首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
Rubber leaf powder(an agricultural waste) was treated with potassium permanganate followed by sodium carbonate and its performance in the removal of Pb(Ⅱ) ions from aqueous solution was evaluated.The interactions between Pb(Ⅱ) ions and functional groups on the adsorbent surface were confirmed by Fourier transform infrared(FT-IR) spectroscopy,scanning electron microscopy(SEM) coupled with X-ray energy dispersive spectroscopy(EDX).The effects of several important parameters which can affect adsorption capacity such as pH,adsorbent dosage,initial lead concentration and contact time were studied.The optimum pH range for lead adsorption was 4-5.Even at very low adsorbent dosage of 0.02 g,almost 100% of Pb(Ⅱ) ions(23 mg/L) could be removed.The adsorption capacity was also dependent on lead concentration and contact time,and relatively a short period of time(60-90 min) was required to reach equilibrium.The equilibrium data were analyzed with Langmuir,Freundlich and Dubinin-Radushkevich isotherms.Based on Langmuir model,the maximum adsorption capacity of lead was 95.3 mg/g.Three kinetic models including pseudo first-order,pseudo second-order and Boyd were used to analyze the lead adsorption process,and the results showed that the pseudo second-order fitted well with correlation coefficients greater than 0.99.  相似文献   

2.
Trimercaptotriazine-functionalized polystyrene chelating resin was prepared and employed for the adsorption of Ag(I) from aqueous solution. The adsorbent was characterized according to the following techniques: Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy and the Brunauer-Emmet-Teller method. The effects of initial Ag(I) concentration, contact time, solution pH and coexisting ions on the adsorption capacity of Ag(I) were systematically investigated. The maximum adsorption capacity of Ag(I) was up to 187.1 mg/g resin at pH 0.0 and room temperature. The kinetic experiments indicated that the adsorption rate of Ag(I) onto the chelating resin was quite fast in the first 60 min and reached adsorption equilibrium after 360 min. The adsorption process can be well described by the pseudo second-order kinetic model and the equilibrium adsorption isotherm was closely fitted by the Langmuir model. Moreover, the chelating resin could selectively adsorb more Ag(I) ions than other heavy metal ions including: Cu(II), Zn(II), Ni(II), Pb(II) and Cr(III) during competitive adsorption in the binary metal species systems, which indicated that it was a highly selective adsorbent of Ag(I) from aqueous solution.  相似文献   

3.
The adsorption of Methyl Violet (MV) cationic dye from aqueous solution was carried out by using crosslinked poly (acrylic acid-co-acrylamide)/attapulgite (Poly(AA-co-AM)/ATP) composite as adsorbent. The factors influencing adsorption capacity of the composite such as pH, concentration of the dye, temperature, contact time, adsorbent dosage, ionic strength and surfactant were systematically investigated. The equilibrium data fitted very well to the Langmuir isotherm and the maximum adsorption capacity reached 1194 mg/g at 30°C. The thermodynamic parameters including G0, △H0 and △S 0 for the adsorption processes of MV on the composite were also calculated, and the negative △H0 and △G0 confirmed that the adsorption process was exothermic and spontaneous. The kinetic studies showed that the adsorption process was consistent with the pseudo second-order kinetic model and the desorption studies revealed that the regeneration of the composite adsorbent can be easily achieved.  相似文献   

4.
Removal of heavy metals from aqueous solution by sawdust adsorption   总被引:3,自引:1,他引:3  
The adsorption of lead, cadmium and nicel from aqueous solution by sawdust of walnut was investigated. The effect of contact time, initial metal ion concentration and temperature on metal ions removal has been studied. The equilibrium time was found to be of the order of 60 min. Kinetics fit pseudo first-order, second-order and intraparticle diffusion models, hence adsorption rate constants were calculated. The adsorption data of metal ions at temperatures of 25, 45 and 60~C have been described by the Freundlich and Langmuir isotherm models. The thermodynamic parameters such as energy, entropy and enthalpy changes for the adsorption of heavy metal ions have also been computed and discussed. Ion exchange is probably one of the major adsorption mechanisms for binding divalent metal ions to the walnut sawdust. The selectivity order of the adsorbent is Pb(I1)~Cd(II)〉Ni(I1). From these results, it can be concluded that the sawdust of walnut could be a good adsorbent for the metal ions from aqueous solutions.  相似文献   

5.
This work was conducted to determine the practicability of using a new adsorbent 4-ethyl thiosemicarbazide intercalated,organophilic calcined hydrotalcite(ETSC-OHTC) for the removal of uranium(U(VI)),and thorium(Th(IV)) from water and wastewater.The FTIR analysis helped in realizing the involvement of nitrogen and sulphur atoms of ETSC in binding the metal ions through complex formation.Parameters like adsorbent dosage,solution pH,initial metal ions concentration,contact time and ionic strength,that influence adsorption phenomenon,were studied.The optimum pH for maximum adsorption of U(VI) and Th(IV) was found to be in the range 4.0-6.0.The contact time required for reaching equilibrium was 4 hr.The pseudo second-order kinetic model was the best fit to represent the kinetic data.Analysis of the equilibrium adsorption data using Langmuir,Freundlich and Sips models showed that the Freundlich model was well suited to describe the metal ions adsorption.The K F values were 25.43 and 29.11mg/g for U(VI) and Th(IV),respectively,at 30°C.The adsorbent can be regenerated effectively from U(VI) and Th(IV) loaded ones using 0.01mol/L HCl.The new adsorbent was quite stable for many cycles,without much reduction in its adsorption capacity towards the metals.  相似文献   

6.
The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and di erent initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non–linear Langmuir isotherm for chitosan, chitosan-GLA and chitosan-alginate beads in single metal system were 34.98, 14.24 and 60.27 mg/g, respectively. However, the adsorption capacity of Pb(II) ions were reduced in the binary metal system due to the competitive adsorption between Pb(II) and Cu(II) ions. Based on the ion exchange study, the release of Ca2+, Mg2+, K+ and Na+ ions played an important role in the adsorption of Pb(II) ions by all three adsorbents but only at lower concentrations of Pb(II) ions. Infrared spectra showed that the binding between Pb(II) ions and the adsorbents involved mostly the nitrogen and oxygen atoms. All three adsorbents showed satisfactory adsorption capacities and can be considered as an e cient adsorbent for the removal of Pb(II) ions from aqueous solutions.  相似文献   

7.
The mesoporous Cu/Mg/Fe layered double hydroxide(Cu/Mg/Fe-LDH) with carbonate intercalation was synthesized and used for the removal of arsenate from aqueous solutions.The Cu/Mg/Fe-LDH was characterized by Fourier transform infrared spectrometry,X-ray diffraction crystallography,scanning electron microscopy,X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller.Effects of various physico-chemical parameters such as pH,adsorbent dosage,contact time and initial arsenate concentration on the adsorption of arsenate onto Cu/Mg/Fe-LDH were investigated.Results showed that it was efficient for the removal of arsenate,and the removal efficiency of arsenate increased with the increment of the adsorbent dosage,while the arsenate adsorption capacity decreased with increase of initial pH from 3 to 11.The adsorption isotherms can be well described by the Langmuir model with R 2 > 0.99.Its adsorption kinetics followed the pseudo second-order kinetic model.Coexisting ions such as HPO42-,CO32-,SO42and NO3could compete with arsenate for adsorption sites on the Cu/Mg/Fe-LDH.The adsorption of arsenate on the adsorbent can be mainly attributed to the ion exchange process.It was found that the synthesized Cu/Mg/Fe-LDH can reduce the arsenate concentration down to a final level of < 10 μg/L under the experimental conditions,and makes it a potential material for the decontamination of arsenate polluted water.  相似文献   

8.
MnO2-loaded D301 weak basic anion exchange resin has been used as adsorbent to simultaneously remove lead and cadmium ions from aqueous solution. The e ects of adsorbent dosage, solution pH and the coexistent ions on the adsorption were investigated. Experimental results showed that with the adsorbent dosage more than 0.6 g/L, both Pb2+ and Cd2+ were simultaneously removed at pH range 5–6. Except for HPO4 2??, the high concentration coexistent ions such as Na+, K+, Cl??, NO3??, SO4 2?? and HCO3??, showed no significant e ect on the removal e ciency of both Pb2+ and Cd2+ under the experimental conditions. The coexistence of Mg2+, Ca2+ caused the reduction of Cd2+ removal, but not for Pb2+. The adsorption equilibrium for Pb2+ and Cd2+ could be excellently described by the Langmuir isotherm model with R2 > 0.99. The maximum adsorption capacity was calculated as 80.64 mg/g for Pb2+ and 21.45 mg/g for Cd2+. The adsorption processes followed the pseudo first-order kinetics model. MnO2-loaded D301 resin has been shown to have a potential to be used as an e ective adsorbent for simultaneous removal of lead and cadmium ions from aqueous solution.  相似文献   

9.
10.
The study examined the adsorption of Pb(II) ions from aqueous solution onto chitosan, chitosan-GLA and chitosan-alginate beads. Several important parameters influencing the adsorption of Pb(II) ions such as initial pH, adsorbent dosage and different initial concentration of Pb(II) ions were evaluated. The mechanism involved during the adsorption process was explored based on ion exchange study and using spectroscopic techniques. The adsorption capacities obtained based on non-linear Langmuir isotherm for ch...  相似文献   

11.
Removal of heavy metal ions from industrial effluents by the activated carbon prepared by steam activation of waste coconut buttons through batch adsorption process.  相似文献   

12.
The potential of base treated Shorea dasyphylla (BTSD) sawdust for Acid Blue 25 (AB 25) adsorption was investigated in a batch adsorption process. Various physiochemical parameters such as pH, stirring rate, dosage, concentration, contact time and temperature were studied. The adsorbent was characterized with Fourier transform infrared spectrophotometer, scanning electron microscope and Brunauer, Emmett and Teller analysis. The optimum conditions for AB 25 adsorption were pH 2, stirring rate 500 r/min, adsorbent dosage 0.10 g and contact time 60 min. The pseudo second-order model showed the best conformity to the kinetic data. The equilibrium adsorption of AB 25 was described by Freundlich and Langmuir, with the latter found to agree well with the isotherm model. The maximum monolayer adsorption capacity of BTSD was 24.39 mg/g at 300 K, estimated from the Langmuir model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy were determined. It was found that AB 25 adsorption was spontaneous and exothermic.  相似文献   

13.
Multiwall carbon nanotubes(MWCNTs) were synthesized using a tubular microwave chemical vapor deposition technique, using acetylene and hydrogen as the precursor gases and ferrocene as catalyst. The novel MWCNT samples were tested for their performance in terms of Pb(Ⅱ)binding. The synthesized MWCNT samples were characterized using Fourier Transform Infrared(FT-IR), Brunauer, Emmett and Teller(BET), Field Emission Scanning Electron Microscopy(FESEM) analysis, and the adsorption of Pb(Ⅱ) was studied as a function of p H,initial Pb(Ⅱ) concentration, MWCNT dosage, agitation speed, and adsorption time, and process parameters were optimized. The adsorption data followed both Freundlich and Langmuir isotherms. On the basis of the Langmuir model, Qmaxwas calculated to be 104.2 mg/g for the microwave-synthesized MWCNTs. In order to investigate the dynamic behavior of MWCNTs as an adsorbent, the kinetic data were modeled using pseudo first-order and pseudo second-order equations. Different thermodynamic parameters, viz., ΔH0, ΔS0and ΔG0were evaluated and it was found that the adsorption was feasible, spontaneous and endothermic in nature. The statistical analysis revealed that the optimum conditions for the highest removal(99.9%) of Pb(Ⅱ) are at p H 5, MWCNT dosage 0.1 g, agitation speed 160 r/min and time of 22.5 min with the initial concentration of 10 mg/L. Our results proved that microwave-synthesized MWCNTs can be used as an effective Pb(Ⅱ) adsorbent due to their high adsorption capacity as well as the short adsorption time needed to achieve equilibrium.  相似文献   

14.
Synthesis and high adsorption and selectivity performance of lead ion-imprinted micro-beads with combination of two functional monomers.  相似文献   

15.
The capability of carbon nanotubes (CNTs) to adsorb lead (Pb) in aqueous solution was investigated. Batch mode adsorption experiment was conducted to determine the effects of pH, agitation speed, CNTs dosage and contact time. The removal of Pb(II) was reach to maximum value 85% or 83% at pH 5 or 40 mg/L of CNTs, respectively. Higher correlation coefficients from Langmuir isotherm model indicates the strong adsorptions of Pb(II) on the surface of CNTs (adsorption capacity Xm = 102.04 mg/g). From this study, the results indicates that the highest percentage removal of Pb (96.03%) can be achieved at pH 5, 40 mg/L of CNTs, contact time 80 min, and agitation speed 50 r/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号