首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 268 毫秒
1.
为处理低碳源生活污水,以内碳源反硝化途径为出发点,开发了后置缺氧UCT分段进水工艺.该工艺仅在UCT分段进水最后一好氧段末端增加了后置缺氧环节,以强化微生物内碳源储存能力.在低C/N水平(平均进水C/N=3.1±1.5)的生活污水条件下,后置缺氧UCT分段进水工艺实现了平均75.3%的TN去除率,运行61d后同步硝化反硝化去除的氮量高达31.5%;运行40d后污泥内碳源储存水平比原工艺污泥提高12.2%,9小时比内源反硝化速率由零提高至5.56mgN/(gVSS×d),系统可通过好氧段同步硝化内源反硝化(SNED)提高TN去除率.污泥沉降性能有明显改善:SVI值由350mL/g降至97mL/g,而原UCT分段进水工艺污泥仍然膨胀.该工艺仅在原工艺基础上增加了一后置缺氧段,无需外加碳源和额外硝化液回流设施,有利于水厂升级改造.  相似文献   

2.
采用水解反硝化强化脱氮工艺,将水解酸化过程与反硝化脱氮过程相结合,研究此工艺对城镇低碳氮比废水的处理效果。实验表明,系统对COD、NH_4~+-N、TN的去除效果较为稳定,去除率分别为87.95%、99.42%、51.84%,出水COD及NH_4~+-N均优于国家一级A排放标准。当硝化液回流比为100%时,为最优工况,在进水C/N比为1时,系统对TN去除率为55.07%,去除量达45.43 mg/L;进水C/N比为0.82时,系统对TN去除率为50.45%,去除量达37.27mg/L。在C/N<1的条件下,系统仍然表现出较高的脱氮性能。对比水解池与后段A/O缺氧池的脱氮效果,水解池在反硝化脱氮能力及碳源利用率方面均优于缺氧段。  相似文献   

3.
为强化CMICAO(多点交替进水阶式A2/O)工艺的脱氮除磷性能,通过调整进水C/N〔ρ(CODCr)/ρ(TN)〕、进水端厌氧池和缺氧池的进水流量比对CMICAO工艺参数进行优化,考察其对氮、磷去除的影响. 结果表明:试验条件下,C/N的提高可增强SND(同步硝化反硝化)作用,氮的去除效果也随之提高,C/N≥7时,前好氧池同步硝化反硝化率达到61%,出水ρ(TN)≤9.0 mg/L;在相同工况下,较低的C/N下反硝化除磷现象更明显. 综合考虑,C/N在5~7范围内,可取得较好的整体脱氮除磷效果. 优化工艺进水碳源分配可提高碳源利用效率,氮、磷的去除效果受进水流量比的影响较大,当厌氧池和缺氧池进水流量比为2.0时,可强化缺氧池的反硝化除磷作用,TN和TP去除率分别为75%和92%,出水ρ(CODCr)、ρ(NH+4-N)、ρ(TN)和ρ(TP)分别为28.7、1.9、9.2和0.27 mg/L,通过优化实现了CMICAO工艺对氮、磷去除的强化.   相似文献   

4.
改进分段进水A/O生物脱氮工艺强化生物除磷   总被引:4,自引:1,他引:3  
王伟  彭永臻  殷芳芳  王淑莹 《环境科学》2009,30(10):2968-2974
采用分段进水A/O中试处理系统处理低C/N生活污水.为实现同步脱氮除磷,对分段进水A/O工艺进行改进并对改进前后系统的脱氮除磷效率进行评价.改进前分段进水A/O工艺平均TN去除率为66.52%,TP去除率为29.74%;改进后的分段进水A/O工艺不仅可以稳定地实现同步脱氮除磷,在三段进水比为0.45∶0.35∶0.20时,系统平均TP去除率达89.81%,且由于反硝化除磷的强化节省部分碳源,TN去除率达73.61%,比改进前提高7.09%.为验证不同阶段聚磷菌及反硝化聚磷菌在系统内的选择增殖情况,试验对不同运行阶段的活性污泥进行静态厌氧放磷、好氧及缺氧吸磷试验,结果表明,工艺经过改进后,聚磷菌及反硝化聚磷菌均得到较大程度地选择富集.采用改进工艺,污泥最大比好氧吸磷速率[P/(MLSS.t)]由2.34 mg/(g.h)提高到10.67 mg/(g.h),最大比缺氧吸磷速率由0.33 mg/(g.h)提高到2.81 mg/(g.h).  相似文献   

5.
进水C/N对A~2/O-BCO工艺反硝化除磷特性的影响   总被引:1,自引:0,他引:1  
采用厌氧/缺氧/好氧与生物接触氧化工艺组成的双污泥系统(A~2/O-BCO)处理实际生活污水.通过投加乙酸钠调节进水碳氮比(C/N=2.44~8.85),考察了系统的反硝化除磷特性.试验结果表明:进水有机物主要是通过改变硝化性能(即缺氧段反硝化负荷)以及聚-β-羟基链烷酸脂(PHA)的贮存和利用,进而影响系统的脱氮除磷效果.当进水C/N为4~5时,COD、TN和PO_4~(3-)-P去除率分别达到88%,80%和96%,实现了有机物、氮和磷的同步高效去除.碳平衡分析表明,A~2/O反应器去除的COD占去除总量的71.86%~77.28%,BCO反应器去除的COD仅占2%~12%,碳源的高效利用是A~2/O-BCO工艺在低C/N条件下实现深度脱氮除磷的重要原因.此外,通过进水C/N与曝气量、硝化液回流比、厌/缺氧反应时间等相关性的分析,提出了系统的优化运行策略.  相似文献   

6.
采用"微曝气+缺氧"的两段式多级土壤渗滤系统(multi-soil-layering system,MSL)工艺,建立了在缺氧段模块中添加不同碳源的MSL系统并进行脱氮效率对比.其中,MSL1系统添加了传统碳源木屑,MSL2系统添加了一种基于PHBV(聚羟基丁酸戊酸酯)的共混固相碳源(GC-4).通过10个月的连续运行,深入探讨碳源、水温、表面水力负荷等条件对该工艺脱氮性能的影响.整个运行过程期间不同条件影响下,添加新型固相碳源的MSL2比MSL1表现出更好的强化脱氮性能.在相同表面水力负荷(1.0 m3·m-2·d-1)条件下,水温的降低会直接降低系统的脱氮效率.当水温从平均19℃下降到15℃时,MSL1系统对NH+4-N、TN的平均去除率分别由91%、62%下降为81%、45%,MSL2系统对NH+4-N、TN的平均去除率分别由88%、72%下降为80%、55%,但MSL2系统仍然优于MSL1系统.水力负荷的降低会提高2个系统TN去除率大约20%,证明了低水力负荷利于系统的脱氮效果.在各个运行阶段,MSL系统添加固相碳源均没有出现碳源过度释放现象,表现出较好的COD去除效果.分子生物学研究揭示了两段式MSL系统中微生物、硝化菌、反硝化菌的功能分区及其丰度,在生物量和反硝化基因数量上MSL2均大于MSL1,硝化菌(amo A基因)集中分布在微曝气段,反硝化菌(nir S、nir K)集中分布在土壤模块层,比较好的解释了不同碳源类型条件下MSL系统的脱氮效果的差异性.  相似文献   

7.
流量分配对分段进水A/O工艺脱氮性能的影响   总被引:2,自引:0,他引:2  
采用分段进水A/O中试脱氮系统处理实际生活污水,为充分利用原水碳源,采用流量分配系数法对进水流量进行分配.在高、低负荷,进水COD/TKN分别为3、 5、 7、 9、 11、 13下,研究流量分配比对分段进水A/O工艺脱氮性能的影响.结果表明,在高负荷、低C/N(COD/TKN<5)下,按流量分配系数分配流量,会造成系统硝化容量浪费,导致氨氮去除效果下降.而在高负荷、高C/N(COD/TKN>9),由于首端氨氮负荷过高,氨氮不能完全氧化,导致后段反硝化电子受体不 足,造成系统碳源浪费,结果随C/N提高,总氮(TN)去除率却逐渐降低.而低负荷下,由于不存在硝化限制,系统TN去除率随进水C/N升高而升高,当C/N为13时,出水TN<2 mg/L,最高TN去除率可达976%.高、低负荷,不同C/N下的试验结果证明,高C/N污水(C/N>α),采用流量分配系数分配流量,可充分利用原水碳源,提高TN去除效率,但需保证各段硝化完全.而低C/N污水(C/N<α),C/N是决定TN去除率的关键因素,从保证硝化效果、利于硝化菌生长的角度考虑,不宜采用流量分配系数法分配流量,各段等负荷分配流量是一个可能的选择.  相似文献   

8.
采用连续流分段进水短程反硝化-厌氧氨氧化(partial denitrification-anaerobic ammonium oxidation,PD-Anammox)耦合反硝化工艺处理低C/N生活污水,研究了污染物去除、典型周期COD及氮素沿程变化特征、短程反硝化-厌氧氨氧化和反硝化对TN去除贡献。结果表明:在平均进水ρ(COD)、ρ(NH4+-N)、ρ(TN)为193.1,58.6,60.3 mg/L的条件下,系统出水平均ρ(COD)、ρ(NH4+-N)、ρ(TN)分别为46.3,1.5,13.4 mg/L,低于GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准。采用NO3--N预缺氧和进水点后置,可实现缺氧区NO3--N→NO2--N转化,同时完成厌氧氨氧化过程;缺氧区设置厌氧氨氧化悬浮填料,可提高系统TN去除率。通过缺氧区物料衡算,缺氧1区厌氧氨氧化对TN去除贡献率(ΔPD-Anammox/ΔTN)均值为54.37%,缺氧2区的ΔPD-Anammox/ΔTN均值为64.17%。  相似文献   

9.
采用生物膜反应器耦合包埋型单宁酸铁处理低C/N比废水,考察其脱氮性能,分析了生物脱氮过程功能菌群的变化,以及单宁酸铁强化脱氮的作用机制.结果表明,生物膜反应器耦合包埋型单宁酸铁,具有低C/N比废水高效脱氮性能.进水C/N比为1:2.7时,TN平均去除率可达80.0%,TN平均去除负荷为1.38kg/(m3·d).生物膜反应器内随着进水C/N比降低,优势脱氮过程从同步硝化-反硝化过程向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,厌氧氨氧化过程对TN去除的贡献率逐渐升高至76.2%,亚硝化菌群和厌氧氨氧化菌群成为优势生物脱氮功能菌群.包埋型单宁酸铁在生化处理后,通过吸附-催化氨氧化作用同步去除氨氮和亚硝酸盐氮,进一步提高TN去除性能.因此,耦合单宁酸铁强化生物膜反应器SNAD脱氮过程,是实现低C/N比废水高效脱氮新的有效途径.  相似文献   

10.
采用改良A2/O-BAF双污泥系统处理低C/N比生活污水,为提高碳源利用率,研究了两段进水(预缺氧段和缺氧段)对反硝化除磷脱氮的影响,同时根据COD的物料衡算公式,分析评价了不同进水比下,碳源的利用情况.结果表明当分段进水比为7:3时,平均进水COD、NH4+-N、TN、TP浓度分别为174.99、58.19、59.10、5.15 mg·L-1,出水COD、NH4+-N、TN、TP浓度分别为29.48、4.07、14.10、0.44 mg·L-1,去除率分别为82.12%、92.76%、75.45%、91.20%;系统中反硝化聚磷菌占聚磷菌的比例(DPAOs/PAOs)为98.81%,此时系统反硝化除磷脱氮最佳,同时碳源的有效利用率达85.77%,平衡百分比为92.33%.通过优化分段进水,碳源被有效利用,提高了同步脱氮除磷效率,为改良A2/O-BAF双污泥系统处理低C/N比污水提供理论依据.  相似文献   

11.
为解决传统土壤渗滤系统占地面积过大的问题,采用多级土壤渗滤系统和地下渗滤系统组合的新型两段式污水处理工艺,研究了在高水力负荷0.3m/d条件下分流比对其脱氮效果的影响,并通过实时定量PCR技术对不同层级的脱氮功能基因数量进行检测,进一步探究该系统中微生物脱氮机理.水质监测结果表明,分流措施可以显著提高两段式土壤渗滤系统在高负荷下的脱氮能力,当分流比为1:2时系统污染物去除能力最佳,对化学需氧量(COD)、总磷(TP)、氨氮(NH4+-N)、总氮(TN)的平均去除率分别达到91.16%、96.91%、72.11%和72.27%.脱氮功能基因丰度分析结果表明,多级土壤渗滤系统中的硝化及厌氧氨氧化和地下渗滤系统中的硝化反硝化的耦合作用是该工艺微生物脱氮的主要途径.  相似文献   

12.
脉冲SBR处理城市污水深度脱氮的工艺特性   总被引:3,自引:2,他引:1       下载免费PDF全文
采用脉冲式SBR法,对城市污水进行了深度脱氮试验研究.从理论上分析了进水次数和进水量对脉冲式SBR工艺运行特性的影响,得出了脱氮效率公式,并通过试验研究了这些因素对工艺运行的实际影响.理论分析表明,在不投加外碳源的情况下,随着进水次数的增加,脱氮效率依次增加.根据进水C/N的高低,进水方式可分为不等量递增进水、等量进水和不等量递减进水.试验表明,当原水中有机碳源充足时,不等量递减的进水方式相对于等量的进水方式投加较少的外碳源就能实现深度脱氮;随着进水次数的增加,外碳源的投量依次减少,但操作变得复杂,对于普通的城市污水建议采用3次等量的进水方式.采用脉冲式SBR只需投加少量外碳源就可以使处理后的城市污水出水TN低于2mg/L,TN平均去除率达到97.3%.  相似文献   

13.
传统反硝化工艺是非常有效的废水脱氮技术,具有反应快、效率高等优点,但受废水中有机碳源浓度影响较大.废水中碳源不足不能满足生物反硝化脱氮的需求且会导致总氮(TN)去除率偏低,而投加外源有机碳源会提高处理成本,极易造成二次污染,因而传统反硝化工艺对低碳氮比(C/N)废水脱氮处理具有一定局限性.铁型反硝化脱氮技术作为自养反硝...  相似文献   

14.
间歇曝气MBR处理低碳高氮磷城市生活污水研究   总被引:4,自引:0,他引:4  
李旭东  何小娟  邱江平 《环境科学》2008,29(6):1533-1537
采用间歇曝气膜生物反应器对低碳高氮磷型城市生活污水进行了处理研究.结果表明,在水力停留时间12h、曝气/停曝周期30min/60min和不排泥的运行条件下,可去除90%以上的COD、接近100%的氨氮和80%以上的总氮,但系统对磷基本无去除能力.系统内硝化作用完成得快速且充分,而反硝化作用则是总氮去除的限制性步骤.试验还发现,膜污染速率与反应器内污泥浓度呈正线性关系,污泥浓度越高,膜污染速率越大.  相似文献   

15.
应用A/O中试装置处理实际生活污水,研究了低DO浓度下系统对有机物、氨氮和总氮的去除效果.研究结果表明,低DO浓度下COD和氨氮的平均去除率分别为85%和92%.由于进水C/N比仅为2.93,总氮平均去除率仅为64%,但提高亚硝酸氮积累率可以提高总氮去除率,当亚硝化率从15%增加到85%,总氮去除率将增加12%.氨氮去除率和硝化速率、总氮去除率具有较好的相关性.维持低DO浓度可以实现亚硝酸型同步硝化反硝化反应,基于氮的物料平衡可知它占系统总氮去除率的5%~12%,增加DO浓度将破坏同步硝化反硝化(SND)现象.  相似文献   

16.
3BER-S耦合脱氮系统运行特性研究   总被引:6,自引:0,他引:6       下载免费PDF全文
为了强化三维电极生物膜脱氮工艺(3BER)的脱氮效果,将3BER与硫自养反硝化技术耦合成3BER-S工艺,用于低碳氮比城市污水厂尾水的深度脱氮处理.与3BER对比研究结果表明,3BER-S工艺在TN去除率、系统pH平衡能力和NO2--N积累方面均优于3BER工艺;当进水C(NO3--N)= 35±2mg/L,TOC:N:P=10.7:10:1,pH=7.0~7.5时,3BER-S耦合工艺对TN和NO3--N的去除效率分别为85%和94%,分别比3BER高15%和10%;出水中NO2--N的浓度为3.04mg/L,比3BER低2mg/L.3BER-S中硫自养反硝化作用定量分析表明,硫自养脱氮作用在整个脱氮过程中所占比例为14.07%,单质硫的有效利用率达到79.5%,硫自养反硝化过程对稳定3BER-S系统出水pH值起重要作用.根据3BER-S中微生物基于反硝化细菌特异性基因nirS的克隆文库结果,系统中反硝化细菌都与β变形菌纲中的细菌有较高的同源性,其中61.41%的反硝化细菌属于陶厄氏菌属(Thauera);脱氮硫杆菌和嗜酸菌属(Acidovorax)分别占3.50%和19.30%.表明当碳源比较充足时,3BER-S工艺的脱氮作用主要以异养反硝化过程为主,以单质硫和氢为电子供体的自养反硝化脱氮作用也占有一定比例.  相似文献   

17.
碳源的选择及曝气量的控制是影响多级土壤渗滤系统(multi-soil-laying,即MSL)脱氮效果的重要因素.试验采用BAF+MSL两段式新型组合工艺,避免了传统MSL曝气过量抑制反硝化脱氮的风险.考察了不同水力负荷下,BAF+MSL对生活污水的净化效果,并比较研究了以聚丁二酸丁二醇酯(PBS)为反硝化碳源的MSL-1及木屑为碳源的MSL-2的脱氮除磷效果.结果表明,不同水力负荷下,系统对SS平均去除率为94.08%,对COD的去除率均在80%以上,出水COD在20mg·L-1以下.水力负荷对系统BAF段硝化性能影响较小,对MSL反硝化脱氮影响较大.BAF水力负荷为0.5、1及2m·3m-·2d-1时,BAF对NH4+-N的去除率均在90%以上,对TN的平均去除率依次为26.53%、11.09%、5.71%;对应MSL段水力负荷分别为0.25、0.50及1m·3m-·2d-1时,MSL-1对TN平均去除率分别为87.39%、65.09%、45.56%,MSL-2平均去除率依次为61.51%、42.52%、31.32%.MSL-1脱氮性能明显优于MSL-2,而两者除磷效果区别较小.随着水力负荷增大,MSL对TP去除率依次降低,MSL-1对TP平均去除率最高为91.97%.  相似文献   

18.
序批式移动床生物膜反应器内同步短程硝化反硝化的控制   总被引:6,自引:1,他引:5  
在序批式移动床生物膜反应器(SBMBBR)内,对进水COD较低的条件下,模拟生活污水的亚硝化及脱氮性能进行了研究.结果表明,缺氧时间、进水COD、NH44 -N浓度、pH值以及溶解氧对亚硝化过程有明显影响.在进水COD为100mg·L-1NH4 4-N浓度为50mg·L-1时,调控溶解氧、pH,出水的亚硝化率可到99.7%,总氮去除率可达66.4%,表明系统中发生了同步短程硝化反硝化.  相似文献   

19.
复合碳源填料反硝化脱氮及微生物群落特性   总被引:4,自引:0,他引:4  
为探讨低碳氮比污水厂尾水的深度脱氮技术,以碱处理玉米芯、零价铁和活性炭组成的复合碳源作为填料,考察反硝化生物脱氮滤柱的运行效果,并借助Miseq高通量测序技术对滤柱生物膜的微生物群落组成和结构进行解析.结果表明,复合碳源填料进行反硝化脱氮时,能有效的被微生物利用并获得较高的TN去除率.在温度为28℃左右,反硝化滤柱进水NO3--N浓度为20~30mg/L、HRT=7.7h时,TN去除率可达到95%以上,出水TOC在15mg/L左右;微生物在属水平进行聚类分析结果表明,生物膜中与反硝化作用有关的菌属和与纤维素降解有关的菌属分别占已知菌属的40.35%和29.04%.因此,污泥中反硝化作用菌属和纤维素降解有关的菌属的大量存在,为复合碳源填料高效反硝化作用提供了可能.  相似文献   

20.
利用三段A/O工艺作为发制品产业集聚区综合废水生物处理单元,探讨了不同进水流量分配比和污泥回流比下COD、TN、PO43--P的去除性能和微生物群落特征.结果表明,在进水流量分配比60%:25%:15%、污泥回流比75%、缺氧区与好氧区容积比1:1、SRT 20d、HRT 16h条件下,三段A/O工艺处理综合废水后出水TN平均浓度14.85mg/L,COD浓度低于40m/L;此时PO43--P去除率达到最大值,为56.21%.参与处理综合废水的主要门水平微生物Proteobacteria和Bacteroidetes的相对丰度是45.63%~60.13%和16.65%~30.55%.Denitratisoma、Thauera、uncultured-f-Saprospiraceae和Sulfuritalea等优势菌属相对丰度的增加,是三段A/O工艺TN去除率随第一分段进水流量分配比增大或污泥回流比降低而提高的本质体现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号