首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 55 毫秒
1.
北方秋冬季为重污染过程频发季节,为了解聊城市冬季重污染过程中PM_(2.5)及化学组分污染特征,于2016年1月7~11日在聊城市区开展PM_(2.5)样品采集并分析了其中水溶性离子、碳成分及无机金属元素这3种化学组分,并对污染特征及成因进行了分析.结果表明,此次污染过程PM_(2.5)浓度呈现明显的倒V字型,平均浓度为238.3μg·m~(-3),超过国家环境空气质量标准(GB 3095-2012)二级浓度限值2.2倍;NH_4~+、NO_3~-和SO_4~(2-)为PM_(2.5)的主要水溶性离子成分;随污染加重或减轻,NH_4~+、SO_4~(2-)、NO_3~-、Cl-和Mg~(2+)浓度呈现增加或降低趋势,而Ca~(2+)变化趋势与之相反.污染鼎盛时,NH_4~+、NO_3~-和SO_4~(2-)浓度分别为48.96、68.45和80.55μg·m~(-3),达到起始阶段的6.29、7.31和7.84倍;过程期间OC和EC的浓度为20.8~60.2μg·m~(-3)和3.0~7.5μg·m~(-3),OC浓度高于EC且变化幅度明显偏大;过程期间各日无机金属元素浓度和分别为10.2、22.4、16.0、19.6和8.2μg·m~(-3),富集因子(EF)结果显示,各元素EF均小于10,未被富集,表明污染过程中其主要来源于地壳等自然源;PM_(2.5)质量浓度重构结果表明,有机物(OM)、SO_4~(2-)和NO_3~-为PM_(2.5)的主要组分,其次为NH_4~+、地壳物质和其他离子,EC和微量元素含量相对较低.随着PM_(2.5)污染加重,二次无机盐(SO_4~(2-)、NO_3~-及NH_4~+)浓度及所占比例均随之增加,OM浓度随之增加但比例有所下降,而地壳物质浓度及比例均下降,表明二次无机转化是此次污染过程的主要原因,主要受燃煤和机动车排放影响.  相似文献   

2.
本研究于2015年12月至2016年2月在徐州市城区采集大气细颗粒物PM_(2.5)样品共32套,使用离子色谱法分析了颗粒物中的F~-、Cl~-、NO_3~-、SO2-4、Na~+、Mg~(2+)、NH_4~+、K~+和Ca~(2+)的质量浓度.观测期间,徐州市冬季PM_(2.5)的平均质量浓度为(164.8±77.3)μg·m-3,9种水溶性离子总质量浓度为(67.5±36.1)μg·m~(-3),占PM_(2.5)的40.9%,各离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-Ca~(2+)K~+Na~+Mg~(2+)F~-,其中NH_4~+、NO_3~-和SO_4~(2-)是最主要的水溶性离子.清洁大气、轻度霾和重度霾时期PM_(2.5)中总水溶性无机离子(WSIIs)质量浓度分别为(12.8±8.8)、(59.0±22.8)、(86.3±36.0)μg·m~(-3),SNA分别占WSIIs的86.4%、82.8%和78.9%.NH_4~+、NO_3-和SO_4~(2-)三者之间相关性显著,在PM_(2.5)中的结合方式为(NH_4)_2SO_4和NH_4NO_3.徐州市PM_(2.5)中水溶性离子的主要来源为二次转化、生物质燃烧、化石燃料燃烧和矿物粉尘等.  相似文献   

3.
为探究济南市大气气溶胶中化学组分的季节变化特征,于2015年夏季、冬季分别连续进行1个月的PM_(2.5)样品采集,并分析无机离子、碳质组分与水溶性二次有机碳(WSOC)的组成、浓度水平及来源.结果表明,济南市冬季PM_(2.5)的质量浓度[(158.3±95.3)μg·m~(-3)]约为夏季[(75.3±25.9)μg·m~(-3)]的2倍,在我国其浓度处于中上等水平.无机离子的总浓度呈夏低冬高的季节变化特征,其中SO_4~(2-)、NO_3~-、NH_4~+是浓度最高的3种离子,且这3种离子的相关性均较好,NH_4~+在夏季和冬季均以(NH_4)_2SO_4和NH_4NO_3的形式存在.大气中存在较高程度的SO_2和NO_2的二次氧化,其中硫氧化率(SOR)呈夏高冬低的变化特征,而氮氧化率(NOR)呈相反的季节变化特征.通过分析PM_(2.5)中阴、阳离子电荷平衡可知,PM_(2.5)呈弱碱性.基于热力学模型ISORROPIA-Ⅱ,结果表明冬季PM_(2.5)的酸性比夏季强.OC与EC浓度均呈夏低冬高的变化特征,由OC/EC的比值、WSOC/OC的比值和估算的二次有机碳(SOC)的浓度可知,夏季二次污染的程度比冬季更为严重.主成分分析(PCA)结果表明,济南市夏季无机离子主要来自二次氧化及生物质燃烧,而冬季无机离子主要来自煤炭燃烧及其产生的前体物经光化学氧化形成的二次污染物.  相似文献   

4.
泉州市大气PM2.5中水溶性离子季节变化特征及来源解析   总被引:2,自引:0,他引:2  
为掌握泉州市大气PM_(2.5)中无机水溶性离子的季节变化特征,于2014年3月~2015年1月同步采集了泉州市5个采样点共116个PM_(2.5)样品.用离子色谱法分析了PM_(2.5)中Na~+、NH_4~+、K~+、Ca~(2+)、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)等9种水溶性无机离子.观测期间,总水溶性离子浓度季节变化特征为春季(14.24±6.43)μg·m~(-3)冬季(8.54±7.61)μg·m~(-3)夏季(4.10±2.67)μg·m~(-3)秋季(3.91±2.58)μg·m~(-3);SO_4~(2-)、NO_3~-和NH_4~+(SNA)是PM_(2.5)中主要的3种离子,占水溶性离子总质量浓度比例分别为春季(90.3±3.3)%、夏季(68.8±11.7)%、秋季(78.9±7.1)%和冬季(74.0±18.4)%,说明春季二次污染较为严重;PM_(2.5)中阴、阳离子电荷平衡分析显示,阴离子相对亏损,大气细颗粒物组分呈弱碱性;春、冬季NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3等形式存在,而夏、秋季则主要以NH_4HSO_4和NH_4NO_3形式存在;PMF源解析结果表明,泉州市大气PM_(2.5)中水溶性离子主要来自海盐、二次源、建筑扬尘、垃圾焚烧源和生物质燃烧源.  相似文献   

5.
杭州市PM2.5中水溶性离子的污染特征及其消光贡献   总被引:4,自引:3,他引:1  
对杭州市2013年大气PM_(2.5)进行采样分析,探讨了其中水溶性离子的污染特征和消光贡献.杭州市PM_(2.5)中总水溶性离子的质量浓度为37.5μg·m~(-3),占PM_(2.5)质量浓度的44.4%,二次离子SNA(SO_4~(2-)、NO_3~-和NH_4~+)是水溶性离子的主要成分,共占到水溶性离子的83.4%.PM_(2.5)和主要水溶性离子的质量浓度都在冬季最大,夏季最低,夏秋季水溶性离子占PM_(2.5)的比值明显高于冬春季,而SNA在总水溶性离子中的比例4个季节非常接近.燃料燃烧和汽车尾气排放导致的二次离子生成,对杭州市PM_(2.5)贡献最大.SOR和NOR的年平均值分别为0.27和0.15,SO_2在大气中的转化率大于NO_x,SOR和NOR与相对湿度都呈现出明显正相关,非均相氧化过程对SO_4~(2-)和NO_3~-的生成具有重要贡献.气溶胶中[NO_3~-]/[SO_4~(2-)]的年平均值为0.63,主要受到燃煤排放的影响.霾天随着霾污染等级的逐渐加重,PM_(2.5)、水溶性离子和SNA的浓度都逐渐增大,SOR和NOR值也不断升高,霾天稳定的天气条件,能有效促进污染物的积累和二次转化.PM_(2.5)和SNA的质量浓度与大气消光系数都呈现出明显正相关,使用IMPROVE公式对不同化学组分消光系数的计算结果能够基本反映出气溶胶对大气散射的变化趋势,其结果显示SNA对大气总消光系数的贡献达60.8%.SNA的消光系数冬季最高,夏季最低,随着霾污染等级的加重,SNA的消光系数和对总消光的贡献比例也逐步增加.  相似文献   

6.
选取北京和石家庄两个监测点,于2014年冬季进行了PM_(2.5)样品采集,分析研究了PM_(2.5)及水溶性离子组分污染特征,并应用WRF-CAMx模型对采样时段进行了模拟,分析了观测期间PM_(2.5)和二次离子组分区域传输贡献情况.结果表明,采样期间北京PM_(2.5)质量浓度为(116.6±87.0)μg/m~3.水溶性离子质量浓度为(45.3±40.6)μg/m~3.其中SO_4~(2-)、NO_3~-和NH4+质量浓度分别为(13.3±13.6)μg/m~3、(14.8±15.1)μg/m~3和(9.1±7.2)μg/m~3;石家庄污染水平高于北京,PM_(2.5)浓度为(267.7±166.7)μg/m~3.总水溶性离子、SO_4~(2-)、NO_3~-和NH4+质量浓度分别(111.8±104.3)μg/m~3、(36.6±36.5)μg/m~3、(28.5±29.3)μg/m~3和(25.5±29.8)μg/m~3.两处采样点SOR与NOR分别为0.12、0.10(北京)和0.11、0.14(石家庄),冬季大气氧化性相对较弱,非均相氧化是主要二次转化原理.数值模拟结果显示,北京、石家庄城区1月PM_(2.5)受区域传输贡献分别为28.1%和28.3%,高浓度时段外来源贡献有所上升.二次离子中两地NO_3~-传输作用均强于SO_4~(2-).  相似文献   

7.
成都平原大气颗粒物中无机水溶性离子污染特征   总被引:13,自引:6,他引:7  
蒋燕  贺光艳  罗彬  陈建文  王斌  杜云松  杜明 《环境科学》2016,37(8):2863-2870
为探讨成都平原大气颗粒物中水溶性离子的污染特征,识别水溶性离子的组成、分布和时空变化,有针对性地控制重污染和灰霾天气,于2013年8月~2014年7月,在成都平原的5个监测点位共采集1 476个颗粒物样品,应用离子色谱法对PM10和PM_(2.5)中8种无机水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+)、Cl~-)进行测量.结果表明在观测期间,PM_(2.5~10)和PM_(2.5)中无机水溶性离子总量分别为11.35μg·m-3和36.93μg·m-3,分别占ρ(PM_(2.5)~10)和ρ(PM_(2.5))的37.8%和46.6%;其中二次离子(SO_4~(2-)、NO_3~-和NH~+4,SNA)约占各自水溶性离子总量的81.1%和89.9%.水溶性离子质量浓度冬季最高,春秋季相当,夏季最低.ρ(SO2-4)/ρ(PM_(2.5))夏秋季较高,而ρ(NO_3~-)/ρ(PM_(2.5))冬季最高,夏季最低.SNA、Cl~-、K~+大多分布在PM_(2.5)中,Ca~(2+)和Mg~(2+)主要分布在PM_(2.5~10)中.PM_(2.5)基本呈中性,水溶性离子主要以(NH_4)_2SO_4、NH_4NO_3、KNO_3、NaCl、KCl等形式存在.ρ(NO_3~-)/ρ(SO_4~(2-))揭示固定源依然是PM_(2.5)的主要来源.硫氧化速率(SOR)和氮氧化速率(NOR)年均值分别为0.31和0.13,SOR夏季最高,NOR冬季最高,二者变化趋势相反.成都平原PM_(2.5)呈区域性复合污染特征,SNA是造成ρ(PM_(2.5))增加的主导因素.  相似文献   

8.
陕南农村冬季PM_(2.5)主要化学组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对陕南农村冬季PM_(2.5)采样分析,获得PM_(2.5)质量浓度及主要化学组分特征。PM_(2.5)平均质量浓度为89.5±42.0μg·m~(-3),超过国家二级标准。观测期间PM_(2.5)中OC、EC浓度平均值分别为16.0±6.9μg·m~(-3)和5.7±3.2μg·m~(-3),OC/EC平均比值为3.0±0.4。主要水溶性离子组分为NO_3~-、SO_4~(2-)和NH_4~+。粒子数浓度与表面积浓度峰值主要集中在0.5μm以下粒径段。PAHs、BeP和BaP平均质量浓度分别为48.9±10.9 ng·m~(-3)、3.0±0.9 ng·m~(-3)和1.2±0.7 ng·m~(-3),PAHs污染较严重,强致癌物BaP浓度超过国家环境空气质量标准年平均浓度限值。当地农村以石煤为主的能源结构及采用的燃烧方式是导致污染的重要因素。  相似文献   

9.
苏州市PM2.5中水溶性离子的季节变化及来源分析   总被引:29,自引:27,他引:2  
2015年在苏州市城区采集大气细颗粒物PM_(2.5)样品共87套,用重量法分析了PM_(2.5)的质量浓度,离子色谱法分析了颗粒物中F-、Cl-、NO_3~-、SO_4~(2-)、Na~+、NH_4~+、K~+、Mg~(2+)和Ca~(2+),共9种水溶性无机离子.观测期间,苏州市PM_(2.5)的年均质量浓度为(74.26±38.01)μg·m-3,其季节特征为冬季春季秋季夏季;9种水溶性离子的总质量浓度为(43.95±23.60)μg·m~(-3),各离子的浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Na~+Cl~-K~+Ca~(2+)F-Mg~(2+);SNA(SO_4~(2-)、NO_3~-和NH_4~+三者的简称)是最主要的水溶性离子;SO_4~(2-)、NO_3~-和NH_4~+三者之间具有显著的相关性,它们在PM_(2.5)中主要是以NH_4NO_3和(NH_4)_2SO_4的结合方式存在.苏州市PM_(2.5)中水溶性离子的主要来源包括工业源、燃烧源、二次过程和建筑土壤尘等.  相似文献   

10.
为探究安阳市大气PM_(2.5)中水溶性离子的污染特征及其来源,于2018~2019年的典型月份在安阳市采集PM_(2.5)样品,使用离子色谱测试了9种水溶性离子(Na~+、NH_4~+、K~+、Mg~(2+)、Ca~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)).开展了PM_(2.5)和水溶性离子浓度水平的分析、阴阳离子平衡和氮氧化率(NOR)、硫氧化率(SOR)的计算、离子相关性和主成分分析等.结果表明,安阳市PM_(2.5)和水溶性离子年均浓度分别为(85.81±45.43)μg·m~(-3)和(48.21±30.04)μg·m~(-3),各离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+ Cl~-K~+ Ca~(2+) Na~+Mg~(2+)F~-;阴阳离子电荷当量数值为0.75~0.94,大气气溶胶显碱性;NH_4~+和SO_4~(2-)、NO_3~-以及K~+和Cl~-等具有显著的相关性;氮氧化率(NOR)和硫氧化率(SOR)的年均值分别为0.25和0.37;SO_4~(2-)、NO_3~-和NH_4~+(SNA)的年均浓度为(42.72±27.87)μg·m~(-3),占水溶性离子总量的87.14%;春季、夏季和秋季的NH_4~+主要以(NH_4)_2SO_4和NH_4NO_3的形式存在,冬季的NH_4~+主要以(NH_4)_2SO_4、NH_4NO_3和NH_4 Cl的形式存在;水溶性离子主要来自于二次生成、燃煤、生物质燃烧和扬尘.  相似文献   

11.
作为我国大气污染治理重点区域汾渭平原的重点城市,西安正处于城市建设迅速发展阶段,建筑扬尘排放量大,极大地影响了西安的空气质量.本研究基于西安市建筑和市政施工工程的调查资料,结合两套由不同机构测量的我国北方典型城市排放因子,估算获得了西安市2017年建筑施工扬尘PM_(10)、PM_(2.5)的排放量及排放强度,构建了西安市区县级别建筑扬尘排放颗粒物清单,并分析其空间分布特征.结果表明:①引用中国环境科学研究院依据建筑扬尘产生类型测定的排放因子,估算获得2017年西安市建筑施工扬尘PM_(10)、PM_(2.5)排放总量分别为6.8×10~4、1.4×10~4 t,其中,作业施工扬尘排放量占总排放量的74%,风蚀扬尘占26%;②引用北京市环境保护科学研究院构建的建筑扬尘季节性排放因子,估算西安市建筑施工扬尘PM_(10)、PM_(2.5)排放总量分别为10.8×10~4、2.2×10~4 t,建筑扬尘排放量存在着明显的季节差异,夏季、秋季、冬季的扬尘排放量明显低于春季,但冬季略高于夏季、秋季;③综合两套排放计算结果表明,估算的建筑扬尘排放量存在50%的差异,西安2017年建筑扬尘PM_(10)排放量约为6.8×10~4~10.8×10~4 t,PM_(2.5)排放量约为1.4×10~4~2.2×10~4 t;④空间分布上,主城区建筑施工扬尘排放量大,约占总排放量的72%;主城区建筑施工扬尘排放强度高,约为郊区县的29倍.  相似文献   

12.
杨乐  李贺鹏  孙滨峰  岳春雷 《环境科学》2017,38(12):5012-5019
新安江水库是我国华东地区最大的水库,面积580 km2,平均深度30 m,水库水体处于中贫营养状态.为了研究新安江水库中CO_2排放的时空变化特征,2014年12月至2015年12月采用静态浮箱法收集水库表面以分子扩散方式排放的CO_2,使用气相色谱仪分析CO_2浓度.结果表明,新安江水库CO_2排放通量从上游入库河流[(120.39±135.41)mg·(m~2·h)~(-1)]至库区主体[(36.65~61.94)mg·(m~2·h)~(-1)]呈下降趋势,而大坝下游河流中CO_2排放通量[(1 535.00±1 447.46)mg·(m~2·h)~(-1)]显著增加,约分别是上游入库河流和库区主体的13倍和25~42倍.但随着与大坝距离增加,大坝下游河流中CO_2排放通量显著下降,如7 km处的CO_2排放通量仅为出库水体处的20%.在库区主体中,CO_2排放通量具有明显的季节变化:CO_2排放通量在秋、冬季时为正值,最大值出现在冬季(12月或1月),说明此时库区表层水体是CO_2排放源;而CO_2排放通量在春、夏季为负值,最小值出现在春季(3、4或5月),说明此时库区表层水体是CO_2吸收汇,这可能与春、夏季时水体中藻类繁殖有关.所以,在调查水库表面CO_2排放时,应对水库的上游入库河流、库区主体和坝下河流进行全面长期的观测,才能避免低估水库中CO_2排放总量.  相似文献   

13.
颗粒物是影响西安市环境空气质量的主要因子.结合《西安统计年鉴2015》《2014年环境统计数据》和现场调查等确定了西安市各类PM2.5排放源的活动水平数据,采用物料衡算法和排放因子法测算了西安市2014年大气中PM2.5的年排放总量,并从行业和区域角度详细分析了PM2.5的排放贡献率.在此基础上,以2014年为基准年,依据西安市地方政策和各行业最新排放标准,对PM2.5的减排潜力进行了预测.结果表明:2014年西安市人为源一次PM2.5排放总量为33 660.1 t,其中,固定燃烧源、工艺过程源、移动源、生物质燃烧源、扬尘源和餐饮源的贡献率分别为27.6%、23.5%、6.8%、10.7%、31.1%和0.3%.道路扬尘、窑炉和发电为西安市PM2.5的重点排放行业,其PM2.5排放量分别占排放总量的21.4%、20.3%和11.0%.各区县中,鄠邑区、灞桥区和未央区的PM2.5排放量较高,其贡献率分别为15.7%、13.7%和12.7%;新城区PM2.5排放量最小,为297.8 t/a.2014年西安市PM2.5平均排放强度为2.07 t/km2,其中,碑林区排放强度(16.80 t/km2)最大,高陵区(0.48 t/km2)最小.按照《西安市2017年"铁腕治霾保卫蓝天"工作实施方案》等新政策的规定,预测在新的排放标准下西安市PM2.5排放量将比2014年削减63.7%.研究显示,固定燃烧源、工艺过程源和生物质燃烧源有较大的减排潜力.   相似文献   

14.
西安是关中盆地经济发展的核心城市,特殊的地形和工业发展导致冬季细颗粒物(PM2.5)污染严重,制定科学合理的治理措施迫切需要明确PM2.5的来源.本文基于空气质量模式CAMx(Comprehensive Air Quality Model with extensions)、颗粒物源解析模块PSAT(Particulate Source Apportionment Technology)及融入多种来源数据后建立的排放清单来量化西安地区本地及区域传输贡献.在本文研究的重污染过程中,模式的模拟精度合理,模拟与观测值相关系数为0.78,FAC2达到95%.PSAT模块在本次重污染过程中对西安PM2.5的来源解析结果显示:在城区,西安本地为最大的排放源区,日均贡献率均大于60%,其次为咸阳8%,省外的传输为6%;在郊区,西安本地的贡献减少,传输贡献增加,其中阎良区传输贡献达到83%.对西安城区的一次细颗粒物面源排放量减少50%模拟后,城区和郊区来自周边区域渭南或咸阳的贡献率有6%~8%的增长.该研究结果表明需要从本地排放管控和区域联防两方面来改善西安地区的空气质量.  相似文献   

15.
本研究对长江三角洲背景地区临安大气本底站夏季PM_(2.5)进行连续采集,并对其分别进行OC/EC和水溶性离子测试分析.研究结果发现,临安夏季PM_(2.5)中OC和EC平均质量浓度分别为(14.3±3.95)μg·m-3和(3.33±1.47)μg·m-3.与城市地区相比,本研究临安背景地区夏季气溶胶中OC和EC相关性较弱(R2=0.31,P0.01).二次无机离子,即SO_4~(2-)、NO_3~-、NH_4~+(SNA),明显高于其它水溶性无机离子,平均浓度分别为(8.70±5.66)、(2.04±1.07)和(3.25±2.29)μg·m-3.基于对临安夏季PM_(2.5)连续加密观测、气团后向轨迹以及火点图研究分析,发现静稳天气条件和区域传输都可以影响临安地区PM_(2.5)的化学组成特征.此外,通过对临安本底站霾天和清洁天PM_(2.5)化学组成特征比较发现,与清洁天相比,霾污染天气POC和EC占PM_(2.5)的质量分数没有明显变化,而SOC占PM_(2.5)的质量分数却呈现了明显的下降趋势.与SOC不同,SO_4~(2-)和NH_4~+占PM_(2.5)的质量分数在霾污染天气均呈现了上升的趋势,说明二次无机离子有另一种明显增强的化学生成路径,即非均相化学反应.  相似文献   

16.
为了解鞍型场对西安市PM2.5重污染过程的影响.以西安市2016年2月6—14日重污染过程ρ(PM2.5)及气象要素的小时变化为研究对象,综合分析了此次重污染过程特征、天气型以及气象要素变化.结果表明:①西安市此次重污染过程可分为污染上升阶段(6—7日)、污染维持阶段(8—11日)及污染减轻阶段(12—14日),3个阶段分别处于均压场、鞍型场、高压前部等天气型的影响下.②此次鞍型场发生时,天气持续静稳,气压梯度力小,且西安市处于气流的辐合地带,导致污染物的形成和积累,ρ(PM2.5)最高值达198 μg/m3.③在鞍型场的控制下,西安市日均气温维持在偏高的水平(最高达7.2℃),相对湿度呈上升的趋势,最高达86.5%;而风速和能见度则波动下降,平均风速和能见度最低值分别为0.8 m/s和0.5 km.高温、高湿、小风的气象条件有利于污染物的吸湿增长从而导致PM2.5重污染.④受鞍型场的影响,西安市边界层高度较低,最低时只有55 m,且逆温层较厚,强度较大,最大值达3.8℃/(100 m),极低的边界层高度和较厚的逆温层削弱了污染物的垂直扩散能力,污染物被抑制在近地面,形成较严重的污染.研究显示,鞍型场天气型导致的均压场、暖湿、静风、低边界层及强逆温层是此次西安市PM2.5重污染过程的重要原因.   相似文献   

17.
2019年夏季,在济南市城区开展了大气臭氧(O3)及其前体物[挥发性有机物(VOCs)和氮氧化物(NOx)]的综合观测研究,观测发现,日最大8h φ(O3)均值为(103.0±14.5)×10-9,φ(NOx)平均值为(16.7±11.3)×10-9,VOCs的体积分数和活性水平分别为(22.4±9.4)×10-9和(9.6±3.8) s-1.利用局地O3化学收支分析,发现济南具有较高的局地O3生成潜势,白天局地O3平均生成速率为35.6×10-9 h-1.运用基于观测的盒子模型(OBM)和PMF受体模型对济南O3生成的控制因素、关键VOCs来源进行了分析,结果表明济南市城区O3生成总体处于人为源VOCs敏感区,且对烯烃的敏感性最强.O3生...  相似文献   

18.
魏国茹  史兴民 《环境科学》2018,39(7):3014-3021
选取2014、2015、2016年冬季PM_(2.5)(24 h)浓度平均值,采用泊松回归模型评价全市居民连续3 a冬季PM_(2.5)暴露的急性健康损害效应,修正的人力资本法评估过早死亡经济损失,疾病成本法评估住院、患病与门诊经济损失.结果表明,研究时段内(2014、2015、2016年冬季)由PM_(2.5)造成的经济损失约为335.23亿元(95%CI:249.61~369.75)、211.05亿元(95%CI:135.60~268.80)、371.32亿元(95%CI:272.46~411.64),分别约占当年GDP的6.10%(4.54%~6.73%)、3.64%(2.34%~4.63%)、5.91%(4.34%~6.55%);健康经济损失与当年冬季PM_(2.5)浓度均值呈正相关关系;PM_(2.5)污染物对西安市常住人口健康影响显著,影响的病例(2014、2015、2016年)分别约为1 071 338例(95%CI:646 432~1 385 847)、438 273例(95%CI:246 842~599 989)、1 019 503例(95%CI:611 407~1 324 547);对哮喘儿童患者的影响比成人显著,而慢性支气管炎的影响成人比儿童显著.该研究可为西安市实施PM_(2.5)空气质量标准的成本效益分析提供科学的依据,为环境质量的管理提供参考.  相似文献   

19.
为了探寻西安雾霾气溶胶典型生消扩散特征,对2019年最后一场雾霾(简称末场雾霾)开展了高分辨WRF-Chem(the Weather Research and Forecasting model coupled to Chemistry)模拟,并结合环境监测站监测数据、以及特殊观测数据(西安理工大学气象站、粒谱仪、太阳光度计观测等),对末场雾霾发生发展的气象条件与气溶胶条件进行了综合诊断,研究结果如下:①通过与观测数据对比表明,模式较好地再现了雾霾生命史(发生于12月20—25日,于23日上午发展为重度霾).②四川北部是此次雾霾的发源地,在雾霾形成初期,沿着低矮地势存在一条输送通道(青川县-康县-徽县-两当县-秦岭西部低矮地形与青藏高原东部山脉之间的豁口-宝鸡-西安).③特殊的地形使得西安易于滋养雾霾,而较大尺度的秦岭山脉并不能完全阻挡西安雾霾的形成与扩散.④通过对比2019年首、末两场雾霾,揭示了两场雾霾气溶胶的共性特征:雾霾天气背景下,PM2.5的组份以有机碳为主(接近或突破40 μg·kg-1);偏北风是西安雾霾消散的关键因子(底层持续6 m·s-1以上的平均风速,即可以吹散雾霾),雾霾消散时先从底层开始消散.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号