首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 132 毫秒
1.
介质阻挡放电等离子体对亚甲基蓝的降解   总被引:3,自引:0,他引:3  
研究了介质阻挡放电等离子体降解亚甲基蓝溶液过程。考察了放电电压、亚甲基蓝溶液初始浓度、初始pH值对降解率的影响和降解过程中亚甲基蓝溶液pH值的变化。结果表明:100mg/L的亚甲基蓝溶液在放电频率为10.5kHz,电压为22kV,pH值为5.68的实验条件下,降解40min后,亚甲基蓝降解率为99.8%。对降解产物进行气质联用分析,亚甲基蓝降解产物中存在甲苯、乙烷基环戊烷、苯并噻唑等物质。  相似文献   

2.
高压电晕放电对五氯酚的降解研究   总被引:1,自引:1,他引:0  
研究了放电电压、溶液pH等因素对高压电晕放电降解PCP效果的影响,并对高压电晕放电处理PCP的动力学进行了初步探讨,同时对高压电晕放电降解PCP的COD和TOC的变化进行了分析。结果表明:放电电压和溶液pH值对PCP降解性能影响很大,放电电压和溶液pH值越高,PCP的降解速度越快。当溶液pH值为11.2、PCP初始质量浓度40 mg/L、电晕放电电压为25 kV时,经30 min电晕放电,PCP的降解率达90%以上,电晕放电降解PCP的反应符合一级反应动力学。在氧化过程中PCP可能转化为苯醌等中间产物,TOC几乎无变化,PCP分解成的小分子有机物使COD升高,可生化性提高。  相似文献   

3.
辉光放电电解等离子体降解水体中的罗丹明B   总被引:1,自引:0,他引:1  
用辉光放电电解等离子体(GDEP)对模拟染料废水罗丹明B(RhB)的降解过程进行了研究.通过发射光谱法测定了GDEP产生的活性粒子,采用紫外光谱分析了放电电压、溶液浓度、pH、Fe~(2+)等对RhB脱色率的影响,并用电导率仪和酸度计测定了降解过程中溶液的电导率和pH的变化,同时结合红外光谱粗略探讨了降解机理.结果表明,在最佳电压为600 V和放电60 min时,200 m L 20 mg·L~(-1)RhB的脱色率可达95.4%,降解过程符合动力学准一级反应;降解过程中溶液的电导率先增大后减小,溶液的pH呈现先减小后增大的趋势,说明在放电过程中产生了大量带电离子及酸性中间产物;加入0.03 mmol的Fe~(2+)对RhB的降解有催化作用,在pH=3.19条件下,放电5 min可使RhB的脱色率达到98.3%;羟基自由基(·OH)对RhB的降解起关键作用.  相似文献   

4.
液相脉冲高压放电催化降解二甲基亚砜的研究   总被引:1,自引:0,他引:1  
陆彬  季民  卢逸人 《环境科学》2010,31(2):373-378
研究了液相脉冲高压放电Fenton催化对二甲基亚砜(dimethyl sulfoxide,DMSO)的降解.自制了脉冲上升前沿400 ns、放电重复率96.2 Hz、峰值电压20 kV的脉冲高压系统,它驱动液相高压放电发生.对脉冲高压电极侧壁做了绝缘以考察新型电极对单脉冲功率的影响.溶液电导率对液相高压放电H2O2产率和DMSO降解的影响及Fe(Ⅱ)和O2流量对液相高压放电DMSO降解的影响进行了考察,对液相高压放电Fenton催化降解DMSO的产物浓度、产物选择性随高压放电时间的变化也进行了研究.结果表明,新型电极的单脉冲功率随电导率增加有一极限值;溶液电导率和O2流量对DMSO降解起阻碍作用;Fe(Ⅱ)对DMSO降解起Fenton催化作用;液相高压放电Fenton催化降解DMSO的降解率在高压放电45min时为80%,可生化性至少提高32%~48%,最大能量效率按G37%计为0.008 7 mol/(kW.h).并对DMSO降解机制做了探讨.本研究显示了液相等离子体联用催化剂处理有机污染物的良好效果.  相似文献   

5.
放电等离子体降解三氯乙烯   总被引:10,自引:0,他引:10  
采用2种放电方式和2种反应器对三氯乙烯进行降解,脉冲放电和交流放电均对三氯乙烯有较好的降解效果,且电压越高降解率越大.对脉冲放电,当气体停留时间为15s、三氯乙烯初始浓度1350mg/m3、电压42kV时空腔式反应器对三氯乙烯的降解率接近100%;对交流放电,使用32kV的电压可使降解率达98%,且频率越高降解效果越好.与脉冲放电相比,交流放电的功率消耗量大、能量利用率低,且填充式反应器的能量利用率也低于空腔式反应器.对于空腔式反应器,三氯乙烯降解率达80%时所需的脉冲和交流放电能量消耗分别为4.9W·h/m3和116W·h/m3.  相似文献   

6.
高压脉冲电晕放电等离子体降解废水中苯酚   总被引:20,自引:2,他引:20       下载免费PDF全文
考察了多种因素对高压脉冲电晕放电低温等离子体法降解水中苯酚效果的影响 .提高脉冲电压峰值和放电频率、延长放电时间等均可大大提高降解效果 .自由基清除剂如正丁醇和缓冲剂如硼酸盐的存在均会显著降低降解效果 .1 0 0mg·L- 1苯酚废水溶液放电处理 1 80min ,最高降解率达 67 3 % .当放电处理 42 0min时 ,废水的TOC下降 83 8% .  相似文献   

7.
对气液两相滑动弧等离子与H2O2联合处理酸性橙Ⅱ溶液进行了研究。结果表明:两者具有明显的协同效应,可减少等离子放电时间,提高了降解效率。质量浓度为300 mg/L的酸性橙Ⅱ溶液,加入体积分数为0.48~0.96 mL/L的H2 O2(30%),循环降解2次的脱色率在92%以上。当加入过氧化氢的体积分数是1.92 mL/L时,循环降解1次脱色率为93.32%。而且降解后的溶液随着放置时间的延长,脱色率进一步降低;且放置8 h时,降解率下降最明显。  相似文献   

8.
采用针-板式介质阻挡放电(DBD)产生低温等离子体降解土壤中对硝基苯酚(PNP),考察了放电电压、载气气量、土壤含水率以及土壤pH值对土壤中PNP降解效果的影响。结果表明:针-板式DBD对土壤中PNP有良好的降解效果。在PNP初始浓度400mg/kg,放电电压18 kV条件下,放电处理60 min,PNP降解率达到87.3%。增加放电电压和含水率均能提高降解率。不通入载气,也有较好的降解效果。碱性条件有利于PNP降解。  相似文献   

9.
采用放电极雾化介质阻挡放电装置,以靛蓝二磺酸钠染料溶液为接地雾化水电极,将有玻璃介质保护的平板电极通入60 Hz交流电,在常压空气中放电形成低温等离子体,对染料溶液进行脱色试验. 结果表明:随着电压的升高和空气间隙的减小,放电电流增大;在相同处理时间内,随着电压的增大和空气间隙的减小,脱色率逐渐增大. 当空气间隙为30 mm,电压为30 kV,处理时间为18 min时,染料溶液的脱色率可达95%以上. 空气间隙和电压的不同,脱色率每提高1%的能量消耗量不同,空气间隙为30 mm时脱色率每提高1%的最低能量消耗量为34.81 J,电压为25 kV时脱色率每提高1%最低能量消耗量为49.56 J. 空气间隙为30 mm,电压为25 kV,可实现在较低的能量消耗下达到较高的脱色率.   相似文献   

10.
应用电晕放电自由基簇射技术,对放电电压、初始浓度和催化剂对萘降解特性的影响进行了研究,分析了萘的降解产物和降解途径.结果表明,放电电压的增加有助于萘的降解率的提高.萘初始浓度的增加降低了萘的降解率,但提高了萘的脱除量.对于初始浓度17mg/m3的萘,14kV放电电压下能达到70%的降解率.MnO2和Fe2O3催化涂层均能促进萘的降解,且MnO2的催化活性要高于Fe2O3.在湿电极气下,催化涂层对萘降解的促进作用比干电极气更加显著.萘的降解产物主要是CO2,但是由于氧化反应的不完全性,也有少量的CO以及小分子有机物生成.  相似文献   

11.
等离子体降解水相中有机污染物的机理研究   总被引:20,自引:2,他引:20       下载免费PDF全文
研究了等离子体在内电极通氧条件下降解水相中甲基紫的机理。研究表明,甲基紫的降解率与等离子体的电压和处理时间呈线性关系、与甲基紫溶液的浓度呈指数关系,溶液的pH随着处理时间的增加而下降:100mg/L甲基紫经等离子体外理3s,其降解率可达95%以上,COD下降50%左右;在等离子体条件下,甲基紫溶液的降解是氧原子、电子、活性自由基和离子等共同的作用的结果。  相似文献   

12.
为改善传统电化学氧化的缺陷,将脉冲式供电引入到电化学氧化中,利用Ti/PbO2-PVDF电极,对亚甲基蓝(MB)模拟染料废水进行电化学氧化降解处理,分析初始浓度、脉冲电压、脉冲频率、占空比和NaCl浓度等因素对降解效果的影响.结果表明,当MB初始浓度为100mg/L,脉冲电压为5.5V,脉冲频率为1500Hz,占空比为50%,NaCl浓度为0.01mol/L时,降解效果最好.在相同条件下,比较脉冲与直流两种供电模式下的电化学氧化效果.结果表明脉冲模式下,90min内MB脱色率、COD去除率及电流效率分别为100%、94.5%和60.1%,均高于直流模式;脉冲模式下能耗为0.013kWh/gCOD,远小于直流模式的0.107kWh/gCOD.上述结果表明脉冲供电模式相比于直流供电模式具有明显优势.  相似文献   

13.
苯酚电降解过程中能量计算、火花放电及控制研究   总被引:2,自引:0,他引:2  
观察了脉冲电晕放电等离子体降解水中有机污染物苯酚过程中的电压波形图及参数,并对其进行了分析研究,讨论了降解过程中的能量计算问题,分析了放电过程中产生火花放电的原因,并提出了控制火花放电的方法。在其它放电参数相同的情况下,比较了泄放电路对苯酚降解率的影响。  相似文献   

14.
于政  李杰  姜楠  刘政妍  彭邦发  吴彦 《环境工程》2021,39(12):212-219
介绍了淋土式介质阻挡放电等离子体修复阿特拉津污染土壤的方法,探究了土壤特性及等离子体发生参数对阿特拉津降解效果的影响并对中间产物进行检测与分析。结果表明:增加电压和频率有利于提高阿特拉津降解率,降低能量效率;增加初始浓度会导致降解率下降,能量效率上升;而增加土壤粒径或降低pH则导致降解率和能量效率下降;含水率增加使得降解率和能量效率先增后减。在峰-峰值36 kV,电源频率为200 Hz, pH=7.03条件下,60~80目的10 mg/kg阿特拉津污染干土经过50 s放电后阿特拉津降解率为70.95%,能量效率为0.014 mg/kJ。利用液相色谱质谱联用对中间产物进行测定,发现产物主要为脱烷基、脱氯和酮或醛等类阿特拉津产物,未检测到低聚物的生成。由于低温等离子体在土壤颗粒周围产生,使得臭氧和·OH等短寿命活性物种共同参与污染物降解过程,使得反应器降解效果得到增强。  相似文献   

15.
介质阻挡放电降解苯乙烯的研究   总被引:10,自引:0,他引:10  
研究了介质阻挡放电(DBD)常压下降解流动态苯乙烯时,不同电压、流速、初始浓度及湿度下苯乙烯的降解情况.结果表明,DBD降解苯乙烯15~20min即可达稳定,产物主要为CO、CO2和H2O;电压4800V时有少量带苯环的气态及固态物质产生,且随电压的升高而减少,到7500V时红外光谱已无法检测到;高电压下放电可以取得90%左右的降解率,产生带苯环的气态物质和结焦物质较少.流速在1.5cm/s,浓度为3000mg/m3,相对湿度为20%左右时,降解效果最好.  相似文献   

16.
Effects of the voltage waveform, discharge tooth wheel number and CO2/NO/SO2 concentration in the simulated flue gas on Hg0 oxidation were investigated using a link tooth wheel-cylinder reactor energized by di erent high voltage power supplies. Negative DC discharge induced more ozone production and a higher Hg0 oxidation e ciency than positive DC discharge and 12 kHz AC discharge. The discharge tooth wheel number had almost no e ect on the maximum Hg0 oxidation e ciency. The allowable supplied voltage decreased with the increase of discharge tooth wheel number. CO2 could stabilize the discharge process and increase the maximum voltage for a stable discharge. It has also been found that NO consumed O3 induced by high voltage discharge, thereby decreased Hg0 oxidation e ciency; while SO2 had a slight promoting e ect on Hg0 oxidation.  相似文献   

17.
为优化低温等离子体技术对污染土壤热脱附尾气的处理效果,采用脉冲电晕放电等离子体处理含DDTs(滴滴涕)的热脱附尾气,控制进气中的ρ(DDTs)为2.873 mg/m3,考察了载气φ(O2)、等离子体温度、载气湿度和脉冲电压对DDTs降解效果的影响,分析了O3在降解过程中的作用.结果表明:①当氮气/氧气混合载气中φ(O2)分别为0、3%、6%、10%、21%和100%时,DDTs降解率分别为80.1%、76.5%、78.4%、81.1%、88.8%和94.6%,ρ(O3)分别为0、0.20、0.25、0.40、0.99和1.93 mg/L.随着φ(O2)的增加,ρ(O3)逐渐增大,除氮气气氛外,DDTs降解率均逐渐增大,当φ(O2)超过10%时,DDTs降解率较氮气气氛下更高.p,p'-DDD降解率均为100%,p,p'-DDE和o,p'-DDT的降解率随φ(O2)的增加而增大.氮气气氛下p,p'-DDT降解率高于低浓度氧气气氛,除氮气气氛外,p,p'-DDT降解率随φ(O2)的增加而增大.②当等离子体温度分别为80、100和150 ℃时,DDTs降解率分别为88.8%、83.2%和56.3%,ρ(O3)分别为0.99、0.65和0.35 mg/L.当载气湿度为0、1.0、2.7和20.5 g/m3时,DDTs降解率分别为88.8%、81.6%、68.6%和30.0%,ρ(O3)分别为0.99、0.73、0.56和0.32 mg/L.随着等离子体温度升高、载气湿度增大,反应器内ρ(O3)逐渐减小,DDTs降解率也随之降低.③DDTs降解率随脉冲电压的升高而增大,当脉冲电压为24 kV、脉冲频率为50 Hz、等离子体温度为80 ℃、气体在反应器中的停留时间为10 s时,DDTs降解率达86.9%.研究显示,脉冲电晕放电等离子体能够快速、有效地去除热脱附尾气中的DDTs.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号