首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 59 毫秒
1.
温度对短程硝化反硝化的影响   总被引:18,自引:0,他引:18  
以间歇式活性污泥法(SBR)处理生活污水,系统考察了温度变化对短程硝化反硝化稳定性和硝化反硝化速率的影响.结果表明:在较高哌温度下((28±1)℃),通过实时控制和控制污泥龄在lOd左右,可以成功实现短程硝化反硝化.在此基础上对完全亚硝酸型硝化的污泥(NO2--N/NOx--N≈1)进行降温实验,每降1℃稳定一个多月,半年后不刻意控制温度,经历了冬季lO℃的低温,成功的稳定了常温、低温短程硝化反硝化,亚硝化率始终维持在78.8%以上.实验发现降低温度后对于AOB和NOB的活性都有很大的影响,但对于AOB的影响要大于NOB,对比氨氧化速率的影响大于比反硝化速率的影响.26℃条件下的比氨氧化速率和比反硝化速率分别是10℃条件下的4.49和2.91倍.可见降低温度对于短程系统硝化反应的影响要大于反硝化的影响.  相似文献   

2.
pH对高氨氮渗滤液短程生物脱氮反硝化过程动力学的影响   总被引:6,自引:2,他引:4  
为考察实际高氨氮垃圾渗滤液短程生物脱氮过程pH对以NO2--N为电子受体反硝化动力学的影响,本研究采用缺氧/厌氧UASB-SBR生化系统处理实际高氨氮垃圾渗滤液,在SBR系统实现稳定短程生物脱氮(120d运行)的基础上,取SBR反应器内的污泥进行不同NO2--N浓度(5、10、20、40、60、80和100mg·L-1)和恒定pH梯度(6.5、7.0、8.0和8.5)下的反硝化批次试验,基于建立的反硝化动力学方程,确定不同pH条件下以NO2--N为电子受体的反硝化动力学常数.试验结果表明,反硝化菌的还原活性受pH影响较大,pH6.5、7.0和8.5时的最大比反硝化速率(k)分别为pH8.0时的49%、61%和63%;4种pH条件下,NO2--N比反硝化速率与其初始浓度均符合Monod方程,然而不同pH下Monod方程曲线一级反应部分的长短不同,由此导致半饱合常数(Ks)和最大比反硝化速率(k)差异较大,pH8.0下Ks和k最大,分别为15.8mg·L-1和0.435g.g-1.d-1.  相似文献   

3.
王凡  陆明羽  殷记强  李祥  黄勇 《环境科学》2018,39(8):3782-3788
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物.  相似文献   

4.
实际生活污水短程/全程硝化反硝化处理中试研究   总被引:7,自引:0,他引:7  
马勇  彭永臻  陈伦强  吴学蕾 《环境科学》2006,27(12):2477-2482
常温条件下,用A/O生物脱氮工艺中试试验装置处理实际生活污水,控制好氧区低DO浓度(0.5 mg/L),实现了短程硝化反硝化反应,亚硝酸氮平均积累率可达85%或更高.研究了低DO短程硝化反硝化、低DO全程硝化反硝化和高DO全程硝化反硝化3种运行方式或状态在总氮去除率、耗氧量、污泥性能和反应机理上的差别.结果表明,短程硝化反硝化是生物脱氮的最优运行方式,它可有效提高系统脱氮率、降低运行费用.短程硝化反硝化过程中缺氧区和好氧区的pH值变化幅度较大;而全程硝化反硝化过程中,缺氧区pH值变化很小或基本不变化,好氧区pH值变化幅度较大.全程硝化和短程硝化的硝化速率相差不大,但短程反硝化速率和全程反硝化速率相比增加了15%.可以应用DO和pH在线控制A/O工艺硝化反应过程.  相似文献   

5.
啤酒废水同步脱氮除磷工艺启动研究   总被引:1,自引:1,他引:0  
为了将短程硝化反硝化与A/O法除磷同时应用于SBR工艺处理啤酒废水,通过改变序批式反应器(SBR)工艺运行方式,使活性污泥依次经历厌氧、好氧、缺氧3个阶段,控制ρ(MLSS)=4 700 mg/L、pH=7.5~8.0、DO=0.3~0.5 mg/L(好氧阶段)。反应器内短程硝化反硝化同步除磷效果明显,氨氮去除率大于90%,亚硝酸盐积累率大于85%,磷去除率大于98%。试验结果表明短程硝化反硝化与A/O法除磷可同时应用于SBR工艺处理啤酒废水。  相似文献   

6.
短程硝化生物脱氮工艺的稳定性   总被引:28,自引:6,他引:22  
采用序批式活性污泥法 (SBR)处理实际豆制品废水 ,系统研究了温度和曝气时间对短程硝化反硝化生物脱氮工艺稳定性的影响 .结果表明 ,反应器内温度只有超过 28℃时 ,利用温度实现的短程硝化反硝化生物脱氮工艺才能稳定地运行 ;另外 ,首次发现过度曝气对短程硝化影响较大 ,在过度曝气条件下运行12d ,硝化类型就由NO2--N累积率为 96 %的短程硝化转变为NO2--N累积率为39.3%的全程硝化 .因此 ,为使短程硝化反硝化生物脱氮工艺稳定、持久地运行必须实现该工艺的实时控制 .  相似文献   

7.
不同方式实现短程硝化反硝化生物脱氮工艺的比较   总被引:13,自引:0,他引:13  
采用序批式活性污泥法(SBR),以实际豆制品废水为处理对象,比较了控制温度(T=310.5℃)、溶解氧(DO=0.5mg/L)和pH值(7.8~8.7)3种途径实现短程硝化反硝化生物脱氮工艺.结果表明,无论从硝化速率、硝化时间、污泥沉降性能以及生物相上,控制溶解氧实现的短程硝化反硝化脱氮工艺均不如其他2种工艺.就该工艺存在的问题从活性污泥法反应动力学和微生物相上进行了理论探讨,3种途径实现短程硝化反硝化生物脱氮工艺在实际工程应用中均不同程度地存在一些问题.  相似文献   

8.
SBR法对焦化废水生物脱氮研究   总被引:3,自引:0,他引:3  
采用SBR工艺对焦化废水的有机物降解和生物脱氮进行了研究。试验结果表明。焦化废水的生物脱氮是以短程硝化/反硝化的途径存在的,而且在好氧阶段存在同时硝化/反硝化(sND)过程。好氧阶段的反硝化效率约占整个反应周期脱氮效率的37.0%。SBR反应器对NH3-N的去除效率在95.8%-99.2%.CODCr的去除效率在85.3%~92.6%。由于出水中NO2-N的积累。NO2—N对CODCr浓度贡献值得关注。  相似文献   

9.
本实验将短程硝化和反硝化除磷相耦合而构建悬浮-附着式SBR短程反硝化脱氮除磷工艺,对其处理低碳源城市污水处理中过程控制进行研究。耦合实验结果表明,以p H、ORP作为控制参数,系统对氨氮、COD和TP的去除率分别达到90%、85%和80%以上。自动控制应用结果表明,实时监测p H的变化趋势与前期的研究结果较为一致,因此可以通过实时控制p H以控制反应的进程。  相似文献   

10.
张静蓉  王淑莹  尚会来  彭永臻 《环境科学》2009,30(12):3624-3629
采用SBR反应器考察了短程硝化反硝化和同步硝化反硝化脱氮过程中N_2O的释放.通过实时控制策略实现了短程硝化反硝化生物脱氮,亚硝化率可维持在90%以上.在溶解氧水平为0.5、 1.0、 1.5和2.0 mg/L条件下,考察N_2O的释放和亚硝化率的变化情况.结果表明,溶解氧1.5 mg/L时最有利于维持稳定的亚硝化率,同时N_2O逸出量最小,每去除1 g氨氮释放N_2O 0.06 g;在碳纤维填料SBR反应器中,通过维持较低溶解氧水平和分段投加碳源的运行方式成功实现了同步硝化反硝化,同步硝化反硝化率在79%以上.在溶解氧水平为0.2、 0.4、 1.0和1.5 mg/L时,考察N_2O的逸出情况.结果表明,溶解氧在1.0 mg/L时最有利于控制N2O的释放,每去除1g氨氮释放N2O 0.021 g,其N_2O释放量仅为短程硝化反硝化的1/3.  相似文献   

11.
碳氮比对聚氨酯生物膜反应器短程硝化反硝化的影响   总被引:4,自引:3,他引:1  
谭冲  刘颖杰  王薇  邱珊  马放 《环境科学》2014,35(10):3807-3813
研究了聚氨酯生物膜反应器在短程硝化反硝化工艺中的应用,考察碳氮比(15∶1、10∶1、5∶1和1.8∶1)对聚氨酯脱氮系统脱氮性能和微生物群落结构的影响,以及微生物群落结构与其处理效果的对应关系.结果表明,经过100 d的运行,当进水碳氮比从15依次下降到10、5和1.8,亚硝酸氮累积率由56.1%逐次上升到62.3%、72.3%和83.2%.在进水碳氮比为10时,系统取得最佳处理效果,氨氮和总氮去除率分别为99.1%和91.0%.进水碳氮比在15、10、5和1.8时,硝化反应和反硝化反应均同时发生在聚氨酯生物膜系统内,随着进水碳氮比的降低,同时硝化反硝化效率逐渐降低.生物膜的功能微生物分析表明,在碳氮比15时,生物膜的微生物多样性要显著高于其他工况.生物膜上的优势亚硝酸菌和硝酸菌分别以亚硝化单胞菌(Nitrosospira sp.)和硝化螺旋菌(Nitrospira sp.)为主,而反硝化细菌则以假单胞菌(Pseudomonas sp.)占据优势.  相似文献   

12.
以吡啶和苯酚共基质作为电子供体,通过摇床实验分别研究了吡啶与苯酚共基质条件下的降解特性以及以NO2--N为电子受体的短程反硝化动力学方程.结果表明,苯酚对吡啶有抑制作用,且不论单基质还是与苯酚共基质,吡啶的降解均呈零级反应.其次,采用双底物Monod微分方程对COD、NO2--N的浓度变化进行拟合,拟合曲线与实验测定值相关性良好,得到动力学参数:NO2--N最大比降解速率为0.0066mg NO2--N/(mgMLVSS·h),有机物半饱和常数为76.35 mg/L, NO2--N半饱和常数为0.66 mg/L.  相似文献   

13.
A2O工艺处理生活污水短程硝化反硝化的研究   总被引:6,自引:2,他引:4       下载免费PDF全文
在常温条件下,采用A2O工艺处理低C/N比实际生活污水,通过控制好氧区DO为0.3~0.5mg/L以及增大系统内回流比以降低好氧实际水力停留时间(AHRT),成功启动并维持了短程硝化反硝化;系统亚硝态氮积累率稳定维持在90%左右.在C/N比仅为2.34的情况下,短程硝化系统对总氮(TN)的去除率高达75.4%.通过对不同碳源类型、不同硝化类型以及不同DO水平下A2O系统脱氮效率的比较研究发现,低氧短程硝化反硝化阶段与外加碳源的全程硝化反硝化阶段的TN去除率相当.同时研究表明,低DO运行并不会导致A2O工艺发生污泥膨胀.当接种污泥为膨胀污泥时,控制DO在0.3~0.5mg/L反而有助于改善污泥沉降性能和出水水质.  相似文献   

14.
两段曝气生物滤池的同步硝化反硝化特性   总被引:16,自引:0,他引:16       下载免费PDF全文
采用两段曝气生物滤池进行了实际生活污水的试验研究,控制 A 段水力负荷在 22.01m3/(m2d),气水比为 6:1,研究了 B 段气水比分别为 3:1、2:1 和 1:1 时,反应器的运行情况.结果表明,两段曝气生物滤池处理生活污水的出水稳定,当 B 段反应器的气水比为 2:1 时,去除效果最佳.B段具有明显的同步硝化反硝化特征,当气水比较低时主要进行短程的同步硝化反硝化.对B段反应器0.9m高度处的生物膜进行了静态试验,结果表明,生物膜的比硝化速率为 1.458mg NH3-N/(gMLSS·h);当 DO 和 pH 值等影响因子适宜的情况下,有机碳源的存在不影响硝化作用的进行;反硝化过程中,对亚硝酸进行反硝化的速率比对硝酸盐进行反硝化的速率高 1.15 倍,缩短了反硝化所需时间.  相似文献   

15.
利用SBR反应器,通过在线pH曲线控制好氧-缺氧反应时间,成功实现了短程生物脱氮,并考察了分段进水条件下流量分配对SBR反应器运行性能及N2O产量的影响.结果表明,与原水分2次在不同阶段等量加入反应器的二段进水方式相比,原水分3次等量进入反应器的三段进水方式能够有效降低脱氮过程中外碳源投加量和氧化亚氮产量;氧化亚氮主要产生于硝化过程,反硝化过程能够将硝化阶段积累的N2O还原至N2.2次、3次等量进水条件下,生物短程脱氮过程中乙醇投加量分别为0.8和0.6 mL,N2O释放量分别为8.86和5.05 mg·L-1(以N计).硝化过程中NO-2-N的积累是导致系统N2O产生的主要原因.  相似文献   

16.
采用膜生物反应器处理模拟生活污水,研究了短程硝化生物脱氮的效果,试验结果表明:在中温(25~30℃),曝气量为0.15m3/h、pH值为7~8的条件下,COD去除率平均值为89.0%(最高达95.4%),出水氨氮在5.0mg/L以下(平均3.1mg/L),NO2-得到了富集,出水中基本监测不出NO3-,总氮去除率平均为86.2%(最高达94.0%),且系统对有机物与氮源的耐冲击负荷能力较好;曝气量和pH值是短硝化过程的重要影响因素。  相似文献   

17.
吕永涛  刘婷  曾玉莲  孙婷  张瑶  王磊 《环境科学》2017,38(5):1991-1996
为减少生物短程反硝化对外碳源的依赖,研究了无机环境下Fe(0)-活性炭强化短程反硝化的脱氮效果,并探究了不同铁碳比及初始pH值对系统脱氮效果及N+2O释放的影响.结果表明Fe(0)-活性炭可强化生物短程反硝化,将亚硝氮去除率由7.4%提高到31.1%.当m(铁)∶m(碳)由2∶1降至1∶1和1∶2时,反硝化速率与亚硝氮去除率均呈现先升后降的趋势,m(铁)∶m(碳)为1∶1时达到最大,分别为5.58 mg·(g·h)~(-1)与41.1%,且此时N+2O的释放量较小,为0.10 mg.当pH值由6.0升至9.0的过程中,反硝化速率由7.39 mg·(g·h)~(-1)下降至5.96 mg·(g·h)~(-1),N+2O的释放量由0.19 mg下降至0.12 mg.以上结果表明,在m(铁)∶m(碳)为1∶1和pH为弱酸性的条件下,Fe(0)-活性炭能强化短程反硝化获得较好的脱氮效果,但低pH值会增加N+2O的释放量.  相似文献   

18.
N2O是一种强温室气体,而污水处理已被报道是导致N2O产生的潜在人为源之一,且主要发生在生物脱氮的硝化和反硝化过程.本文立足于当前的污水脱氮热点工艺,如短程硝化反硝化、同步硝化反硝化、厌氧氨氧化和反硝化除磷,介绍了这些新工艺的反应机理,描述了它们在非稳态运行过程N2O的释放特征以及溶解氧(Dissolved Oxygen,DO)、NO 2-、自由氨(Free Ammonia,FA)、自由亚硝酸(Free Nitrous Acid,FNA)和进水COD/N等关键因子的影响作用,并进一步从微生物学和生物化学角度剖析了各工艺脱氮过程产生N2O的可能原因.在全球积极应对气候变暖趋势的大背景下,探明污水脱氮工艺N2O的释放本质,提出有效的减排控制方法,对于防止环境污染问题由水环境转移到大气环境具有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号