首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
光合细菌PSB-1D对2-氯苯酚的降解特性研究   总被引:2,自引:2,他引:0  
胡筱敏  董怡华  李亮  卢娟  和英滇  高阳 《环境科学》2010,31(7):1672-1678
从农药厂排污口下游底泥中分离筛选出1株可降解2-氯苯酚的光合细菌PSB-1D,经过菌落形态特征、细胞形态特征、生理生化特性实验和特征吸收光谱扫描分析后,初步鉴定该菌株为红假单胞菌(Rhodopseudomonas sp.).PSB-1D生长和2-氯苯酚降解关系实验结果表明,该菌能在含2-氯苯酚(50mg/L)的PSB液体培养基中降解2-氯苯酚,培养7d后降解率可达57.26%.进一步实验研究表明不同供氧光照组合、培养基初始pH值、温度、光照度等环境因素对PSB-1D生长和降解2-氯苯酚效果的影响较为显著.在初始pH值为7.0,培养温度为30℃,光照度为4000lx的条件下,将PSB-1D置于含2-氯苯酚质量浓度为50mg/L的PSB培养基中厌氧光照培养7d后,2-氯苯酚降解率可达到62.08%.在此基础上采用Andrews方程对PSB-1D降解2-氯苯酚的动力学过程进行拟合.结果表明PSB-1D降解2-氯苯酚符合高浓度底物抑制的酶促反应类型,其降解动力学参数为rmax=0.309d-1,Km=2.733mg/L,Ki=230.15mg/L.  相似文献   

2.
皮氏罗尔斯通氏菌DX-T3-01苯酚降解特性及动力学   总被引:1,自引:0,他引:1  
筛选自德兴铜矿对重金属Cd2+有较强抗性的皮氏罗尔斯通菌DX-T3-01菌株,经驯化发现其对苯酚也有较强的降解能力。通过正交实验确定了该菌株苯酚降解最佳条件为:30℃、pH 7.0、转速150 r/min、接种量1%(V/V),并探讨了外加碳源和重金属对苯酚降解的影响。在最佳苯酚降解条件下,初始苯酚浓度为500 mg/L的苯酚经56 h后可降解至检测限,最高可降解苯酚浓度为800 mg/L。当初始苯酚浓度300~600 mg/L时,菌株降解苯酚的动力学过程符合Monod零级反应模型。  相似文献   

3.
研究了Bacillus cereus WTXJ1-16优势降解菌在不同降解时间、接种量、降解温度、初始pH和转速下对2,4,6-三氯苯酚(2,4,6-TCP)的降解特性,初步考察了优势降解菌-光照-铁矿粉联用下对2,4,6-TCP的降解效果。结果表明:浓度为10~8~10~9cfu/m L的WTXJ1-16菌株对初始浓度为100 mg/L的2,4,6-TCP废水的适宜降解条件是接种量为8%(体积分数)、37℃、初始pH 7.5、转速150 r/min和降解60 h。优势降解菌-光照-天然铁矿粉联用实验结果表明,有菌有矿组中光照和黑暗条件下的2,4,6-TCP降解率分别为68.6%和49.4%,比有菌无矿组高出10.3,6.3个百分点,比有矿无菌组高出了60.4,43.0个百分点,说明优势降解菌-光照-天然铁矿粉联用对高浓度2,4,6-TCP废水具有良好降解效果,光照和矿粉对WTXJ1-16优势降解菌具有协同促进作用。  相似文献   

4.
从本溪市某焦化厂的活性污泥中分离驯化得到一株高效苯酚降解菌C1,初步鉴定为假单胞菌。该菌能在以苯酚为唯一碳源的无机盐培养基中生长,且最高可耐受2 000 mg/L的苯酚。对该菌降解性能研究表明,该菌具有较强的苯酚降解能力,在苯酚浓度为400 mg/L、30℃、pH值7.0、摇床转速120 r/min、接种量5%的条件下,培养24 h后苯酚降解率可达99%以上。葡萄糖对该菌体的生长及苯酚降解能力均有一定的影响;低浓度(0.5 g/L)葡萄糖可以提高该菌对苯酚的降解速率。  相似文献   

5.
以接种驯化的活性污泥为生物强化手段,通过摇瓶反应模拟生物泥浆反应器的运行,研究了受氯酚污染土壤的修复特性。结果表明,接种驯化的活性污泥可以大大加快邻氯苯酚(2-CP)的降解速率,对2-CP初始污染浓度为500mg/kg干土的土壤,接种1%活性污泥(w:w)后反应11h降解率即可达到96.4%。最适的反应条件为:活性污泥接种量1%,水土比2:1,温度25℃,摇床转速200r/min。2-CP的降解符合表观一级动力学方程;且当初始浓度为50~500mg/kg干土时,2-CP降解速率常数随着初始浓度的增大而减小。  相似文献   

6.
从污水处理厂活性污泥中分离筛选出一株高效苯酚降解菌L5-1,经菌落形态观察和16S rDNA基因测序,结果表明菌株L5-1为蜡样芽胞杆菌(Bacillus cereus),美国国家生物信息中心(NCBI)的注册号为MN784421.将苯酚设置为唯一碳源,对其生长和苯酚降解特性展开研究.结果表明:菌株L5-1在10%接种量、温度30~35℃、pH值7~8的条件下,均能高效降解培养基中苯酚(培养基体积为100mL,初始苯酚浓度为500mg/L,14h时降解率>93%).而在最优降解条件下(10%接种量,培养温度为35℃,pH值7.0,NaCl浓度为1%),初始苯酚浓度为500mg/L,菌株在14h内的苯酚降解率可达97.1%;而当初始苯酚浓度为1000mg/L,菌株也可在46h内达到97.71%的降解率.运用Haldance方程动力学模拟菌株在不同浓度苯酚下的生长过程,其最大比生长速率为0.355h-1,半饱合常数104.27mg/L,抑制常数为322.83mg/L,R2=0.997.菌株L5-1为目前已报道的Bacillus菌属中降解苯酚能力较强的菌株,为实际处理含酚废水中提供理论参考.  相似文献   

7.
纳米四氧化三铁对2,4-D的脱氯降解   总被引:8,自引:4,他引:4  
方国东  司友斌 《环境科学》2010,31(6):1499-1505
采用纳米四氧化三铁(Fe3O4)降解水溶液中的2,4-二氯苯氧乙酸(2,4-D),考察了2,4-D初始浓度、纳米Fe3O4投加量、溶液pH和温度等因素对2,4-D降解率的影响.结果表明,纳米Fe3O4对2,4-D有显著的降解效果,初始浓度为10 mg/L的2,4-D, 48 h内降解率可达48%.纳米Fe3O4对2,4-D的降解是一个还原脱氯过程,反应体系中氯离子浓度随2,4-D浓度降低而升高.LC/MS分析表明,2,4-D降解的主要产物是苯酚,其他中间产物是2,4-二氯苯酚(2,4-DCP)、4-氯苯酚(4-CP)和2-氯苯酚(2-CP).溶液中2,4-D的降解符合准一级反应动力学,产物4-CP、2,4-DCP和苯酚的反应速率常数K分别为0.0043、0.0026和0.0032 h -1.环境条件对降解效率有显著影响,2,4-D初始浓度在0~10 mg/L、纳米Fe3O4投加量0~300 mg/L的范围内,2,4-D降解率随初始浓度和纳米Fe3O4投加量的增加而增大;pH对2,4-D的脱氯降解有显著影响,在pH为3.0时,纳米Fe3O4对2,4-D的还原脱氯效果最好;温度升高,可以提高脱氯反应速率.  相似文献   

8.
丁二腈高效降解菌的筛选及其降解性   总被引:2,自引:0,他引:2  
以丁二腈为唯一碳源和氮源,从石化腈纶废水及其处理构筑物的生物膜中,分离、筛选出2株高效降解丁二腈的菌株:J-1-3和J-13-1.经形态学观察和生理生化特征研究,两者均被鉴定为假单胞菌(Pseudomonas spp.).通过摇瓶试验得出2菌株的最适生长条件:温度为30℃,摇床转速(间接反映通气量)为250 r/min,接种量为0.1%,初始pH为6.在最适生长条件下,分别对不同初始浓度丁二腈进行降解率试验.结果表明,2菌株对丁二腈的降解能力强,尤以J-13-1更为显著.当丁二腈的初始浓度约为6000mg/L、8000mg/L和10000mg/L时,J-13-1菌株对丁二腈的降解率分别在12.5h、14h和16h时达到100%.  相似文献   

9.
李轶  雷洪 《环境科学》2009,30(10):3007-3010
悬浮生长的Pseudomonas putida菌可以苯酚为生长基质,通过该细菌的共代谢过程将4-氯酚降解.当苯酚和4-氯酚的浓度达到120 mg/L和600 mg/L时,由于基质对细菌的抑制作用,该共代谢过程难以进行,细菌不能生长.通过对细菌在中空纤维膜反应器中固定化,细菌可以降解高浓度的四氯苯酚,即使当苯酚和4-氯酚浓度为200 mg/L和1 000 mg/L时,利用此中空纤维膜固定化细菌反应器仍可在34 h内都能将其完全降解.与悬浮生长降解菌不同,由于基质在中空纤维膜中质量传递的受限,固定化后的细菌受到中空纤维膜的保护,从而得以生长并降解高浓度的基质.  相似文献   

10.
高效复合菌群JHD降解苯酚的特性及其动力学研究   总被引:7,自引:1,他引:6  
为了获得能降解苯酚的高效微生物菌群,研究了不同条件(温度、pH、接种量、振荡速率及初始苯酚浓度等)对复合菌群JHD降酚性能的影响.结果表明,32℃、pH=7.0、接种量为10%和振荡速率为150 r·min-1,初始苯酚浓度为1000 mg·L-1时降解苯酚16 h,降酚率高达99.97%,残余苯酚浓度低于0.28 mg-L-1,远低于国家一级排放标准.采用Andrews方程对复合菌群JHD降解苯酚的过程进行拟合,其动力学参数为qmax=0.41 h-1,K=55.44 mg·L-1,Ki=970.06 mg·L-1,复合菌群JHD降解苯酚的最佳初始苯酚浓度为231.90 mg·L-1,实验数据与该动力学方程拟合较好.  相似文献   

11.
从污染土样中分离出一株多氯联苯(PCBs)降解菌,利用细菌通用引物扩增降解菌的16S rDNA,得到~1 500 bp的片段。经纯化,测序后在Genbank上进行同源性比较分析及系统发育树构建,初步鉴定该菌株为Pseudomonas sp,并用其对PCB77进行降解研究。研究结果表明,该菌株在培养2 d后达到对数生长期,当培养温度为30℃、培养基pH值为7.0、微生物接种量为109cfu/mL、PCB77初始浓度为1.0 mg/L时,微生物对PCB77的降解率为58.63%。微生物对PCB77降解的最适条件为:培养基pH值为7.0、微生物接种量为2×109cfu/mL、外加蔗糖浓度为2.0 g/L、PCB77初始浓度为0.5 mg/L。  相似文献   

12.
为提高辛基酚聚氧乙烯醚(OPnEO)的生物降解效果,在本实验室已筛选出的H1、TXBc10、OPQb11、TXBa23四株OPnEO高效降解菌的基础上,首次从构建OPnEO混合菌的角度,着重探究了四菌株等比例不同组合降解OPnEO的效果.结果表明,混合菌L9(H1:TXBc10:TXBa23为1:1:1)培养7d后对初始浓度500mg/LOPnEO的降解率最高,达到56.44%,比各单一菌株降解效果有较明显提高.运用单因素试验考察了影响L9的相关因素,初步确定L9降解OPnEO的最适外加碳源和氮源分别为葡萄糖和胰蛋白胨,最适初始pH值为7.0,最适温度为28℃,最适接种量为4%.Plackett-Burman试验筛选获得影响OPnEO降解率的3个显著因子为L9接种量、温度及初始pH值.最陡爬坡试验逼近3个显著因子的最大响应区域,采用Box-Behnken试验设计及响应面法分析,确定L9的最优降解条件为50mL反应体系中接种量4.16%、温度28.20℃、初始pH值7.13、葡萄糖与胰蛋白胨浓度均为2%、OPnEO初始浓度500mg/L、180r/min培养7d,该条件下混合菌L9对OPnEO降解率达62.15%,比未优化条件提高了5%左右.  相似文献   

13.
苯酚是造纸、塑料、农药、医药合成等行业生产的原料或中间体。随着经济的发展,未经处理的含酚废水对人类的生存环境已经造成了严重的威胁。利用微生物降解的方法处理含酚废水是一种经济有效且无二次污染的方法。论文通过从被苯酚废水污染的污泥和污水中进行筛选细菌,得到11株耐受菌和降酚菌,在以苯酚为单碳源的培养上筛选降酚菌,通过药物培养得到7株高效降解酚菌。选择8号菌为研究菌种,进一步测定苯酚降解的影响因素。考察了温度、pH值、苯酚初始浓度、接种量对苯酚降解的影响。得出该菌的最适温度为30℃,最适降酚pH为8.0~9.0,最适初始苯酚浓度为200—240mg/L,最适接菌量为10%~15%。通过对8号菌降解苯酚的应用价值进行研究,得出8号菌的苯酚降解率可达到90.01%,耐酚浓度可达1.6g/L。  相似文献   

14.
固定化优势菌种降解2,6-二叔丁基酚   总被引:11,自引:0,他引:11       下载免费PDF全文
 用海藻酸钙包埋固定优势降解菌(Alcaligenes sp.)降解 2,6-二叔丁基酚(2,6-2DTBP).结果表明,菌株经固定化包埋后,降解底物 2,6-DTBP的能力大大提高,在 100.0mg/L 的初始浓度下其降解率在 12d 可达到 86%.与未固定菌株相比,固定化菌株对 pH 值和温度的适应范围更宽,对底物具有更高的降解能力.对固定化菌株的降解反应过程进行动力学分析,该降解反应符合一级动力学特征,其动力学常数为 0.1519,半衰期为 4.56d.扫描电镜观察到菌种在海藻酸钙包埋载体中能良好地生长和繁殖.  相似文献   

15.
亚硝酸盐降解菌的分离鉴定及其降解特性   总被引:2,自引:0,他引:2  
从活性污泥中分离得到一株能以亚硝酸盐为唯一氮源生长的异养硝化细菌53,根据其形态、生理生化特性以及16S rRNA基因序列相似性分析结果,将其初步鉴定为假单胞菌属(Pseudomonas sp.)。研究了亚硝酸盐的初始浓度、pH、温度、接种量4个影响因素对菌株53降解亚硝酸盐效果的影响,确定了最适降解条件。结果表明,该菌株在亚硝酸盐浓度10 mg/L、培养温度30℃、pH为8.0、接种量5%条件下,接种24 h后对亚硝酸盐的降解率达到94.8%以上。在亚硝酸盐质量浓度为5mg/L的10L污染水体模拟实验中,按1%的接种量接入53发酵菌液(A600nm≈0.4),在30℃的水温条件下经4 d,53菌株对亚硝酸的降解率可达96.52%,处理后水体中亚硝酸盐的含量能达到养殖水体标准。表明该菌株对污染水体中的亚硝酸盐具有较强的降解效果。  相似文献   

16.
pH和DO对好氧颗粒污泥去除高氨氮废水的影响研究   总被引:1,自引:0,他引:1  
研究使用SBR成功培养的结构紧密、外形规则,具有良好脱氮性能的成熟好氧颗粒污泥处理高浓度氨氮废水,并探讨pH和DO对其处理效果的影响,旨在为工程实践提供理论依据。通过人工模拟废水,以蔗糖作为唯一碳源,NH4Cl为氮源,将进水NH4+-N浓度由300 mg/L逐步提高至900 mg/L,相应的NH4+-N负荷由0.6 kg/(m3.d)提高至1.8 kg/(m3.d),考察pH和DO对其处理效果的影响。研究结果表明:当控制反应器pH为8.0,曝气量为75 L/h时,好氧颗粒污泥脱氮的效果最好,氨氮去处率分别为96.70%9、2.33%。由于运行过程中每隔15 min监测每个反应器pH值,使其维持在各自pH值7.0±0.1范围内。这种酸碱度环境对异养菌等微生物并没有产生抑制作用;因此在各pH条件下,COD去除的所需时间和去除率基本没有差别。在不同的DO下,COD在初始的60 min里降解速度有明显区别。曝气量为150 L/h时,COD的降解速度最快,但是曝气量过大颗粒污泥内部厌氧区被压缩,因此选择最佳的曝气量为75 L/h。  相似文献   

17.
一株氯苯优势降解菌的降解条件优化   总被引:1,自引:1,他引:0  
以氯苯降解率为降解效果指标,以降解温度、初始pH、降解时间、接种量和氯苯初始浓度为影响因素,对实验室保藏的一株氯苯优势降解菌株Lysinibacillus fusiformis LW13降解氯苯的降解条件进行优化。单因素试验结果表明,该降解菌株对氯苯的适宜降解条件分别为:温度20~40℃,pH为8.0,降解时间4 d,接种量2%~4%,氯苯初始浓度60~140 mg/L。以降解温度、氯苯初始浓度和接种量这三个显著影响因素进行正交试验,结果表明各影响因素的主次顺序为降解温度>氯苯初始浓度>接种量,最佳降解条件为降解温度35℃、氯苯初始浓度100 mg/L和接种量4%,最佳降解条件下氯苯降解率可高达93.8%。  相似文献   

18.
碳氮源对光合细菌混合菌群产氢性能的影响   总被引:1,自引:0,他引:1  
碳源和氮源是产氢光合细菌生长发育过程中不可缺少的营养物质,与光合细菌菌株产氢能力相关。以从花园土壤中富集分离出来的光合细菌混合菌群为研究对象,在血清瓶中于30℃下采用厌氧培养方式间歇培养8天,分别考察不同的碳源、氮源、碳氮源组合及其浓度变化对光合细菌产氢行为的影响。结果表明,碳氮源种类对光合细菌产氢能力有显著影响,与氮源相比,碳源对产氢量的影响更为显著,最佳碳源为葡萄糖,最佳氮源为草酸铵。最佳碳氮源组合为葡萄糖和谷氨酸钠组合,葡萄糖和谷氨酸钠浓度分别为3g/L和1g/L时,产氢量和最大产氢速率分别达41.35mLH2/(L-培养基)和0.328mLH2/(L-培养基·h)。研究结果为进一步探索产氢光合细菌生长的营养生理奠定了基础,对大规模培养条件的优化提供了依据。  相似文献   

19.
苯醚甲环唑降解菌B2的分离、鉴定及其降解特性   总被引:4,自引:1,他引:3       下载免费PDF全文
从长期生产苯醚甲环唑的农药厂污泥中分离到1株能以苯醚甲环唑为唯一碳源生长的细菌,命名为B2.根据其生理生化特征和16S rRNA基因序列相似性分析,将该菌株鉴定为剑菌属(Ensifer sp.).菌株B2在24h内降解100mg/L的苯醚甲环唑的效率达85%以上.该菌株降解苯醚甲环唑的最适pH值为7.0,最适温度为30~35℃,降解速率与初始接种量呈正相关,与初始农药浓度呈负相关.基础盐培养基中,B2对初始浓度>400mg/L的苯醚甲环唑几乎无降解作用.  相似文献   

20.
利用太阳光与固定床型光反应器处理有机废水的研究   总被引:9,自引:0,他引:9  
自制了一种模拟工业处理废水的光催化反应器。该反应器将TiO2固定在玻璃板上,以太阳光为光源,以邻氯苯酚为处理对象,研究了邻氯苯酚水溶液光降解的可行性。结果表明,在实验条件下,该系统能对邻氯苯酚水溶液进行有效的光解。光照60分钟后.其降解率可达87%。此外还探讨了流速、邻氯苯酚溶液初始浓度和初始pH值对光解反应的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号