溶胶的粒径分布在2μm分布显著,韶关南岭点粒径分布主要集中在1~3μm。利用黑碳、乙腈和m/z44与不同类型荧光粒子的相关分析,得到深圳南澳和韶关南岭受到非生物性成分的影响较小,能较好地代表海陆源生物气溶胶。进一步比较海陆源和深圳15 a夏季荧光粒子的粒径特征,通过PMF模型运算,得到海洋源生物气溶胶对深圳夏季生物气溶胶的贡献有0.020 cm~(-3),占到总荧光粒子的2.9%。  相似文献   

2.
在可吸入性颗粒物粒径范围内(d_p<10μm),上海市区大气中气溶胶粒子质量浓度分布为双峰型,峰值出现在1.0μm左右(积聚模态粒子区)和4.5μm左右(粗粒子区),且呈现大粒径处峰值大于小粒径处峰值的趋势。与质量浓度分布曲线相似,质量概率密度分布也为双峰型,峰值出现在0.8μm左右和4.0μm左右。模拟结果表明,上海市区大气中气溶胶粒子质量概率密度分布规律符合双重分布函数:y=exp[-(a_4d~4 a_3d~3 a_2d~2 a_1d a_0)],所表征的类型,应用双重分布函数能解释大气气溶胶粒子的分布规律。  相似文献   

3.
为研究不同天气条件下大气污染物(PM_(2.5)、PM_(1.0)、SO_2、NO_2、O_3和CO)和气溶胶化学组分的污染特征,分别使用SHARP-5030监测仪、热电EMS系统、气溶胶化学成分在线监测仪(ACSM)和宽范围颗粒粒径谱仪(WPS)对嘉兴市2015年5月1~31日PM、污染气体、PM_(1.0)中化学组分和10 nm~10μm气溶胶数浓度进行了观测分析.结果表明,观测期间嘉兴市PM_(2.5)、PM_(1.0)、SO_2、NO_2、O_3和CO的平均浓度分别为52.8和37.2μg·m~(-3)、10.3μg·m~(-3)、38.1μg·m~(-3)、92.1μg·m~(-3)和1.2 mg·m~(-3).PM_(1.0)中OA、SO_2-4、NO-3、NH_4~+和Cl-的平均浓度为2.18、1.24、0.87、0.63和0.08μg·m~(-3).数浓度主要集中在爱根核模态(20~100 nm),浓度为12 411.2 cm~(-3),其次是核模态(10~20 nm),浓度为4 946.6 cm~(-3).不同天气过程中PM和污染气体的浓度分布和日变化特征不同.不同天气条件下PM_(1.0)中化学组分分布不同.雨天和晴天PM_(1.0)中化学组分浓度从大到小顺序均为OASO_2-4NO-3NH_4~+Cl-,新粒子天PM_(1.0)中化学组分浓度的顺序为OANO-3SO_2-4NH_4~+Cl-.新粒子天OA和NO-3分别是晴天的1.61和1.42倍,说明OA和NO-3是影响新粒子生成事件的主要化学成分.不同天气条件下不同模态气溶胶的日变化特征不同.  相似文献   

4.
南京北郊冬春季气溶胶数浓度变化特征分析   总被引:3,自引:1,他引:2  
吴丹  张璠  刘刚  吴明  夏俊荣  盖鑫磊  李凤英  杨孟 《环境科学》2017,38(10):4015-4023
使用APS-3321对2014年南京北郊冬春季0.5~20μm粒径段大气气溶胶数浓度进行了较长时间的连续观测,对其变化特征进行了分析.观测期间南京北郊冬、春季大气气溶胶平均数浓度分别为(364.8±297.8)个·cm~(-3)和(79.6±62.4)个·cm~(-3),细粒子(0.5~1.0μm)分别占整个观测粒径段数浓度的87.8%和86.6%,在不同时间段,数浓度变化很大.南京北郊数浓度具有明显的日变化特征,夜晚浓度高,白天浓度低,冬季07:00和春季09:00达到早高峰,冬季17:00和春季18:00数浓度开始迅速增加.数浓度粒径谱分布冬季为单峰型,峰值粒径在0.583~0.626μm之间,春季峰值粒径小于0.542μm,冬季峰值粒径大于春季.随着相对湿度的增加气溶胶数浓度不断增加,同时峰值粒径向较大粒径方向偏移,体现了吸湿增长对气溶胶粒径谱分布的影响.观测期间,霾天比例高达83.3%,随着霾污染加重,在小于2.0μm的粒径段数浓度显著增加且冬季更为明显;春季,细粒子比例随霾的加重而增加,但冬季由于气溶胶老化导致大粒径粒子浓度显著增大,重度霾天时,细粒子比例有所降低.对1月典型污染过程的分析表明,气团来源与地面风向存在很好的对应关系,苏北近距离污染输送和地面小风造成的污染物累积是此次重污染过程形成的重要原因.  相似文献   

5.
冬季临安大气本底站气溶胶来源解析及其粒径分布特征   总被引:2,自引:2,他引:0  
利用宽范围粒径谱仪(WPS)、EMS系统、KC-120H中流量采样器、850professional IC型离子色谱分析仪和热/光碳分析仪(DRI2001A)分别观测了临安大气本底站2015年1月9~31日10 nm~10μm气溶胶数浓度粒径分布、常规污染气体浓度、PM_(2.5)浓度及水溶性离子和OC、EC的浓度,利用PMF模式对PM_(2.5)进行来源解析,并分析了不同污染源下气溶胶粒子的谱分布及日变化特征.结果表明,临安大气本底站大气气溶胶数浓度平均为5 062 cm~(-3)·nm~(-1),主要集中在10~400 nm.PM_(2.5)的平均浓度和NO_2、SO_2、CO的平均体积分数分别为123.6μg·m~(-3)、22.6×10~(-9)、34.0×10~(-9)和2.2×10~(-6).水溶性离子以NO_3~-、SO_4~(2-)、NH_4~+为主,平均浓度分别为19.2、15.4和10.8μg·m~(-3),分别占总水溶性离子的37.9%、30.4%、21.4%.OC和EC的平均浓度分别为24.4μg·m~(-3)和6.6μg·m~(-3).冬季临安大气本底站PM_(2.5)主要来自二次相关源、燃煤排放、机动车排放、扬尘和生物质燃烧,贡献率分别为42.3%、21.4%、17.1%、8.7%和10.6%.不同来源气溶胶数浓度谱分布差异较大,二次相关、机动车排放、扬尘和生物质燃烧气溶胶数浓度谱均为单峰型分布,峰值分别位于120、50、100和90nm.燃煤颗粒物数浓度谱分布为双峰型分布,峰值分别位于25 nm和100 nm,浓度为19 842 cm~(-3)·nm~(-1)和18 372 cm~(-3)·nm~(-1).二次相关源、燃煤源、机动车排放、扬尘和生物质燃烧表面积浓度谱均为三峰型分布,最大峰值分别位于650、210、160、180和575 nm.不同排放源气溶胶颗粒物数浓度和表面积浓度日变化特征基本一致,多呈双峰型分布,主要受边界层日变化和人类活动影响.  相似文献   

6.
沙尘天气对生物气溶胶中总微生物浓度及粒径分布的影响   总被引:5,自引:4,他引:1  
为了解沙尘对生物气溶胶中微生物的影响,于2015年3~4月间分别在兰州和青岛沙尘期间运用分级生物气溶胶采样器连续采集了生物气溶胶样品,并利用DAPI染色-荧光显微镜计数方法测定了总微生物浓度.结果表明,沙尘发生时生物气溶胶中总微生物浓度显著增加(P0.05).兰州和青岛总微生物浓度晴天背景均值分别为5.61×10~5cells·m~(-3)和2.08×10~5cells·m~(-3),沙尘时平均浓度分别是晴天的14.8倍和6.42倍.晴天时兰州和青岛两地样品微生物粒径分布均呈双峰分布,最高峰值均出现在7.0μm的粒径上,最低值均出现在4.7~7.0μm的粒径上,浓度次高峰值分别出现在3.3~4.7μm的粒径上和1.1~2.1μm的粒径上.沙尘时粒径分布均发生明显变化,兰州仍呈现双峰分布,但其中一个峰值从7.0μm移动到1.1~2.1μm;而青岛粒径由双峰分布变为粗粒径偏态分布.兰州和青岛沙尘前微生物负荷的背景值分别是2 224 cells·μg~(-1)和1 550 cells·μg~(-1),而沙尘发生时,颗粒物的微生物负荷均大幅增加,最高值分别达26 442 cells·μg~(-1)和10 250 cells·μg~(-1),这说明沙尘天气发生时,微生物浓度的增加不仅仅是因为空气中颗粒物的增加,而是因为长距离传输的沙尘颗粒携带有大量外源微生物.  相似文献   

7.
泰山顶(1534 m)夏季气溶胶粒径分布特征   总被引:3,自引:1,他引:2  
使用宽范围粒径谱仪对泰山顶2017年6月1~25日10 nm~10μm气溶胶数浓度粒径分布进行观测,结合PM(PM_(2. 5)和PM10)以及气象要素数据,分析了泰山顶气溶胶粒径分布特征及其主要影响因素.结果表明,观测期间泰山PM_(2. 5)和PM10的平均浓度分别为20. 7μg·m~(-3)和82. 4μg·m~(-3),PM_(2. 5)/PM10仅为25. 1%.数浓度、表面积浓度和体积分数平均为8 672. 8cm~(-3)、408. 3μm2·cm~(-3)和24. 2μm3·cm~(-3).数浓度谱分布为单峰型分布,表面积浓度和体积分数谱分布均为三峰型分布.数浓度和表面积浓度的主导粒径分别为10~20 nm和100~500 nm,体积分数的主导粒径为100~500 nm和2. 5~10μm.风向对PM和数浓度的影响要比风速的影响大.随着RH的增加,气溶胶数浓度谱由双峰型分布转变为单峰型分布,表面积浓度谱由单峰型分布转变为三峰型分布.  相似文献   

8.
沈利娟  王红磊  吕升  李莉  张孝寒  章国骏  王翡 《环境科学》2015,36(12):4348-4357
为研究嘉兴市周末与工作日主要污染物和气溶胶粒径分布变化的差异,对2015年5月南湖区城区污染气体(SO_2、NO_2、CO和O_3)、PM(PM10和PM_(2.5))和10 nm~10μm气溶胶数浓度粒径谱分布进行了观测分析.结果表明,嘉兴市SO_2、NO_2、CO和O_3存在显著的周末效应,周末白天O_3浓度低于工作日.O_3在周末峰值出现时间为14:00,比工作日晚1 h.PM_(2.5)的周末效应要比PM10明显.PM_(2.5)/PM10周末为0.7,在工作日为0.6.嘉兴市气溶胶数浓度均集中在500 nm以下,周末和工作日平均数浓度分别为16 602 cm~(-3)和23 309 cm~(-3).核模态粒子数浓度的周末效应最显著,核模态和粗模态粒子表面积浓度的周末效应最显著,积聚模态和粗模态粒子质量浓度的周末效应最显著.周末和工作日气溶胶数浓度谱分布为单峰型分布,表面积浓度谱为三峰型分布,质量浓度谱为四峰型分布.  相似文献   

9.
海洋-大气过程对南海气溶胶数浓度谱分布的影响   总被引:1,自引:0,他引:1  
孔亚文  盛立芳  刘骞  李秀镇 《环境科学》2016,37(7):2443-2452
利用2012年8月28日至10月13日期间走航观测的气溶胶数据,分析了南海气溶胶数浓度时空分布和粒径谱分布特征,以及海洋-大气过程的影响.结果表明,南海气溶胶数浓度的时空分布和粒径谱分布受海洋和陆地源以及当地气象条件如风速、风向、相对湿度、云量、温度等的共同影响.陆地气团影响下的海域气溶胶数浓度较大,达2 300个·cm~(-3);受陆地影响较小的海域大气较为洁净,气溶胶数浓度在1 200个·cm~(-3)以下.观测得到的气溶胶粒径谱包括积聚模态和粗模态,峰值分别位于0.08~0.2μm和0.5~2μm附近.出现频率较高的谱型有3种:陆地型,海洋背景1型和海洋背景2型.陆地型与海洋2型的谱分布形状基本一致,但后者次微米粒子数浓度非常小,是洁净海洋背景下最常见的谱型;海洋1型在0.05~0.1μm粒径段数浓度显著高于海洋2型,并且在大于0.5μm的粗粒子段,海洋1型的气溶胶数浓度超过陆地型气溶胶数浓度,暗示了海洋源对这两个粒径段的粒子数浓度的贡献.0.05~0.12μm的积聚模态粒子数浓度与低云量有明显的正相关关系,且当相对湿度达90%~95%时,0.08μm附近的粒子数浓度增加显著.0.5~6μm的粗模态海洋气溶胶对风速的依赖性较强,相关性达0.7;0.05~0.12μm气溶胶数浓度与风速呈现弱正相关;0.12~0.5μm粒子数浓度与风速呈负相关.随着相对湿度的增大,0.08~0.12μm的粒子数浓度降低,而0.05~0.08μm和0.5~6μm的粒子数浓度增大.降水过程中,各粒径段粒子数浓度逐渐降低,但在降水初期,相对湿度达到90%~95%,0.05~0.12μm和0.5~6μm的粒子数浓度显著增大,随后逐渐减小.  相似文献   

10.
利用美国MSP公司生产的宽范围粒径谱仪(WPS)于2011年5月至9月在黄山山底(寨西)采集的气溶胶观测数据,分析了黄山山底大气气溶胶数浓度的日变化特征.结果表明晴天气溶胶数浓度日变化特征明显,气溶胶粒子总数浓度在6:00,12:00和18:00达到峰值.人为活动,湍流混合及山谷风是影响黄山山底气溶胶日变化的主要因素.剔除交通污染时段后,气溶胶粒子数平均浓度减少319个/cm3,即减少12.17%.其中,0.01~0.02μm,0.02~0.05μm,0.05~0.1μm,0.1~0.5μm,0.5~1.0μm,1.0~2.5μm粒径段气溶胶粒子数浓度分别降低了31.32%,20.29%,6.59%,7.49%,1.23%,2.51%.机动车尾气排放对0.01~0.05μm粒径段气溶胶的影响最明显,其气溶胶浓度降低百分比为25.81%.  相似文献   

11.
北京不同污染事件期间气溶胶光学特性   总被引:2,自引:1,他引:1  
施禅臻  于兴娜  周斌  项磊  聂皓浩 《环境科学》2013,34(11):4139-4145
利用2005~2011年的AERONET观测数据,对北京不同污染事件期间(秸秆焚烧、烟花燃放以及沙尘天气)气溶胶光学特性进行了分析.气溶胶光学厚度受污染有显著上升,沙尘、秸秆、烟花气溶胶的AOD440 nm分别是干净背景的4.91、4.07、2.65倍.AOD与ngstrm波长指数的匹配能够较好地识别污染类型,沙尘对应高AOD和低α,烟花气溶胶α(1.09)稍低于秸秆(1.21)以及背景(1.27),表明烟花气溶胶的粗粒子更占优,秸秆对应更高的AOD则与其中黑碳颗粒较强的消光能力有关.单次散射反照率对波长敏感性不高,沙尘气溶胶的ω值(0.934)高于背景值(0.878)、秸秆气溶胶(0.921)以及烟花气溶胶(0.905),秸秆气溶胶受烟羽老化、吸湿性增长等影响表现出偏大现象.气溶胶粒子谱分布在背景与污染期间均为双峰模态,细模态和粗模态的峰值浓度半径分别为0.1~0.2μm以及2.24~3.85μm,粗细粒子浓度比值由小到大依次为背景(1.04)、秸秆焚烧(1.10)、烟花燃放(1.91)以及沙尘气溶胶(4.96).  相似文献   

12.
使用GRIMM180对2017年12月—2018年11月南通市区四季0. 25~32μm粒径段大气气溶胶数浓度进行连续观测,对其变化特征进行了分析。春、夏、秋、冬四季数浓度分别为396个/cm3、281个/cm3、265个/cm3、519个/cm3。春季PM1-32的气溶胶日变化呈单峰分布,峰值位于11∶00;夏季PM0. 25-1及PM2. 5-32的气溶胶日变化呈单峰分布,峰值位于12∶00,与太阳辐射有关;秋季PM0. 25-32和冬季PM0. 25-2. 5的气溶胶日变化呈双峰分布,峰值位于8∶00—10∶00和18∶00—19∶00,受早晚高峰影响。气溶胶四季数浓度谱峰值均为0. 29μm,数浓度主要由1μm以下的细粒子贡献,粗粒子贡献很少, 1μm的粒子数浓度维持在较低水平。随着小颗粒物数浓度的增加,空气质量状况的下降更为突出,尤其是0. 5~1μm的颗粒物。  相似文献   

13.
分析了其时间分布特征。结果表明,沈阳地区的气溶胶分布具有明显的季节差异,气溶胶的质量浓度冬季最高,秋季最低,其中冬季、春季和夏季均超标。PM2.5和PM1分别在PM10中所占的比值均为冬季最高,夏季和秋季次之,春季由于受到沙尘的影响,其比值最低。在各个不同的季节,气溶胶粒子的粒级分布具有相似之处,主要集中在6~8级(1.1μm)、1级(5.8~9.0μm)、0级(9~10μm)和5级(1.1~2.1μm);春季出现沙尘时粗粒子明显增多,气溶胶粒子的粒级主要集中在0级(9~10μm)、1级和3级(3.3~4.7μm);冬季重污染天气下细粒子浓度高,峰值出现在1级、7级和5级(1.1~2.1μm)。  相似文献   

14.
秋季南通近海大气气溶胶水溶性离子粒径分布特征   总被引:1,自引:0,他引:1  
2012年10~11月在南通近海设立观测点,利用Anderson分级采样器采集大气气溶胶样品,用离子色谱仪(Metrohm IC)分析其中10种水溶性离子组成.结果表明,南通秋季近海PM10和PM2.1中水溶性离子浓度分别为59.70,45.96μg/m3.PM2.1中主要离子质量浓度排列依次为SO42-NO3-NH4+Ca2+.SO42-,NO3-和NH4+占PM10中离子浓度的80%以上,二次离子为近海区域气溶胶的主要成分.SO42,NH4+和NO3-均表现出单峰型分布,峰值区间均为0.43~1.1μm,Ca2+,Na+和Cl-表现为双峰型.Ca2+高浓度峰值出现4.7~5.8μm粒径段内;Na+和Cl-峰值出现在0.43~1.1μm和3.3~5.8μm内,但最大峰值浓度区间不一致.PM10中nss-SO42-/SO42-比值均高于90%,陆地源对近海硫酸盐的影响显著.nss-SO42-/NO3-的比值在2.1μm的粒径段内均大于1,表明该区域固定源是大气细粒子中离子的重要贡献源,但移动源对粗粒子的影响值得重视.个例分析显示,稳定的天气系统,高污染排放内陆地区的污染物传输,是造成10月27日的严重污染过程的主要原因.  相似文献   

15.
2009年秋季利用河北省人工影响天气办公室机载气溶胶粒子探头(PCASP-100X)和前向散射滴谱探头(FSSP-100-ER)在石家庄市上空进行了多次气溶胶观测.选取2009年9~10月间的7架次雾天、1架次小雨天及1架次密卷云天观测资料,重点研究雾天气溶胶粒子数浓度和直径的垂直、水平分布特征及粒子谱分布,并与密卷云天和小雨天的探测资料进行对比分析.结果表明:石家庄地区气溶胶粒子数浓度较高,近地面最大值达11910个/cm3.气溶胶粒子数浓度主要受天气条件影响,逆温层是影响粒子垂直输送的主要因素,在逆温层下粒子累积形成粒子数浓度的高值区,逆温层以上气溶胶粒子数浓度迅速减少,雾天和密卷云天粒子数浓度随高度多呈负指数分布;雾天多伴有逆温层和较大空气湿度,有利于气溶胶粒子累积,数浓度一般可达104个/cm3以上,容易形成低能见度污染天气;气溶胶粒子数浓度在无降水日有累积效应,降雨对气溶胶粒子有明显清除作用;粒子数浓度和粒子直径在水平方向上呈不均匀分布,随着高度增加粒子数浓度和直径的水平绝对偏差减小,相对偏差往往增大;不同天气下尺度谱型类似,多呈单峰分布,在0.11μm左右处出现峰值,但在雾天、密卷云天、小雨天气下的气溶胶粒子峰值依次变小,并且随高度增加,尺度谱峰值数密度值降低,谱变窄.  相似文献   

16.
利用粒子测量系统PMS探测的气溶胶等资料,结合观测期间的天气实况和气团后向轨迹对2008年秋季河北中南部不同天气条件下的大气气溶胶空间分布特征进行了分析和研究.结果表明:不同天气背景下河北中南部气溶胶数浓度的垂直分布和气溶胶粒子谱分布特征存在显著差异.混合层高度,逆温层和相对湿度峰值引起的气溶胶累积效应,云层分布不均以及气溶胶来源特性差异对气溶胶的空间分布特征有着重要影响.不同天气条件下河北中南部近地面的气溶胶数浓度范围为904.4~3005.0个/cm~3.近地面气溶胶数浓度阴天条件下最高,晴空条件下最低.气溶胶粒子谱分布特征与大气层结,逆温层,云区分布等密切相关.逆温层是导致粒子谱呈双峰或多峰分布的主要原因之一.由于云内气溶胶粒子吸湿增长,粒子谱峰值向大尺度方向偏移.云外的气溶胶粒子谱宽且比云内窄.受大气气溶胶粒子本身重力沉降作用的影响,高层粒子谱宽比低层窄,粒子谱峰值向小尺度方向偏移.  相似文献   

17.
青岛近海生物气溶胶中总微生物的分布特征   总被引:5,自引:5,他引:0  
宫静  祁建华  李鸿涛 《环境科学》2019,40(8):3477-3488
为了解生物气溶胶中总微生物浓度的月季分布和粒径分布特征,于2016年9月~2017年7月期间在青岛近海连续采集了大气生物气溶胶分级样品,并利用DAPI染色-荧光显微镜计数方法测定了生物气溶胶中总微生物浓度.结果表明,采样期间青岛近海生物气溶胶中总微生物浓度范围为1. 86×10~5~2. 54×10~6cells·m~(-3),平均值为(6. 84±4. 83)×10~5cells·m~(-3).大气中总微生物浓度的季节变化为春季和冬季较高,夏季较低,秋季最低,统计分析显示秋季和春季、夏季大气中总微生物浓度具有明显的季节变化差异(P 0. 05).生物气溶胶中总微生物月均浓度在2. 65×10~5~1. 12×10~6cells·m~(-3)之间,最高值出现在2017年2月,最低值出现在2016年9月. 2015~2017年青岛秋冬季大气中总微生物浓度一日中变化较大,但并未呈现出明显的日变化规律(P 0. 05).生物气溶胶中总微生物的粒径分布呈现偏态分布, 7. 0μm粒径所占比例最高,可达20. 5%~27. 3%;粒径分布随月份不同而有变化,呈现双峰分布和偏态分布两类.相关性分析显示,总微生物浓度与AQI、CO、PM_(2.5)和PM_(10)等因子呈显著正相关(P 0. 05),与温度、风速和风向等气象因素以及NO_2、SO_2和O_3等因子无显著相关(P 0. 05).多元线性回归模拟结果显示,生物气溶胶总微生物浓度中20. 6%的变化与相对湿度和PM_(2.5)相关.  相似文献   

18.
APS-SMPS-WPS对南京夏季气溶胶数浓度的对比观测   总被引:6,自引:0,他引:6       下载免费PDF全文
为了对比3321型空气动力学粒径谱仪(APS)、3081/3085型气溶胶粒径谱仪(SMPS)和宽范围粒径谱仪(WPS)对气溶胶数浓度的观测性能,于2010年夏季在南京信息工程大学校内使用上述三台仪器进行了同步观测.将得到的数据进行对比,并结合校内自动气象站的气象资料对0.01~10μm气溶胶粒子的数浓度、日变化规律及谱分布特征进行分析.结果表明,3台仪器在总体数浓度变化趋势上表现出较好的一致性,但相同粒径段的粒子浓度NSMPS>NWPS>NAPS.SMPS比WPS尺度分辨率高,粒径范围在0.02~0.2μm时,SMPS与WPS相关性较好;APS测量气溶胶数浓度谱的连续性较WPS好.3种仪器在观测日变化趋势上都表现出双峰型,但SMPS的峰值浓度和出现峰值的粒径范围均高于或大于WPS.各类气象条件及降水对仪器间的测量误差影响不大.  相似文献   

19.
南京地区大气气溶胶及水溶性无机离子特征分析   总被引:4,自引:0,他引:4       下载免费PDF全文
于2010~2011年在南京市城郊两个采样点收集了气溶胶样品,并利用离子色谱(IC)法分析了其中的水溶性无机离子成分.结果表明,采样期间除了夏季,其他3个季节南京城郊气溶胶污染都较严重.南京城郊气溶胶谱分布特征基本在0.65~2.1μm和5.8~9μm粒径段出现峰值.PM2.5与能见度的相关性很大.城郊离子总质量浓度均是春冬季高于夏秋季,四季阴离子质量浓度明显高于阳离子,且这一特征在细粒子上表现明显.水溶性离子在气溶胶中所占比例是夏秋冬季城区高于郊区.南京城郊NO3-/SO42-年均值表明采样期间燃煤仍然是主要污染源,且该比值夏季最低,冬季最高.NH4+、K+、NO3-和SO42-主要富集在细粒子上;Na+、Cl-和NO2-在粗粒子和细粒子上都有富集;Ca2+、Mg2+和F-主要在粗粒子上富集.因子分析(FA)的方法表明南京城区气溶胶主要有3个来源.  相似文献   

20.
南京地区大气气溶胶及水溶性无机离子特征分析   总被引:5,自引:0,他引:5  
于2010~2011年在南京市城郊两个采样点收集了气溶胶样品,并利用离子色谱(IC)法分析了其中的水溶性无机离子成分.结果表明,采样期间除了夏季,其他3个季节南京城郊气溶胶污染都较严重.南京城郊气溶胶谱分布特征基本在0.65~2.1μm和5.8~9μm粒径段出现峰值.PM2.5与能见度的相关性很大.城郊离子总质量浓度均是春冬季高于夏秋季,四季阴离子质量浓度明显高于阳离子,且这一特征在细粒子上表现明显.水溶性离子在气溶胶中所占比例是夏秋冬季城区高于郊区.南京城郊NO3-/SO42-年均值表明采样期间燃煤仍然是主要污染源,且该比值夏季最低,冬季最高.NH4+、K+、NO3-和SO42-主要富集在细粒子上;Na+、Cl-和NO2-在粗粒子和细粒子上都有富集;Ca2+、Mg2+和F-主要在粗粒子上富集.因子分析(FA)的方法表明南京城区气溶胶主要有3个来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号