首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为探究济南市大气气溶胶中化学组分的季节变化特征,于2015年夏季、冬季分别连续进行1个月的PM_(2.5)样品采集,并分析无机离子、碳质组分与水溶性二次有机碳(WSOC)的组成、浓度水平及来源.结果表明,济南市冬季PM_(2.5)的质量浓度[(158.3±95.3)μg·m~(-3)]约为夏季[(75.3±25.9)μg·m~(-3)]的2倍,在我国其浓度处于中上等水平.无机离子的总浓度呈夏低冬高的季节变化特征,其中SO_4~(2-)、NO_3~-、NH_4~+是浓度最高的3种离子,且这3种离子的相关性均较好,NH_4~+在夏季和冬季均以(NH_4)_2SO_4和NH_4NO_3的形式存在.大气中存在较高程度的SO_2和NO_2的二次氧化,其中硫氧化率(SOR)呈夏高冬低的变化特征,而氮氧化率(NOR)呈相反的季节变化特征.通过分析PM_(2.5)中阴、阳离子电荷平衡可知,PM_(2.5)呈弱碱性.基于热力学模型ISORROPIA-Ⅱ,结果表明冬季PM_(2.5)的酸性比夏季强.OC与EC浓度均呈夏低冬高的变化特征,由OC/EC的比值、WSOC/OC的比值和估算的二次有机碳(SOC)的浓度可知,夏季二次污染的程度比冬季更为严重.主成分分析(PCA)结果表明,济南市夏季无机离子主要来自二次氧化及生物质燃烧,而冬季无机离子主要来自煤炭燃烧及其产生的前体物经光化学氧化形成的二次污染物.  相似文献   

2.
长三角典型站点冬季大气PM2.5中OC、EC污染特征   总被引:1,自引:0,他引:1  
康晖  朱彬  王红磊  施双双 《环境科学》2018,39(3):961-971
对2015年1月9日~2015年1月31日临安、南京和苏州3个站点采集的PM_(2.5)样品(共计279组),使用热光反射法(thermal/optical reflectance,TOR)分析了样品中有机碳(OC)与元素碳(EC)的含量,并研究了长三角地区冬季PM_(2.5)中OC和EC的污染特征.结果表明,采样期间临安、南京和苏州的PM_(2.5)平均质量浓度分别为(123.56±61.11)、(144.77±62.91)和(156.5±68.97)μg·m-3,均超过我国《环境空气质量标准》(GB 3095-2012)规定的PM_(2.5)日均值75μg·m-3;其中3个站点OC与EC的平均质量浓度依次分别为(21.93±11.69)/(6±3.6)、(20.32±10.3)/(5.39±3.07)和(27.08±14.35)/(6.4±4.29)μg·m-3.临安作为长三角大气环境背景点,OC与EC的污染也较为严重.3个站点OC与EC的相关性为临安(R2=0.83)、南京(R2=0.72)和苏州(R2=0.72),表明冬季长三角地区的碳质气溶胶的来源较为一致和稳定.3个站点样品中的OC/EC值均大于2.0,样品的OC/EC值主要分布在2.5~6.0这个区间内,表明燃煤源和机动车尾气排放源是OC与EC的主要来源.使用EC示踪法估算临安、南京和苏州3个站点的二次有机碳(SOC)平均质量浓度分别为(9.23±5.26)、(6.82±4.36)和(12.56±7.52)μg·m-3,在OC中占比为42%、34%和46%,表明SOC是OC的重要组成部分.后向轨迹显示,PM_(2.5)、OC和EC的质量浓度与主要气团的传输路径有较好的相关性,自空气质量较差区域气团的PM_(2.5)、OC和EC的质量浓度是来自空气质量较好区域的1.14~1.7倍、1.55~2.1倍和1.94~2.47倍.  相似文献   

3.
本研究于2015年10~11月在南京北郊分昼夜采集PM_(2.5)样品,采用热光透射法(TOT)和离子色谱法对样品中的有机碳(OC)/元素碳(EC)和左旋葡聚糖(levoglucosan)的质量浓度特征进行分析.观测期间OC和EC的平均浓度分别为(11.3±4.9)μg·m-3和(1.1±0.9)μg·m-3,总碳TC占PM_(2.5)的质量分数为22.9%,OC/EC的平均值为7.4,SOC占OC的质量分数为51.9%.PM_(2.5)、OC、EC和SOC质量浓度都体现出夜晚白天的特征,白天OC和EC的相关性好于夜晚(相关性系数分别为0.86和0.7).通过分析PM_(2.5)、左旋葡聚糖和SOC质量浓度以及后向轨迹和火点数据可知南京北郊在13~16号受到来自河北等地生物质燃烧远距离输送的影响.采样期间K+和左旋葡聚糖与OC、EC和SOC的相关性显著(相关性系数分别为0.78、0.79和0.65),经受体示踪物方法估算采样期间生物质燃烧对OC的贡献为21.9%.  相似文献   

4.
北京市PM_(2.5)主要化学组分浓度水平研究与特征分析   总被引:2,自引:1,他引:1  
为研究北京市大气环境PM_(2.5)中主要化学组分特征,于2012年8月—2013年7月期间,在北京市定陵、车公庄、东四、石景山、通州、房山、亦庄和榆垡等8个点位开展为期1年的样品采集,共计采集472组样品,分析每组样品中OC、EC、水溶性离子和18种无机元素等组分.研究结果表明,本次研究的组分重建后和实际PM_(2.5)浓度相关性显著,相关系数为0.94,所测组分平均占PM_(2.5)总量的90%;各点位不同季节PM_(2.5)中主要的组分均为OC、NO_3~-、SO_4~(2-)、NH_4~+,呈南高北低的趋势,冬季OC是夏季的1.7倍,NO_3~-和SO2--4在四季呈交替状态,除榆垡点位的SO_4~(2-)NO_3~-外,其他点位均是NO_3~-SO_4~(2-),4种主要的组分质量浓度分别为(23.1±21.4)、(20.3±23.4)、(19.4±22.2)、(13.6±15.2)μg·m-3,占PM_(2.5)总含量的18.5%、16.3%、15.6%、10.9%;研究水溶性离子发现,8个点位全年SNA/PM_(2.5)比例为42.8%,其中,夏季最高(49.9%),秋季较低(31.1%),NO_3~-/SO_4~(2-)比值平均为1.05,相对往年研究结果 NO_3~-/SO_4~(2-)比值有增加的趋势.  相似文献   

5.
本研究于2015年12月至2016年2月在徐州市城区采集大气细颗粒物PM_(2.5)样品共32套,使用离子色谱法分析了颗粒物中的F~-、Cl~-、NO_3~-、SO2-4、Na~+、Mg~(2+)、NH_4~+、K~+和Ca~(2+)的质量浓度.观测期间,徐州市冬季PM_(2.5)的平均质量浓度为(164.8±77.3)μg·m-3,9种水溶性离子总质量浓度为(67.5±36.1)μg·m~(-3),占PM_(2.5)的40.9%,各离子浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Cl~-Ca~(2+)K~+Na~+Mg~(2+)F~-,其中NH_4~+、NO_3~-和SO_4~(2-)是最主要的水溶性离子.清洁大气、轻度霾和重度霾时期PM_(2.5)中总水溶性无机离子(WSIIs)质量浓度分别为(12.8±8.8)、(59.0±22.8)、(86.3±36.0)μg·m~(-3),SNA分别占WSIIs的86.4%、82.8%和78.9%.NH_4~+、NO_3-和SO_4~(2-)三者之间相关性显著,在PM_(2.5)中的结合方式为(NH_4)_2SO_4和NH_4NO_3.徐州市PM_(2.5)中水溶性离子的主要来源为二次转化、生物质燃烧、化石燃料燃烧和矿物粉尘等.  相似文献   

6.
为了明确天津市区环境受体PM_(2.5)中碳组分的污染特征及来源,本研究分别于2016年2月(冬季)和8月(夏季)在天津市区设置6个采样点位同步采集PM_(2.5)样品,采用热光反射法测定样品中各个碳组分(OC1~OC4、EC1~EC3和OP(裂解碳))的含量,并计算得到OC、EC、CharEC和Soot-EC,以定性识别大气颗粒物中碳组分的来源.结果表明,夏季PM_(2.5)中OC平均浓度为(7.5±3.0)μg·m-3,占PM_(2.5)的11.7%±4.1%;而冬季相比于夏季OC的浓度和占比均有增加,分别为(13.1±7.0)μg·m-3和13.9%±2.8%.夏季和冬季EC浓度分别为(4.0±1.8)μg·m-3、(4.3±2.4)μg·m-3,占PM_(2.5)的6.1%±2.0%和4.6%±1.2%.OC与EC的相关性在夏季(r=0.83,p0.01)和冬季(r=0.96,p0.01)均显著,而冬季CharEC与OC(r=0.94,p0.01)、EC(r=0.98,p0.01)相关性明显高于夏季(OC:r=0.44,p0.01;EC:r=0.45,p0.01).PM_(2.5)中OC/EC平均值在夏季和冬季分别为1.9和3.0,估算得到夏季SOC为(2.6±1.4)μg·m-3,占OC的33.5%±13.6%;冬季为(3.5±2.5)μg·m-3,占OC的26.6%±12.0%.夏季Char-EC/Soot-EC为6.5,高于冬季(4.9),并且空间差异性显著(t检验,p0.05).正定矩阵因子模型(PMF)解析结果表明,天津市区大气PM_(2.5)中碳组分主要有4类来源:燃煤及生物质排放混合源、柴油车、汽油车、道路尘,对夏季PM_(2.5)中碳组分分担率分别为35.4%、16.4%、20.5%、14.4%;对冬季碳组分分担率分别为41.3%、15.5%、18.1%、16.3%.可见,燃煤和机动车是天津市区PM_(2.5)中碳组分的主要来源.  相似文献   

7.
泉州市大气PM2.5中水溶性离子季节变化特征及来源解析   总被引:2,自引:0,他引:2  
为掌握泉州市大气PM_(2.5)中无机水溶性离子的季节变化特征,于2014年3月~2015年1月同步采集了泉州市5个采样点共116个PM_(2.5)样品.用离子色谱法分析了PM_(2.5)中Na~+、NH_4~+、K~+、Ca~(2+)、Mg~(2+)、F~-、Cl~-、NO_3~-和SO_4~(2-)等9种水溶性无机离子.观测期间,总水溶性离子浓度季节变化特征为春季(14.24±6.43)μg·m~(-3)冬季(8.54±7.61)μg·m~(-3)夏季(4.10±2.67)μg·m~(-3)秋季(3.91±2.58)μg·m~(-3);SO_4~(2-)、NO_3~-和NH_4~+(SNA)是PM_(2.5)中主要的3种离子,占水溶性离子总质量浓度比例分别为春季(90.3±3.3)%、夏季(68.8±11.7)%、秋季(78.9±7.1)%和冬季(74.0±18.4)%,说明春季二次污染较为严重;PM_(2.5)中阴、阳离子电荷平衡分析显示,阴离子相对亏损,大气细颗粒物组分呈弱碱性;春、冬季NH_4~+主要以(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3等形式存在,而夏、秋季则主要以NH_4HSO_4和NH_4NO_3形式存在;PMF源解析结果表明,泉州市大气PM_(2.5)中水溶性离子主要来自海盐、二次源、建筑扬尘、垃圾焚烧源和生物质燃烧源.  相似文献   

8.
苏州市PM2.5中水溶性离子的季节变化及来源分析   总被引:29,自引:27,他引:2  
2015年在苏州市城区采集大气细颗粒物PM_(2.5)样品共87套,用重量法分析了PM_(2.5)的质量浓度,离子色谱法分析了颗粒物中F-、Cl-、NO_3~-、SO_4~(2-)、Na~+、NH_4~+、K~+、Mg~(2+)和Ca~(2+),共9种水溶性无机离子.观测期间,苏州市PM_(2.5)的年均质量浓度为(74.26±38.01)μg·m-3,其季节特征为冬季春季秋季夏季;9种水溶性离子的总质量浓度为(43.95±23.60)μg·m~(-3),各离子的浓度高低顺序为NO_3~-SO_4~(2-)NH_4~+Na~+Cl~-K~+Ca~(2+)F-Mg~(2+);SNA(SO_4~(2-)、NO_3~-和NH_4~+三者的简称)是最主要的水溶性离子;SO_4~(2-)、NO_3~-和NH_4~+三者之间具有显著的相关性,它们在PM_(2.5)中主要是以NH_4NO_3和(NH_4)_2SO_4的结合方式存在.苏州市PM_(2.5)中水溶性离子的主要来源包括工业源、燃烧源、二次过程和建筑土壤尘等.  相似文献   

9.
成都平原大气颗粒物中无机水溶性离子污染特征   总被引:13,自引:6,他引:7  
蒋燕  贺光艳  罗彬  陈建文  王斌  杜云松  杜明 《环境科学》2016,37(8):2863-2870
为探讨成都平原大气颗粒物中水溶性离子的污染特征,识别水溶性离子的组成、分布和时空变化,有针对性地控制重污染和灰霾天气,于2013年8月~2014年7月,在成都平原的5个监测点位共采集1 476个颗粒物样品,应用离子色谱法对PM10和PM_(2.5)中8种无机水溶性离子(SO_4~(2-)、NO_3~-、NH_4~+、K~+、Na~+、Ca~(2+)、Mg~(2+)、Cl~-)进行测量.结果表明在观测期间,PM_(2.5~10)和PM_(2.5)中无机水溶性离子总量分别为11.35μg·m-3和36.93μg·m-3,分别占ρ(PM_(2.5)~10)和ρ(PM_(2.5))的37.8%和46.6%;其中二次离子(SO_4~(2-)、NO_3~-和NH~+4,SNA)约占各自水溶性离子总量的81.1%和89.9%.水溶性离子质量浓度冬季最高,春秋季相当,夏季最低.ρ(SO2-4)/ρ(PM_(2.5))夏秋季较高,而ρ(NO_3~-)/ρ(PM_(2.5))冬季最高,夏季最低.SNA、Cl~-、K~+大多分布在PM_(2.5)中,Ca~(2+)和Mg~(2+)主要分布在PM_(2.5~10)中.PM_(2.5)基本呈中性,水溶性离子主要以(NH_4)_2SO_4、NH_4NO_3、KNO_3、NaCl、KCl等形式存在.ρ(NO_3~-)/ρ(SO_4~(2-))揭示固定源依然是PM_(2.5)的主要来源.硫氧化速率(SOR)和氮氧化速率(NOR)年均值分别为0.31和0.13,SOR夏季最高,NOR冬季最高,二者变化趋势相反.成都平原PM_(2.5)呈区域性复合污染特征,SNA是造成ρ(PM_(2.5))增加的主导因素.  相似文献   

10.
为研究南京北郊不同季节PM_(2.5)中碳质组分的主要来源,分别在2014年1月1—23日和2014年7月3—22日进行PM_(2.5)样品采集,并分析其中有机碳(OC)、元素碳(EC)浓度及总碳同位素组成.结果表明,冬季PM_(2.5)浓度高于夏季,平均值为(146.69±64.67)μg·m-3,OC、EC浓度较高,分别为(14.77±5.58)μg·m-3与(9.01±4.74)μg·m-3;而夏季PM_(2.5)浓度为(57.69±23.80)μg·m-3,OC、EC浓度分别为(5.94±2.20)μg·m-3和(2.78±1.25)μg·m-3.二次有机碳(SOC)占OC比重较小,冬、夏两季分别为36.99%与27.37%,这与采样点紧邻公路主干道使颗粒物未得到充分的二次反应有关.南京北郊冬季δ13C平均值为-25.38‰±0.36‰,夏季为-26.50‰±0.58‰,通过与潜在污染源的δ13C值对比,推断出采样期间冬季主要的潜在碳质污染源为煤炭燃烧及机动车尾气,夏季主要的潜在碳质污染源为生物质燃烧及汽车尾气.  相似文献   

11.
作为我国大气污染治理重点区域汾渭平原的重点城市,西安正处于城市建设迅速发展阶段,建筑扬尘排放量大,极大地影响了西安的空气质量.本研究基于西安市建筑和市政施工工程的调查资料,结合两套由不同机构测量的我国北方典型城市排放因子,估算获得了西安市2017年建筑施工扬尘PM_(10)、PM_(2.5)的排放量及排放强度,构建了西安市区县级别建筑扬尘排放颗粒物清单,并分析其空间分布特征.结果表明:①引用中国环境科学研究院依据建筑扬尘产生类型测定的排放因子,估算获得2017年西安市建筑施工扬尘PM_(10)、PM_(2.5)排放总量分别为6.8×10~4、1.4×10~4 t,其中,作业施工扬尘排放量占总排放量的74%,风蚀扬尘占26%;②引用北京市环境保护科学研究院构建的建筑扬尘季节性排放因子,估算西安市建筑施工扬尘PM_(10)、PM_(2.5)排放总量分别为10.8×10~4、2.2×10~4 t,建筑扬尘排放量存在着明显的季节差异,夏季、秋季、冬季的扬尘排放量明显低于春季,但冬季略高于夏季、秋季;③综合两套排放计算结果表明,估算的建筑扬尘排放量存在50%的差异,西安2017年建筑扬尘PM_(10)排放量约为6.8×10~4~10.8×10~4 t,PM_(2.5)排放量约为1.4×10~4~2.2×10~4 t;④空间分布上,主城区建筑施工扬尘排放量大,约占总排放量的72%;主城区建筑施工扬尘排放强度高,约为郊区县的29倍.  相似文献   

12.
西安是关中盆地经济发展的核心城市,特殊的地形和工业发展导致冬季细颗粒物(PM2.5)污染严重,制定科学合理的治理措施迫切需要明确PM2.5的来源.本文基于空气质量模式CAMx(Comprehensive Air Quality Model with extensions)、颗粒物源解析模块PSAT(Particulate Source Apportionment Technology)及融入多种来源数据后建立的排放清单来量化西安地区本地及区域传输贡献.在本文研究的重污染过程中,模式的模拟精度合理,模拟与观测值相关系数为0.78,FAC2达到95%.PSAT模块在本次重污染过程中对西安PM2.5的来源解析结果显示:在城区,西安本地为最大的排放源区,日均贡献率均大于60%,其次为咸阳8%,省外的传输为6%;在郊区,西安本地的贡献减少,传输贡献增加,其中阎良区传输贡献达到83%.对西安城区的一次细颗粒物面源排放量减少50%模拟后,城区和郊区来自周边区域渭南或咸阳的贡献率有6%~8%的增长.该研究结果表明需要从本地排放管控和区域联防两方面来改善西安地区的空气质量.  相似文献   

13.
杨乐  李贺鹏  孙滨峰  岳春雷 《环境科学》2017,38(12):5012-5019
新安江水库是我国华东地区最大的水库,面积580 km2,平均深度30 m,水库水体处于中贫营养状态.为了研究新安江水库中CO_2排放的时空变化特征,2014年12月至2015年12月采用静态浮箱法收集水库表面以分子扩散方式排放的CO_2,使用气相色谱仪分析CO_2浓度.结果表明,新安江水库CO_2排放通量从上游入库河流[(120.39±135.41)mg·(m~2·h)~(-1)]至库区主体[(36.65~61.94)mg·(m~2·h)~(-1)]呈下降趋势,而大坝下游河流中CO_2排放通量[(1 535.00±1 447.46)mg·(m~2·h)~(-1)]显著增加,约分别是上游入库河流和库区主体的13倍和25~42倍.但随着与大坝距离增加,大坝下游河流中CO_2排放通量显著下降,如7 km处的CO_2排放通量仅为出库水体处的20%.在库区主体中,CO_2排放通量具有明显的季节变化:CO_2排放通量在秋、冬季时为正值,最大值出现在冬季(12月或1月),说明此时库区表层水体是CO_2排放源;而CO_2排放通量在春、夏季为负值,最小值出现在春季(3、4或5月),说明此时库区表层水体是CO_2吸收汇,这可能与春、夏季时水体中藻类繁殖有关.所以,在调查水库表面CO_2排放时,应对水库的上游入库河流、库区主体和坝下河流进行全面长期的观测,才能避免低估水库中CO_2排放总量.  相似文献   

14.
颗粒物是影响西安市环境空气质量的主要因子.结合《西安统计年鉴2015》《2014年环境统计数据》和现场调查等确定了西安市各类PM2.5排放源的活动水平数据,采用物料衡算法和排放因子法测算了西安市2014年大气中PM2.5的年排放总量,并从行业和区域角度详细分析了PM2.5的排放贡献率.在此基础上,以2014年为基准年,依据西安市地方政策和各行业最新排放标准,对PM2.5的减排潜力进行了预测.结果表明:2014年西安市人为源一次PM2.5排放总量为33 660.1 t,其中,固定燃烧源、工艺过程源、移动源、生物质燃烧源、扬尘源和餐饮源的贡献率分别为27.6%、23.5%、6.8%、10.7%、31.1%和0.3%.道路扬尘、窑炉和发电为西安市PM2.5的重点排放行业,其PM2.5排放量分别占排放总量的21.4%、20.3%和11.0%.各区县中,鄠邑区、灞桥区和未央区的PM2.5排放量较高,其贡献率分别为15.7%、13.7%和12.7%;新城区PM2.5排放量最小,为297.8 t/a.2014年西安市PM2.5平均排放强度为2.07 t/km2,其中,碑林区排放强度(16.80 t/km2)最大,高陵区(0.48 t/km2)最小.按照《西安市2017年"铁腕治霾保卫蓝天"工作实施方案》等新政策的规定,预测在新的排放标准下西安市PM2.5排放量将比2014年削减63.7%.研究显示,固定燃烧源、工艺过程源和生物质燃烧源有较大的减排潜力.   相似文献   

15.
为了解鞍型场对西安市PM2.5重污染过程的影响.以西安市2016年2月6—14日重污染过程ρ(PM2.5)及气象要素的小时变化为研究对象,综合分析了此次重污染过程特征、天气型以及气象要素变化.结果表明:①西安市此次重污染过程可分为污染上升阶段(6—7日)、污染维持阶段(8—11日)及污染减轻阶段(12—14日),3个阶段分别处于均压场、鞍型场、高压前部等天气型的影响下.②此次鞍型场发生时,天气持续静稳,气压梯度力小,且西安市处于气流的辐合地带,导致污染物的形成和积累,ρ(PM2.5)最高值达198 μg/m3.③在鞍型场的控制下,西安市日均气温维持在偏高的水平(最高达7.2℃),相对湿度呈上升的趋势,最高达86.5%;而风速和能见度则波动下降,平均风速和能见度最低值分别为0.8 m/s和0.5 km.高温、高湿、小风的气象条件有利于污染物的吸湿增长从而导致PM2.5重污染.④受鞍型场的影响,西安市边界层高度较低,最低时只有55 m,且逆温层较厚,强度较大,最大值达3.8℃/(100 m),极低的边界层高度和较厚的逆温层削弱了污染物的垂直扩散能力,污染物被抑制在近地面,形成较严重的污染.研究显示,鞍型场天气型导致的均压场、暖湿、静风、低边界层及强逆温层是此次西安市PM2.5重污染过程的重要原因.   相似文献   

16.
魏国茹  史兴民 《环境科学》2018,39(7):3014-3021
选取2014、2015、2016年冬季PM_(2.5)(24 h)浓度平均值,采用泊松回归模型评价全市居民连续3 a冬季PM_(2.5)暴露的急性健康损害效应,修正的人力资本法评估过早死亡经济损失,疾病成本法评估住院、患病与门诊经济损失.结果表明,研究时段内(2014、2015、2016年冬季)由PM_(2.5)造成的经济损失约为335.23亿元(95%CI:249.61~369.75)、211.05亿元(95%CI:135.60~268.80)、371.32亿元(95%CI:272.46~411.64),分别约占当年GDP的6.10%(4.54%~6.73%)、3.64%(2.34%~4.63%)、5.91%(4.34%~6.55%);健康经济损失与当年冬季PM_(2.5)浓度均值呈正相关关系;PM_(2.5)污染物对西安市常住人口健康影响显著,影响的病例(2014、2015、2016年)分别约为1 071 338例(95%CI:646 432~1 385 847)、438 273例(95%CI:246 842~599 989)、1 019 503例(95%CI:611 407~1 324 547);对哮喘儿童患者的影响比成人显著,而慢性支气管炎的影响成人比儿童显著.该研究可为西安市实施PM_(2.5)空气质量标准的成本效益分析提供科学的依据,为环境质量的管理提供参考.  相似文献   

17.
针对重霾污染,在西安市冬季重污染日(2015-11-30~2015-12-09)和清洁日(2016-01-13~2016-01-22)各进行了为期10d的PM_(2.5)采集,测量其中的有机碳、元素碳,及NH_4~+、NO_3~-、SO_4~(2-)等无机水溶性离子,探讨两种污染条件下的组分特征及其成因.结果表明:观测期,重霾日和清洁日PM_(2.5)质量浓度分别为(170±47.5)μg·m~(-3)和(48.6±17.9)μg·m~(-3),且重霾日伴随低能见度、高湿静风等多种不利气象条件;重霾日二次无机离子(NH_4~+、NO_3~-、SO_4~(2-))组分占PM_(2.5)质量浓度的49.8%±13.1%,而清洁日为19.4%±5.95%,并且重霾日硫氧化速率(sulfur oxidation ratio,SOR)和氮氧化速率(nitrogen oxidation ratio,NOR)分别为0.282±0.157和0.269±0.124,远高于清洁日(SOR和NOR分别为0.189±0.057和0.077±0.046),重霾日二次有机组分浓度[(6.22±3.87)μg·m~(-3)]是清洁日[(1.44±1.63)μg·m~(-3)]的5倍,表明二次污染及不利气象条件是造成重霾期间相关组分浓度升高的重要原因.最后,通过二氯荧光黄双乙酸盐(2',7'-DCFH)化学荧光分析法测定了其中活性氧物质(reactive oxygen species,ROS)的浓度,探讨其对于二次无机组分形成的影响,结果表明观测期ROS平均浓度(以H_2O_2计)分别为(4.99±1.54)nmol·m~(-3)(重霾期),(0.492±0.356)nmol·m~(-3)(清洁期),二次反应及积累效应可能是西安重霾条件下ROS浓度升高的主要原因.NO_3~-、SO_4~(2-)与ROS均呈现正相关(P0.05),表明ROS可能通过二次氧化过程参与到二次无机组分形成过程中.  相似文献   

18.
2019年夏季,在济南市城区开展了大气臭氧(O3)及其前体物[挥发性有机物(VOCs)和氮氧化物(NOx)]的综合观测研究,观测发现,日最大8h φ(O3)均值为(103.0±14.5)×10-9,φ(NOx)平均值为(16.7±11.3)×10-9,VOCs的体积分数和活性水平分别为(22.4±9.4)×10-9和(9.6±3.8) s-1.利用局地O3化学收支分析,发现济南具有较高的局地O3生成潜势,白天局地O3平均生成速率为35.6×10-9 h-1.运用基于观测的盒子模型(OBM)和PMF受体模型对济南O3生成的控制因素、关键VOCs来源进行了分析,结果表明济南市城区O3生成总体处于人为源VOCs敏感区,且对烯烃的敏感性最强.O3生...  相似文献   

19.
为了探寻西安雾霾气溶胶典型生消扩散特征,对2019年最后一场雾霾(简称末场雾霾)开展了高分辨WRF-Chem(the Weather Research and Forecasting model coupled to Chemistry)模拟,并结合环境监测站监测数据、以及特殊观测数据(西安理工大学气象站、粒谱仪、太阳光度计观测等),对末场雾霾发生发展的气象条件与气溶胶条件进行了综合诊断,研究结果如下:①通过与观测数据对比表明,模式较好地再现了雾霾生命史(发生于12月20—25日,于23日上午发展为重度霾).②四川北部是此次雾霾的发源地,在雾霾形成初期,沿着低矮地势存在一条输送通道(青川县-康县-徽县-两当县-秦岭西部低矮地形与青藏高原东部山脉之间的豁口-宝鸡-西安).③特殊的地形使得西安易于滋养雾霾,而较大尺度的秦岭山脉并不能完全阻挡西安雾霾的形成与扩散.④通过对比2019年首、末两场雾霾,揭示了两场雾霾气溶胶的共性特征:雾霾天气背景下,PM2.5的组份以有机碳为主(接近或突破40 μg·kg-1);偏北风是西安雾霾消散的关键因子(底层持续6 m·s-1以上的平均风速,即可以吹散雾霾),雾霾消散时先从底层开始消散.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号