首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了探究呼和浩特市大气污染物污染特征,对2014年一年的AQI做出统计整理并对PM_(10)、PM_(2.5)、SO_2、CO、NO_2的相关性进行分析。研究结果发现:呼和浩特市2014年空气质量总体良好,空气质量为良所占比重为58%,中度污染和重度污染所占比重为35%。该市的主要污染物PM_(10)、PM_(2.5)、SO_2的超标率分别达到了88.81%、52.60%、36.20%。空气污染指数AQI与PM_(10)、PM_(2.5)、SO_2、CO、NO_2、呈显著相关,尤其是PM_(10)和PM_(2.5),相关性系数高达0.959和0.851,可见其污染主要以颗粒物物为主。PM_(10)、PM_(2.5)、SO_2、CO、NO_2浓度间两两正相关。O_3的浓度与PM_(2.5)、SO_2、CO、NO_2均呈现负相关,O_3与AQI和PM_(10)的相关性不显著。  相似文献   

2.
太原市秋冬季大气污染特征和输送路径及潜在源区分析   总被引:5,自引:4,他引:1  
闫世明  王雁  郭伟  李莹  张逢生 《环境科学》2019,40(11):4801-4809
采用环境空气质量指数(AQI)统计分析了2014~2018年太原市全年及秋冬季污染特征,并采用HYSPLIT后向轨迹模型计算了2014~2017年秋冬季逐时后向轨迹,结合太原市AQI,通过聚类分析、潜在源贡献因子和浓度权重轨迹方法对影响太原市的污染物输送路径和潜在源区进行了分析.结果表明,太原市污染状况不容乐观,太原市2014~2018年全年优良天数波动较大,尤其近两年从64%下降到不足50%;然而秋冬季优良天数稳步上升,2018年超过50%,空气质量有好转趋势.污染类型可能发生变化,全年及秋冬季PM_(2.5)为首要污染物的污染天数下降显著,PM_(10)为首要污染物的天数上升明显.聚类分析2014~2017年秋冬季太原的后向轨迹,53%的气团来自偏西方向,21%来自西北方向,12%来自西南方向,14%来自偏东方向,其中西南方向轨迹是外来污染物输送进入太原的主要轨迹,对太原空气质量有显著影响.PSCF和CWT分析表明,影响太原空气质量的重要潜在源区主要位于汾渭平原的陕西汉中、西安和山西的吕梁、临汾等地.建立汾渭平原及其周边区域联防联控机制对控制区域污染有着重要意义.  相似文献   

3.
分析和掌握大气中PM_(2.5)的污染特征,对控制PM_(2.5)的排放和改善空气质量具有十分重要意义。依据西安市连续2年多的空气质量监测数据,对AQI监测指标进行相关性分析,还从季节平均、月平均和日平均变化分析了PM_(2.5)随时间的分布特征,并应用MATLAB软件依据griddata插值算法绘制出了PM_(2.5)的空间分布图,直观地显示了PM_(2.5)污染在空间上的分布特征,突出了污染治理的重要季节和重点地区。研究结果表明:空气质量指数中的6项指标之间存在一定的相关性,PM_(2.5)与PM10的相关性最大,且PM_(2.5)污染呈季节性变化,春季污染最为严重,其次是冬季和秋季,夏季污染最轻;西安市的PM_(2.5)污染主要来源于燃烧、扬尘、尾气排放等过程,污染区域呈现北高南低的特征,污染源除人为源以外,周边污染扩散迁移也有较大影响。  相似文献   

4.
该文利用2018-2020年恩施市环境监测站同时段PM_(2.5)、PM_(10)、SO_2、NO_2、O_3、CO每日质量浓度监测资料,以及每日空气质量指数(AQI)资料,分析了近3年来恩施市的环境空气污染现状与成因。恩施州的主要污染物有PM_(2.5)、PM_(10)、O_3,最高浓度可达到65.03、96.87、109.13μg/m~3;恩施州空气质量指数为优、良、轻度污染、中度污染、重度污染的出现概率分别为50.69%、43.82%、4.57%、0.64%、0.27%,无严重以上污染日出现;气象条件对恩施州的空气质量有较大影响,PM_(2.5)浓度与月降水和月平均气温呈典型负相关,温度和降水量升值最高在7月时,PM_(2.5)的质量浓度降至最低11.61μg/m~3。研究发现,恩施州的空气质量变化程季节性变化,冬季空气质量最差,夏季最好;空气质量变化具有春节效应。结果可为恩施州的空气污染防治提供有效依据。  相似文献   

5.
以临汾市为研究区域,基于2017~2020年空气质量逐日数据,对研究区AQI和首要污染物的年季变化特征进行分析,采用综合污染指数法对空气质量进行了评价。结果表明:2017~2020年,空气质量为优良的天数呈逐年增加趋势,而轻度污染及以上等级的天数呈逐年减少趋势;煤炭能源总量消耗,私家车保有量,绿化覆盖率,第二产业占比和工业粉尘排放等因素影响了污染物的排放;空气质量总体上呈现"夏好冬差,春秋居中"的规律;秋冬季节的首要污染物主要为PM_(2.5),夏季的首要污染物主要为O_3;空气质量综合指数优良排序依次为2020年、2019年、2018年和2017年; 2017和2018年的空气质量等级为中度污染,2019和2020年的空气质量等级为轻度污染,空气质量有所改善,但需要继续加强治理。  相似文献   

6.
李琛  刘瑾  王彦民 《环境工程》2017,35(3):101-105
以西安市城区2014年1月1日至2015年12月31日空气质量监测数据和气象资料为基础,分析了气压对空气质量的影响及其空气污染特征。结果表明:AQI及各污染物浓度变化很好的拟合二次函数,且拐点横坐标均在7月前后。相关性分析表明:平均海平面大气压与SO_2、CO、NO_2、O_3呈现为显著正相关性,与AQI、PM_(2.5)、PM_(10)呈现为显著负相关。平均海平面大气压P对各污染物的影响在夏季最为强烈,而在春季和冬季最弱;P对O_3的形成存在较明显的影响。各污染物浓度和气象因素之间存在明显的共线性,PM_(10)主成分回归模型通过了显著性检验、拟合优度很好且无多重共线性。  相似文献   

7.
基于中国环境监测总站"全国城市空气质量实时发布平台"2014年和2015年的PM_(2.5)数据,探讨分析东北辽中南基地城市群PM_(2.5)污染特征。结果表明:研究期间鞍山和沈阳两市的PM_(2.5)污染最为严重,2014年和2015年的超标率分别为31.8%、35.6%和26%、34.5%;城市群PM_(2.5)浓度呈现出显著的冬高夏低、春秋平稳的基本特征,冬季均值高达70.4μg/m3,是一级浓度限值的2倍,而夏季均值低为31.6μg/m3;因人类活动对PM_(2.5)的影响,周末浓度高于工作日;2015年较2014年相比,PM_(2.5)在可吸入颗粒物中比重增加,对大气污染物的贡献显著,但从整体来看辽中南基地城市群的空气质量出现了明显好转。  相似文献   

8.
利用2013年1月—2015年12月南宁市区环境空气质量监测数据进行统计分析。结果表明,南宁市区空气质量指数(AQI)为17~245,平均值为74,超标率18.5%;AQI月平均变化呈双峰周期型。首要污染物项目出现频次由高到低的排序为:PM_(2.5)PM_(10)O_(3-8)NO_2,首要污染物为PM_(2.5)与PM_(10),两者占总数的91.3%;超标污染物有:PM_(2.5)、PM_(10)、O_(3-8)、NO_2,超标率分别为:17.8%、12.1%、1.4%、19.2%。PM_(2.5)、PM_(10)、NO_2、SO_2、CO、O_(3-8)质量浓度的日均值与AQI均存在显著的正相关关系,PM_(2.5)与AQI相关系数最大(r=0.988)。  相似文献   

9.
根据深圳市龙华区观澜子站空气质量监测数据,对龙华区近年来空气质量状况、主要大气污染物浓度时间变化特征、气象条件和污染物浓度相关性,以及典型臭氧(O_3)污染过程进行了分析。结果表明龙华区空气质量以优良为主,空气质量指数(AQI)超标日中,O_3浓度超标天数最多,其次依次是PM_(2.5)、PM_(10)和二氧化氮(NO_2)。PM_(2.5)、PM_(10)和NO_2在秋冬季的浓度最高,春季次之,夏季最低;而O_3浓度则在夏秋季最高,春季次之,冬季最低。除O_3(日间浓度高于夜间浓度)以外,PM_(2.5)、PM10和NO_2晚间浓度高于日间浓度。此外,相关性研究表明,颗粒物污染以细颗粒物为主,O_3(8 h)和NO_2与颗粒物浓度均呈正相关性。由于地域差异的存在,O_3(8 h)和颗粒物浓度的相关性在不同地域表现也不同。同时,大气污染物浓度与气象条件和人为排放源的相关性较高。  相似文献   

10.
本文应用WRF-CHEM模式模拟分析了关中地区2014年2月14日至16日的一次重污染过程。模式模拟了西安地区和宝鸡地区城市大气PM_(2.5)的时间变化和空间分布特征,较好地再现了污染过程。敏感性试验分析表明,关中盆地东部地区(西安市及其周边地区)形成的PM_(2.5)对盆地西部地区(宝鸡市及其周边地区)影响较大,贡献可以达到30%,其主要原因为盆地发生重污染时,盛行东风造成西安市及其周边地区形成的污染物向西输送,影响宝鸡市的空气质量。污染源分析表明,居民生活源是关中盆地在2月份最重要的PM_(2.5)源,贡献超过40%,交通运输源的贡献小于10%。因此在重霾情况下,限行机动车的作用很小。  相似文献   

11.
利用2014年3月-2015年2月6个空气质量监测点资料,对岳阳市区AQI的时空变化特征及气象影响因素进行了分析,并用综合指标法和逐步回归法建立岳阳市区AQI预报模型。结果表明:岳阳市区年AQI为88。夏季空气质量最好;春、秋季次之;冬季空气质量最差。其中7-9月空气质量最好,1-2月空气质量最差。岳阳市区空气质量总体由北向南趋好,同时水库、景区明显好于工业区。岳阳市区年空气质量优良率为73%。年和各季空气质量优良率时空分布与AQI分布基本一致。岳阳市区首要污染物以PM10为主,其次为PM_(2.5)。重度污染及严重污染日基本出现在空气质量相对较好的夏秋季节,且工业区明显多于水库、景区。岳阳市城市工业布局方向与年主导方向一致,使得市区广大区域处于工业气流的下游,导致空气污染加剧。以短期天气预报中的气象要素预报作为空气质量气象条件预报的基础,采用日平均气温、相对湿度、低云量、风速、降水、雾等气象因子建立的岳阳市区AQI预报模型模拟效果较好。  相似文献   

12.
PM_(2.5)作为大气污染的一种,正受到社会越来越广泛的关注和研究,但大部分研究仅单独分析各样点PM_(2.5)浓度时间维度或空间维度特征,忽略了PM_(2.5)的时空维度变化。为综合考虑PM_(2.5)时空维度特征,该文以山东省2014年PM_(2.5)浓度监测数据为对象,建立PM_(2.5)时空变异模型,利用时空克里格法对山东省全年PM_(2.5)浓度进行时空预测,得到时空分布立方体数据,最后基于该数据,对山东省PM_(2.5)污染特征作出分析。结果表明,2014年山东省整体PM_(2.5)污染严重。在空间上,中西部地区PM_(2.5)浓度超过75μg/m~3的天数超过290 d,存在持续性高危污染,东部小于37.5μg/m~3的天数超过146 d,存在间歇性轻微污染,且从西至东,PM_(2.5)污染天数和程度逐渐降低,具有明显地域性污染特征;在时间上,PM_(2.5)浓度最高时间段为1、2、11和12月,最低为6-8月,各季节污染程度依次为:冬季秋季春季夏季。研究表明时空地统计方法能够有效地对空气质量进行时空预测,是挖掘更多的时空分布特征和信息,进行环境数据分析的有效手段。  相似文献   

13.
基于深圳市2013年4月-2014年3月每日气象观测数据和空气质量监测数据,分析了深圳市不同空气污染程度下的天气规律及影响要素特征,并通过将天气系统分为13种类型,在寻求与建立不同天气类型情景下污染物(PM_(2.5)、PM_(10)、SO_2、NO_2、CO、O_3与AQI指数)变化函数的基础上,构建了天气形势预测模型对深圳市未来1~3 d空气质量进行预测。结果表明:(1)整体而言,低压系统和辐合区有利于深圳市大气污染物的扩散,而高压系统和均压区不利于大气污染物的扩散。(2)当深圳市出现轻度以上污染时,陆地一般由高压系统所控制,且深圳以处于高压前部分主。(3)天气形势预测模型对深圳市AQI指数的24、48、72 h预报相对误差分别为22.0%、22.2%与21.9%,该模型具有一定的准确率和可靠性,对空气质量预测具有较好的应用价值,可为空气质量预报预警提供科学的参考依据。  相似文献   

14.
以西安市为例,选取2017-06-01至2017-08-31的气象数据,研究空气污染物与气象参数之间的相关性,利用SPSS软件对与空气质量指数(AQI)相关的各项监测指标(PM_(2.5)、PM_(10)、CO、NO_2、O_3、SO_2)与温度、湿度和风级等气象条件进行分析,从相关性分析、线性模型分析等方面来探索西安市夏季空气污染物与气象参数之间的关系。得出结论如下:统计发现西安市夏季首要污染物以PM_(2.5)、PM_(10)和O_3为主;湿度对各项污染物均显著相关,O_3的相关系数最大为0.709;温度对PM_(2.5)、PM_(10)、O_3和CO显著相关,对SO_2和NO_2的影响不显著;风级只与CO显著相关。  相似文献   

15.
基于乌鲁木齐市7个检测站点实测数据(参照《环境空气质量标准》规定的6项常规监测污染物(PM_2.5、PM_10、SO_2、NO_2、CO、O_3)的24小时/8小时国家二级标准和AQI分级标准),对乌鲁木齐市2016年空气质量做变化趋势分析。结合乌鲁木齐市气象要素和城市发展数据对乌鲁木齐市空气质量影响因素做相关分析,然后利用层次分析法(AHP)对乌鲁木齐市环境空气污染时空分布特征的影响因素做评价分析。研究结果有:(1)乌鲁木齐市2016年1月,轻度污染天气占整月的3%、中度污染天气占26%、严重污染天气占32%、重度污染天气占39%;工业园区集中的米东区是乌鲁木齐市空气污染最严重的城区。(2)乌鲁木齐市的城区空气污染物因子和同期气象因素相关性显著;(3)重要污染物企业的空间分布对乌鲁木齐市空气污染空间分布起到绝对的影响作用。  相似文献   

16.
东北区域空气质量时空分布特征及重度污染成因分析   总被引:3,自引:2,他引:1  
东北已成为我国又一个霾污染多发和重发区域.采用2013~2017年东北区域大气污染物地面监测数据、卫星数据和气象数据等信息,探讨了中国东北地区空气质量时空分布特征与重度污染成因.结果表明,"沈阳-长春-哈尔滨"带状城市群是全年污染最严重的区域,空气质量指数(AQI)的空间分布具有明显的季节性,冬季污染最严重,春季吉林省西部周围为椭圆形污染区,夏季和秋季大部分时间空气质量最佳.3个典型的霾污染时期是10月下旬和11月上旬(即秋末和初冬,时期一),12月下旬和1月(即冬季最冷的时候,时期二),及4月到5月中旬(即春季沙尘和农业耕作期).时期一,季节性作物残茬焚烧和冬季采暖用煤燃烧产生的PM_(2.5)强排放是极端霾事件发生的主要原因(AQI 300);时期二,在最严寒月份里,重度霾污染事件(200 AQI 300),主要由燃煤和汽车燃料消耗的PM_(2.5)排放量高,大气边界层较低,以及大气扩散性差等共同引起;时期三,春季PM_(10)浓度较高,主要是由内蒙古中部退化草原的风沙和吉林省西部裸地的区域性扬尘传输造成的.同时,当地农业耕作本身也释放PM_(10),并提升了裸土的人为源矿物尘的排放强度.  相似文献   

17.
针对近几年来哈尔滨市空气污染问题,收集整理了2013年11月至2017年10月的气象数据及空气污染情况数据,分析了采暖季与非采暖季PM_(2.5)质量浓度变化情况以及空气质量级别的差别,并主要研究了采暖季PM_(2.5)质量浓度的变化特征及其与温度的相关性。结果表明,哈尔滨市每年的11月至次年10月的PM_(2.5)质量浓度总体呈U型变化趋势,采暖季与非采暖季空气质量差别明显;每年供暖初期,温度与PM_(2.5)的质量浓度呈显著的正相关性;煤炭燃烧和秸秆焚烧对哈尔滨市空气质量的污染影响较大。  相似文献   

18.
大气污染物PM_(2.5)对空气质量造成严重危害,威胁着人类健康。根据西安市13个监测区2013年1月1日—4月26日的PM_(2.5)质量浓度数据,得出西安市PM_(2.5)的浓度呈冬季高、春季低的特点。结合西安市的海拔数据、气象资料,并引入污染系数,分析得出了西安市13个监测区PM_(2.5)的浓度有以下规律:从西到东递减;分布与海拔高度和风向特点相一致;与平均温度、最高温度、最低温度均呈现负相关关系,但相关性不是很高。这为PM_(2.5)的针对性治理工作提供了理论指导。  相似文献   

19.
基于乌鲁木齐市大气污染物数据,对乌鲁木齐市2016年空气质量变化做趋势分析。利用乌鲁木齐市2016年同期气象要素,通过相关分析和主成分分析方法探讨了气象要素对PM_(2.5)浓度的影响。结果表明:1)PM_(2.5)、PM_(10)、SO_2、NO_2、CO的浓度全年变化趋势与空气质量指数(AQI)的变化趋势基本一致,O_3的浓度变化趋势与AQI变化趋势完全相反;2)PM_(2.5)浓度与CO、气压和相对湿度呈显著正相关,降水量、风速、气温和水气压与PM_(2.5)浓度呈显著负相关。  相似文献   

20.
本研究选择污染严重的北京作为研究区域,自2013年12月起至2014年12月,通过设在北五环中国环境科学研究院(CRAES)内的定点监测,获得375天有效平行样品(T和Q)。统计结果表明,2014年北京市PM_(2.5)质量浓度从优良水平的6.9μg/m~3到极重污染的422.1μg/m~3,年均浓度值在100μg/m~3左右。T组和Q组线性相关,但T/Q并非定值,冬季最高,R~2=0.974,对应T/Q=1.014,可能由于冬季污染程度较重,滤膜性能差异可忽略。除春季外,其它三季的PM_(2.5)都是T组>Q组,与石英膜的纤维结构不够致密有关。以T组质量浓度数据为准,与国控监测点奥体中心点公报的日均PM_(2.5)进行比对,结果显示二者基本同步,在春冬季呈现较高的污染浓度,在夏季最低。在严重污染时(PM_(2.5)>250.0μg/m~3),在线监测可能低估PM_(2.5)而T组能更客观地记录实际污染状况。统计2014年全年污染等级分布,4~8月份基本未出现重度污染,而在冬季采暖期10~12月份,优良天数不足50%。综合分析风速、相对湿度对PM_(2.5)质量浓度的影响,证实冬季取暖燃煤和无风、高湿、逆温的静稳天气是霾频发的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号