首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
A novel illite@carbon(I@C) nanocomposite adsorbent has been synthesized via a facile hydrothermal carbonization process(HTC) using glucose as carbonaceous source and illite as the carrier.The morphology,microstructure and surface properties of the prepared nanocomposite adsorbent were analyzed by FESEM,TGA,XRD,FT-IR and Zeta potential measurements.Batch experiments were carried out on the adsorption of Cr(Ⅵ) to determine the adsorption properties of the composite.The adsorption of Cr(Ⅵ) onto the I@C nanocomposite was well described by the pseudo-second-order kinetic model and Langmuir isotherm.Compared with the illite and carbon material(SC) separately,the prepared I@C nanocomposite adsorbent exhibited enhanced adsorption performance for Cr(Ⅵ) with a maximum adsorption capacity of 149.25 mg/g,which was higher than that of most reported adsorbents.In addition,the adsorption process was spontaneous and endothermic based on the adsorption thermodynamics study.The adsorption of Cr(Ⅵ) by I@C was highly p H-dependent and the optimum adsorption occurred at p H 2.0.The Zeta potential analysis results indicated that the electrostatic interactions between anionic Cr(Ⅵ) and the positively charged surface of the adsorbent might be critical to the adsorption mechanism.This study demonstrated that the I@C nanocomposite should be a promising candidate for a low-cost,environmental friendly and highly efficient adsorbent for the removal of toxic Cr(Ⅵ) from wastewater.  相似文献   

2.
Multiwall carbon nanotubes(MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(Ⅱ)binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared(FT-IR), Brunauer, Emmett and Teller(BET), Field Emission Scanning Electron Microscopy(FESEM) analysis, and the adsorption of Pb(Ⅱ) was studied as a function of p H,initial Pb(Ⅱ) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmaxwas calculated to be 104.2 mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ΔH0, ΔS0and ΔG0were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal(99.9%) of Pb(Ⅱ) are at p H 5, MWCNT dosage 0.1 g, agitation speed 160 r/min and time of 22.5 min with the initial concentration of 10 mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(Ⅱ) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium.  相似文献   

3.
Humic acid-immobilized amine modified polyacrylamide/bentonite composite (HA-Am-PAA-B) was prepared and used as an adsorbent for the adsorption of cationic dyes (Malachite Green (MG), Methylene Blue (MB) and Crystal Violet (CV)) from aqueous solutions. The polyacrylamide/bentonite composite (PAA-B) was prepared by intercalative polymerization of acrylamide with Nabentonite in the presence of N,N0-methylenebisacrylamide as a crosslinking agent and hexamethylenediammine as propagater. PAA-B was subsequently treated with ethylenediammine to increase its loading capacity for HA. The surface characterizations of the adsorbent were investigated. The adsorbent behaved like a cation exchanger and more than 99.0% removal of dyes was detected at pH range 6.0–8.0. The capacity of HA-Am-PAA-B was found to decrease in the following order: MG > MB > CV. The kinetic and isotherm data were interpreted by pseudo-second order rate equation and Freundlich isotherm model, respectively. Experiments were carried out using binary solute systems to assess the competitive adsorption phenomenon. The experimental isotherm data for each binary solute combination of MG, MB and CV were analyzed using Sheindrof-Rebhun-Sheintuch (SRS) (multicomponent Freundlich type) equation.  相似文献   

4.
The adsorption behavior of p-aminobenzoic acid and o-aminobenzoic acid onto the different polymeric adsorbents was systematically investigated as a function of the solution concentration and temperature.Experimental results indicated that the equilibrium adsorption data of the four polymeric adsorbents fitted well in the Freundlich isotherm.The adsorption capacity of multi-functional polymeric adsorbent NJ-99 was the highest,which might be attributed to the strong hydrogen-bonding interaction between the amino groups on the resin and the carboxyl group of aminobenzoic acid.The adsorption capacity of o-aminobenzoic acid onto any adsorbent was higher than p-aminobenzoic acid.Thermodynamic studies suggested the exothermic,spontaneous physical adsorption process.Adsorption kinetics results showed that the adsorption followed the pseudo-second-order kinetics model and the intraparticle mass transfer process was the rate-controlling step.  相似文献   

5.
The effects of different outer diameters and surface oxygen contents on the adsorption of heavy metals onto six types of multi-walled carbon nanotubes (MWCNTs) were investigated in an aqueous solution and lead was chosen as a model metal ion. The results indicated that the percentage removal and adsorption capacity of lead remarkably increased with decreasing outer diameter due to larger specific surface area (SSA). The SSA-normalized maximum adsorption capacity (qm /SSA) and SSA-normalized adsorption coefficient (Kd /SSA) were strongly positively correlated with surface oxygen content, implying that lead adsorption onto MWCNTs significantly increases with the rise of oxygen content and decreases with decreasing SSA. The calculated thermodynamic parameters indicated that adsorption of lead on MWCNTs was endothermic and spontaneous. When the oxygen content of MWCNTs increased from 2.0% to 5.9%, the standard free energy (△ G0 ) became more negative, which implied that the oxygenated functional groups increased the adsorption affinity of MWCNTs for lead. Through calculation of enthalpy (△ H0 ), G0 and free energy of adsorption (Ea ), lead adsorption onto MWCNTs was recognized as a chemisorption process. The chemical interaction between lead and the phenolic groups of MWCNTs could be one of the main adsorption mechanisms due to highly positive correlations between the phenolic groups and K d /SSA or q m /SSA.  相似文献   

6.
Study of ciprofloxacin removal by biochar obtained from used tea leaves   总被引:1,自引:0,他引:1  
In this study,used tea leaves(UTLs) were pyrolyzed to obtain used tea-leaf biochar(UTC),and then the UTC was used as an adsorbent to remove ciprofloxacin(CIP) from aqueous solutions.Batch experiments were conducted to investigate the CIP adsorption performance and mechanism.The results showed that the CIP-adsorbing ability first increased and then declined as the UTC pyrolysis temperature increased.The UTC obtained at 450°C presented excellent CIP-absorbing ability at p H 6 and 40°C.The maximum monolayer adsorption capacity was 238.10 mg/g based on the Langmuir isotherm model.The pseudo-second-order kinetic equation agreed well with the CIP adsorption process,which was controlled by both external boundary layer diffusion and intra-particle diffusion.The characterization analysis revealed that the \OH groups,C_C bonds of aromatic rings,C\H groups in aromatic rings and phenolic C\O bonds play vital roles in the CIP adsorption process,and that the N\C,N\O,O\C_O and C\OH groups of UTC were consumed in large quantities.π–π interactions,hydrogen bonding and electrostatic attraction are inferred as the main adsorption mechanisms.The present work provides not only a feasible and promising approach for UTLs utilization but also a potential adsorbent material for removing high concentrations of CIP from aqueous solutions.  相似文献   

7.
Rubber leaf powder (an agricultural waste) was treated with potassium permanganate followed by sodium carbonate and its performance in the removal of Pb(II) ions from aqueous solution was evaluated. The interactions between Pb(II) ions and functional groups on the adsorbent surface were confirmed by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) coupled with X-ray energy dispersive spectroscopy (EDX). The effects of several important parameters which can affect adsorption capacity such as pH, adsorbent dosage, initial lead concentration and contact time were studied. The optimum pH range for lead adsorption was 4–5. Even at very low adsorbent dosage of 0.02 g, almost 100% of Pb(II) ions (23 mg/L) could be removed. The adsorption capacity was also dependent on lead concentration and contact time, and relatively a short period of time (60–90 min) was required to reach equilibrium. The equilibrium data were analyzed with Langmuir, Freundlich and Dubinin-Radushkevich isotherms. Based on Langmuir model, the maximum adsorption capacity of lead was 95.3 mg/g. Three kinetic models including pseudo first-order, pseudo second-order and Boyd were used to analyze the lead adsorption process, and the results showed that the pseudo second-order fitted well with correlation coefficients greater than 0.99.  相似文献   

8.
The adsorption of six kinds of chlorophenols on pristine, hydroxylated and carboxylated single-walled carbon nanotubes(SWCNTs) has been investigated. Pseudo-first order and pseudo-second order models were used to describe the kinetic data. All adsorption isotherms were well fitted with Langmuir, Freundlich and Polanyi–Manes models, due to surface adsorption dominating the adsorption process. The close linear relationship between log Kowand log Kdsuggested that hydrophobicity played an important role in the adsorption. The SWCNTs' adsorption capacity for chlorophenols was weakened by addition of oxygen-containing functional groups on the surface, due to the loss of specific surface area, the increase of hydrophilicity and the reduction of π–π interaction. The best adsorption capacity of pristine SWCNTs, SWCNT-OH and SWCNT-COOH for six chlorophenols varied from 19 to 84 mg/g, from 19 to 65 mg/g and from 17 to 65 mg/g,respectively. The effect of pH on the adsorption of 2,6-dichlorophenol(2,6-DCP), was also studied. When p H is over the pK aof 2,6-dichlorophenol(2,6-DCP), its removal dropped sharply. When ionic strength increased(Na Cl or KCl concentration from 0 to 0.02 mmol/L),the adsorption capacity of 2,6-DCP on pristine SWCNTs decreased slightly. The comparison of chlorophenols adsorption by SWCNTs, MWCNTs and PAC was made, indicating that the adsorption rate of CNTs was much faster than that of PAC. The results provide useful information about the feasibility of SWCNTs as an adsorbent to remove chlorophenols from aqueous solutions.  相似文献   

9.
Herein,palygorskite(PAL)was activated via a simple hydrothermal process in the presence of ammonium sulfide,and the effects of activation on the microstructure,physico-chemical feature and adsorption behaviors of PAL were intensively investigated.The hydrothermal process evidently improved the dispersion of PAL crystal bundles,increased surface negative charges and built more active –Si–O-groups served as the new"adsorption sites".The adsorption property of the activated PAL for Methyl Violet(MV)was systematically investigated by optimizing the adsorption variables,including p H,ionic strength,contact time and initial MV concentration.The activated PAL exhibited a superior adsorption capability to the raw PAL for the removal of MV(from 156.05 to 218.11 mg/g).The kinetics for MV adsorption followed pseudo second-order kinetic models,while the isotherm and thermodynamics results showed that the adsorption pattern well followed the Langmuir model.The structure analysis of PAL before and after adsorption demonstrated that electrostatic interaction and chemical association of –X–O-are the prominent driving forces for the adsorption process.  相似文献   

10.
Rubber leaf powder(an agricultural waste) was treated with potassium permanganate followed by sodium carbonate and its performance in the removal of Pb(Ⅱ) ions from aqueous solution was evaluated.The interactions between Pb(Ⅱ) ions and functional groups on the adsorbent surface were confirmed by Fourier transform infrared(FT-IR) spectroscopy,scanning electron microscopy(SEM) coupled with X-ray energy dispersive spectroscopy(EDX).The effects of several important parameters which can affect adsorption capacity such as pH,adsorbent dosage,initial lead concentration and contact time were studied.The optimum pH range for lead adsorption was 4-5.Even at very low adsorbent dosage of 0.02 g,almost 100% of Pb(Ⅱ) ions(23 mg/L) could be removed.The adsorption capacity was also dependent on lead concentration and contact time,and relatively a short period of time(60-90 min) was required to reach equilibrium.The equilibrium data were analyzed with Langmuir,Freundlich and Dubinin-Radushkevich isotherms.Based on Langmuir model,the maximum adsorption capacity of lead was 95.3 mg/g.Three kinetic models including pseudo first-order,pseudo second-order and Boyd were used to analyze the lead adsorption process,and the results showed that the pseudo second-order fitted well with correlation coefficients greater than 0.99.  相似文献   

11.
A series of chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites were synthesized and used as adsorbents for the investigation of the e ect of process parameters such as vermiculite content, pH of dye solution, contact time, initial concentration of dye solution, temperature, ionic strength and concentration of surfactant sodium dodecyl sulfate on the removal of Methylene Blue (MB) from aqueous solution. The results showed that the adsorption capacity for dye increased with increasing pH, contact time and initial dye concentration, but decreased with increasing temperature, ionic strength and sodium dodecyl sulfate concentration in the present of the surfactant. The adsorption kinetics of MB onto the hydrogel composite followed pseudo second-order kinetics and the adsorption equilibrium data obeyed Langmuir isotherm. By introducing 10 wt.% vermiculite into chitosan-g-poly (acrylic acid) polymeric network, the obtaining hydrogel composite showed the highest adsorption capacity for MB, and then could be regarded as a potential adsorbent for cationic dye removal in a wastewater treatment process.  相似文献   

12.
壳聚糖-g-聚丙烯酸/海泡石复合物对Pb2+的去除性能研究   总被引:3,自引:2,他引:1  
郑易安  谢云涛  王爱勤 《环境科学》2009,30(9):2575-2579
制备了一种壳聚糖接枝聚丙烯酸/海泡石复合吸附剂,考察了吸附剂对Pb2+吸附的pH依赖性、吸附等温线、吸附动力学以及吸附剂的重复使用性能.结果表明,聚丙烯酸成功接枝到壳聚糖骨架上,形成有机-无机复合吸附剂.吸附剂表面呈现粗糙多孔、凹凸不平的形貌,有利于吸附体系更快达到吸附平衡.在pH=6.00、吸附时间30 min、Pb2+溶液初始浓度0.02 mol.L-1和吸附剂用量0.10 g的条件下,复合吸附剂对Pb2+的平衡吸附量达到638.9 mg.g-1,约为海泡石的3倍.重复吸附-脱附5次,复合吸附剂对Pb2+的吸附量下降到489.2 mg.g-1,仍可达初始吸附量的76.6%,而海泡石使用3次之后即对Pb2+丧失吸附性能.与海泡石相比,复合吸附剂具有更高的吸附容量、更快的吸附速率和更好的重复使用性能.  相似文献   

13.
介绍了采用溶胶凝胶法合成新型的复合材料-磁性的γ-Fe_2O_3膨胀石墨(MEG)复合材料。通过采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)以及X-光电子能谱仪(XPS)对该复合材料MEG进行了表征,结果表明MEG中γ一Fe_2O_3的粒径约为50nm,而且其中γ一Fe_2O_3和膨胀石墨通过C=O相互作用。复合材料MEG作为新型的六价铬吸附剂,通过吸附时间、初始溶液的pH值以及再生性对该吸附过程进行了考察。结果表明:在40 min内MEG吸附六价铬的过程基本达到平衡;在初始溶液的pH为3.5时,MEG对六价铬的最大吸附量可以达到16.4mg/g;而且该复合材料MEG重复使用3次后吸附效果基本没有下降。因此,复合材料MEG对于废水中六价铬的处理有选择性吸附作用,而且初始溶液的pH值对其吸附过程起着重要作用。  相似文献   

14.
Introduction Adsorptionisrelevantinenvironmentalpollutionandprotectionwithreferencetowaterandwastewatertreatment(Bowen,1992).Toxicmaterials,hazardousionsanddyes fromindustrialeffluentsbythewayofadsorptionareofgreatsignificantinconnectionwithenvironmentala…  相似文献   

15.
赵玉明  梁霖  黄华 《环境科学》1997,18(6):63-65
以石棉摩擦材料加工废弃物为材料制得的吸附剂,在色度5000倍溶液中对阳离子黄X-5GL的静态吸附量为159.68mg/g,在色度500倍的溶液中对阳离子艳蓝RL的静态吸附量为79.68mg/g;对毛纺厂腈纶染缸废水的处理量可达280ml/g,对活性染料亦有较好的吸附效果,吸附饱和吸附剂可通过后处理实现资源化。  相似文献   

16.
在微波辅助下对四钛酸进行了有机胺插层,获得了正辛胺﹑正十二胺﹑正十六胺插层四钛酸材料,研究了3种层状物质作为吸附剂,pH﹑震荡时间﹑吸附剂用量等因素对直接湖蓝5B偶氮染料吸附的影响,确定了3种材料吸附的最佳条件。研究表明:微波有机胺插层四钛酸材料具有优良的吸附性能,pH=1.0时,正辛胺插层四钛酸用量为0.8 g/L﹑振荡时间40 min,正十二胺插层材料和正十六插层材料用量为0.4 g/L﹑振荡时间分别30 min和50 min时,吸附脱色效果最好。随染料浓度增大,温度升高,插层四钛酸材料会发生板层分离,表现为常规的物理吸附过程。在50℃时,正辛胺﹑正十二胺﹑正十六插层四钛酸对直接湖蓝5B染料的吸附量分别达到636 mg/g﹑3 349 mg/g﹑2 856 mg/g。  相似文献   

17.
以壳聚糖和经酒石酸改性的平菇粉末为材料,通过戊二醛进行交联反应,制得壳聚糖-改性平菇凝胶小球(CMPOD)复合生物吸附剂,用于水溶液中Cr(VI)的吸附去除.结果表明,在实验所测pH值(2~10)范围内,复合吸附剂对Cr(VI)的吸附量随着pH值上升而降低;随着Cr(VI)初始浓度或温度的提高,吸附剂对Cr(VI)的吸附量均相应增加,当Cr(VI)初始浓度为600mg/L,温度为50℃,Cr(VI)吸附量可达190mg/g以上;Cr(VI)的吸附符合准二级动力学方程及Freundlich等温吸附模型;热力学分析表明,吸附剂对Cr(VI)的吸附过程为自发的吸热反应.扫描电镜(SEM)分析显示,吸附剂具有发达的网状结构,吸附Cr(VI)后网状孔隙被填充,且能谱分析(EDS)出现明显的Cr(VI)吸收峰;傅立叶红外光谱分析(FTIR)表明,壳聚糖中的氨基成功引入复合吸附剂中,在Cr(VI)吸附中为主要作用官能团.  相似文献   

18.
In this study, a commercial cube-shaped open-celled cellulose sponge adsorbent was modified by in-situ co-precipitation of superparamagnetic iron oxide nanoparticles (SPION) and used to remove As(V) from aqueous solutions. Fe K-edge X-ray absorption spectroscopy (XAS) and TEM identified maghemite as the main iron phase of the SPION nanoparticles with an average size 13 nm. Batch adsorption experiments at 800 mg/L showed a 63% increase of adsorption capacity when loading 2.6 wt.% mass fraction of SPION in the cube-sponge. Experimental determination of the adsorption thermodynamic parameters indicated that the As(V) adsorption on the composite material is a spontaneous and exothermic process. As K-edge XAS results confirmed that the adsorption enhancement on the composite can be attributed to the nanoparticles loaded. In addition, adsorbed As(V) did not get reduced to more toxic As(III) and formed a binuclear corner-sharing complex with SPION. The advantageous cube-shape of the sponge-loaded SPION composite together with its high affinity and good adsorption capacity for As(V), good regeneration capability and the enhanced-diffusion attributed to its open-celled structure make this adsorbent a good candidate for industrial applications.  相似文献   

19.
Activated carbon derived from solid hazardous waste scrap tires was evaluated as a potential adsorbent for cationic dye removal. The adsorption process with respect to operating parameters was investigated to evaluate the adsorption characteristics of the activated pyrolytic tire char (APTC) for Rhodamine B (RhB). Systematic research including equilibrium, kinetics and thermodynamic studies was performed. The results showed that APTC was a potential adsorbent for RhB with a higher adsorption capacity than most adsorbents. Solution pH and temperature exert significant influence while ionic strength showed little e ect on the adsorption process. The adsorption equilibrium data obey Langmuir isotherm and the kinetic data were well described by the pseudo second-order kinetic model. The adsorption process followed intra-particle di usion model with more than one process a ecting the adsorption process. Thermodynamic study confirmed that the adsorption was a physisorption process with spontaneous, endothermic and random characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号