首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
芜湖市沉积物-水体PAHs扩散行为研究   总被引:1,自引:0,他引:1  
为研究芜湖市不同功能区景观水体多环芳烃(PAHs)在沉积相-水相之间的扩散行为,于2017年2月选择芜湖市25处景观水体采集沉积物和水样品,对美国环保署(EPA)列为优先控制污染物的16种PAHs进行检测,运用逸度方法、响应系数进行分析.分别考虑有机碳(OC)、BCCTO(化学热氧化法测定的黑碳)和BCCr(湿化学氧化法测定的黑碳)在不同浓度(实测值、最低值、平均值、最大值)情况下对PAHs在沉积相-水相间扩散的影响.结果表明,中低环(2~4环)PAHs表现出向水相扩散,沉积物作为PAHs的二次污染源,高环(5~6环)PAHs表现出向沉积相扩散,沉积物作为PAHs的汇;随着OC和黑碳(BC)含量的增加,PAHs倾向于向沉积相扩散,且倾向程度是BCCr > BCCTO > OC,表明BC在PAHs的沉积物-水扩散过程中起重要的作用.响应系数结果表明中低环PAHs的逸度分数(ff)对OC、BCCTO和BCCr浓度变化的敏感度较弱,高环PAHs的ff对OC、BCCTO和BCCr浓度变化的敏感度较强,且敏感度强弱依次是BCCr > BCCTO > OC.沉积相-水体的扩散过程研究揭示了PAHs在水环境中迁移扩散的重要机理,可为环境污染的科学治理提供依据.  相似文献   

2.
沉积物-水体界面处分子扩散是污染物的一个重要地球化学过程,也是判断沉积物是否为上层水体中污染物汇或源的主要依据.本研究利用低密度聚乙烯膜(LDPE)为吸附相的原位被动采样器,同步确定了巢湖西半湖南淝河入湖口处不同深度的上层水体和沉积物孔隙水中13种多环芳烃(PAHs)浓度,并计算了它们在沉积物-水体界面的分子扩散通量.结果表明,3种性能参考化合物(PRCs)在上层水体中的解析速率较沉积物孔隙水中大,相应地,水体中LDPE膜对PAHs的吸附速率高于沉积物孔隙水.水体中13种PAHs总浓度(130~250 ng·L~(-1))低于沉积物孔隙水(180~253 ng·L~(-1)),且均以低环PAHs为主.2~3环PAHs浓度在上层水体中无明显的垂直变化,但4~6环PAHs浓度呈现随深度增加而降低的趋势.沉积物孔隙水中PAHs浓度的垂直变化规律反映了历史强排放过程.研究区域PAHs在沉积物-水体界面的交换通量变化范围为-384~1445 ng·m~(-2)·d~(-1),除Flu和Pyr外,其它PAHs均从沉积物向水体释放,反映了底部沉积物是上层水体中PAHs的重要二次污染源.  相似文献   

3.
本文研究了象山港多环芳烃(PAHs)在沉积物-海水中的分布特征,于2017年1月对港口9个采样点的沉积物和海水中16种优先控制PAHs进行分析,采用同分异构比值法和逸度方法进行来源分析和扩散行为研究。沉积物中PAHs范围为17.51×10–9~84.41×10–9,主要为高环PAHs,处于轻度污染等级。沉积物中多环芳烃主要来自高温燃烧源。表层水体、中层水体和底层水体中PAHs范围分别为41.78~105.72 ng/L、41.51~106.34 ng/L和9.18~145.17 ng/L,主要由低环PAHs组成。表层水体中PAHs主要来源于石油泄漏和石油燃烧。利用逸度系数判断PAHs扩散行为,萘(Nap)、苊(Ace)和芴(Flo)由沉积物向海水释放;苊烯(Acy)、菲(Phe)、蒽(Ant)和芘(Pyr)在沉积物和海水中处于动态平衡;荧蒽(Flu)、苯并[a]蒽(BaA)、?(Chr)和苯并[b]荧蒽(BbF)主要从海水向沉积物扩散并富集。  相似文献   

4.
松花江干流PAHs的底泥-水交换行为及时空异质性   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解松花江干流底泥和水体中PAHs(多环芳烃)的环境分布行为,应用逸度方法研究了松花江中PAHs的底泥-水交换行为及时空异质性特征. 结果表明:KOW(辛醇-水分配系数)影响PAHs的底泥-水交换行为,并与底泥-水交换的ff(逸度分数)呈显著负相关(R=-0.801,P=0.000),而ff与PAHs的溶解度则呈正相关(R=0.499,P<0.05);高环PAHs的底泥-水交换行为受w(OC)变化的影响较为强烈,w(OC)每提高0.10%,2~6环PAHs的ff降低0.7%~11.0%;春季PAHs的底泥-水交换的ff大于夏季. 低环的Nap(萘)表现出明显的由底泥向水体的迁移行为,Phe(菲)和FlA(荧蒽)几乎接近于平衡状态,而高环的BaP(苯并芘)和BgP(苯并苝)则相反. 夏季PAHs的大气传输及本地排放源的沉降,可能为松花江干流PAHs的主要来源;汇入支流的输入可视为主干河流水体中污染物的另一来源. 水体中2~4环PAHs处于中等变异,5~6环PAHs则表现为强变异;底泥中3~4环PAHs处于中等变异,而其他环数PAHs则呈强变异. 从季节性变化来看,夏季底泥中PAHs的CV(变异系数)相对较大,而春季水体中PAHs的CV则略大于夏季. 研究显示,PAHs物理化学性质的差异,水体中悬浮颗粒物和底泥中w(OC),以及外源性PAHs的输入,均会使不同环数PAHs在水体和底泥中的CV产生较大差异.   相似文献   

5.
《环境科学与技术》2021,44(5):186-193
地下河作为岩溶地区的主要饮用水源地,对当地的经济和社会发展具有重要的支撑作用,但由于岩溶地区特殊的含水结构,使得多环芳烃(PAHs)有机污染物极易进入岩溶地下水环境中造成严重污染,影响水质安全。该研究选择了南宁市清水泉地下河作为典型地下河的代表,利用含量与组成分析法、同分异构体比值法和逸度方法开展多环芳烃污染特征研究。结果表明,地下水和表层沉积物中∑16PAHs浓度范围分别为276.76~460.12 ng/L、332.17~977.96 ng/g,PAHs浓度整体处于中低等污染水平。污染物排放及PAHs的理化性质使得PAHs浓度从上游至下游逐渐减少,但高环PAHs的比例逐渐升高。根据同分异构体比值法的源解析结果,研究区地下水中PAHs来源主要为上游的生物质燃烧源、中游的石油源和下游的混合源,沉积物与其有一定差异,中上游表征为生物质燃烧源,中下游表征为混合源。随着环数的增加,PAHs由向地下水中扩散转变为向沉积物中扩散,且有机碳的增加也会导致PAHs向沉积物中扩散。研究结果可以为岩溶地下水环境中PAHs污染物防治提供科学依据。  相似文献   

6.
为研究辽东湾PAHs(多环芳烃)在海水-沉积物之间的扩散行为,于2014年5月对辽东湾14个采样点海水和沉积物中的16种PAHs进行了调查研究,并采用逸度方法、变异系数、响应系数等统计和计算方法对研究结果进行分析.结果表明:辽东湾海水中ρ(∑PAHs)和沉积物中w(PAHs)的平均变异系数分别为0.25和0.39,属于中等变异,高分子量PAHs的变异系数高于低分子量PAHs;利用ff(逸度分数)评估PAHs在海水-沉积物间的扩散行为,Nap(萘)、Acp(苊)和Fl(芴)表现出从沉积物向海水释放,沉积物是二次释放源;Ace(二氢苊)、Phe(菲)、An(蒽)、Flu(荧蒽)、Pyr(芘)、BaA(苯并[a]蒽)、Chr(?)在海水-沉积物之间接近平衡状态,5环和6环PAHs则表现出从海水向沉积物沉降富集,沉积物是汇;有机碳和碳黑是影响PAHs在沉积物和海水之间扩散的重要参数.研究显示,7种潜在致癌PAHs[BaA、Chr、BbF(苯并[b]荧蒽)、BkF(苯并[k]荧蒽)、BaP(苯并[a]芘)、InP(茚并[1,2,3-cd]芘)和DbA(二苯并[a,h]蒽)]海水-沉积物之间的扩散行为可能受到陆源排污和海上石油开发活动的影响.   相似文献   

7.
使用TaPL3模型对兰州地区16种PAHs通过大气和水体的长距离迁移潜力(LRTP)和总持久性(Pov)进行了模拟研究,比较了不同环数多环芳烃(PAHs)的特征迁移距离(CTD)和Pov的大小,对两者的关系进行了分析讨论,并以BaP为例对关键参数进行了灵敏度分析.研究结果表明,16种PAHs在兰州地区通过大气的特征迁移距离(CTDAir)在18.9km(BghiP)和734.9km(PYR)之间,总持久性(PovAir)在0.41d(ACE)和1304.76d(BaP)之间;通过水体的特征迁移距离(CTDWater)在511.1km(NAP)和34472.6km(BghiP)之间,PovWater在5.35d(NAP)和4156.59d(BghiP)之间.16种PAHs中,芘在空气中的LRTP最大,苯并[ghi]芘在水中的LRTP最大.中、高环数PAHs的PovAir和PovWater要比低环数PAHs高.此外,CTD和Pov没有表现出直接的关系.与国外的同类研究相比,BaP在兰州地区的CTDAir明显偏低.  相似文献   

8.
淮河中下游沉积物PAHs的稳定碳同位素源解析   总被引:1,自引:0,他引:1  
对淮河中下游水相、悬浮物、沉积物中的PAHs(多环芳烃)进行定量分析,在探讨其分布特征的基础上,利用单体烃稳定碳同位素技术揭示研究区沉积物中PAHs的来源. 结果表明:水相中正阳关的ρ(PAHs)最高,达5.01 ng/mL;悬浮物和沉积物中以蚌埠闸的w(PAHs)最高,分别为9.85和1 175.02 ng/g. 沉积物中PAHs的δ13C在-39.4‰~-17.6‰之间.正阳关、平圩、洛河和蚌埠闸等采样点的高环PAHs的δ13C比低环PAHs的小,表明高环PAHs富集12C(轻碳同位素),显示燃煤源为主要污染源;但这4个采样点PAHs的δ13C与燃煤烟尘相比存在一定差异,表明除燃煤源外可能还存在着少量其他污染源. 双沟镇高环PAHs的δ13C比低环PAHs的大,表明高环PAHs富集13C(重碳同位素),可能是微生物作用所致.   相似文献   

9.
大冶湖表层沉积物-水中多环芳烃的分布、来源及风险评价   总被引:15,自引:13,他引:2  
于2015年8月采集大冶湖表层沉积物8个及上覆水样8个,使用GC-MS分析16种EPA优控PAHs.结果表明在表层沉积物及水体中ΣPAHs范围分别为:35.94~2 032.73 ng·g-1和27.94~242.95 ng·L~(-1),平均值分别为940.61 ng·g-1和107.77 ng·L~(-1);表层沉积物中PAHs分布呈现湖中高于岸边趋势,水体则呈大致相反趋势,表层沉积物中以4~5环高环化合物为主要组分,在水体中主要以2环以及4环和5环PAHs为主,与国内外其他湖泊相比处于中度污染水平;来源解析表明大冶湖表层沉积物及水体中多环芳烃主要来自于高温燃烧源,沉积物中PAHs高环分子都占据绝大部分,反映出了沉积物受矿冶冶炼长期累积污染的效应;所检测沉积物中各单体PAH及ΣPAHs含量均未超过ERM以及FEL,表明大冶湖表层沉积物中PAHs无潜在生态风险;终生致癌风险评价表明大冶湖水体中PAHs通过摄入和皮肤接触风险都处于USEPA推荐的可接受水平范围之内,但都高于瑞典环保局和英国皇家协会推荐的最大可接受风险水平,需要对7种致癌PAHs污染加以防治.  相似文献   

10.
汾河上中游流域水环境中多环芳烃分布及分配   总被引:1,自引:0,他引:1  
通过测定汾河上中游流域13个点位丰水期和枯水期水体、表层沉积物中PAHs浓度,分析其分布特征及影响因素.结果表明:汾河上中游流域丰水期和枯水期水中PAHs的平均浓度分别为0.365μg·L~(-1)和0.835μg·L~(-1),枯水期PAHs总体高于丰水期;丰水期和枯水期沉积物中PAHs平均浓度分别为1444μg·kg~(-1)和2407μg·kg~(-1),枯水期PAHs总体高于丰水期;水和沉积物中PAHs的组成主要是2~4环,但沉积物中高环PAHs组成显著高于水中;丰水期和枯水期中游段(寨上到南关)水体和沉积物中PAHs浓度整体均高于上游段(雷鸣寺到汾河水库).丰水期和枯水期沉积相-水相分配系数K_p值分别为642~32345 L·kg~(-1)和671~44929 L·kg~(-1),且随PAHs环数变大K_p值增大;丰水期和枯水期沉积相-水相实测的有机碳归一化分配系数(lgK_(oc))总体高于预测值上限;丰水期和枯水期lgK_(oc)与lgK_(ow)均呈较好的相关性,可决系数(R~2)分别为0.764、0.725,枯水期斜率大于丰水期斜率,枯水期较丰水期沉积物吸附的PAHs更多.K_p值与有机碳/COD_(Cr)比值K_(od)呈正相关,可决系数(R~2)分别为0.625和0.728,丰水期和枯水期PAHs K_p值受沉积物中有机碳含量和水中COD_(Cr)含量的影响.  相似文献   

11.
郭雪  毕春娟  陈振楼  王薛平 《环境科学》2014,35(7):2664-2671
采用GC-MS联用技术分析了滴水湖及其水体交换区23个表层沉积物和土壤中16种多环芳烃(PAHs)的含量,探讨其分布特征及来源并对其生态风险进行评价.结果表明,滴水湖沉积物中16种PAHs含量范围是11.49~157.09 ng·g-1,平均含量为66.60 ng·g-1,湖区沉积物中PAHs含量比入湖区低,但比出湖区高.湖区外的沉积物和土壤中PAHs组成主要以中、高分子量PAHs(4环、5~6环)为主,而湖区内表层沉积物中PAHs组成则以低分子量PAHs(2~3环)和高分子量PAHs(5~6环)为主.通过特征化合物分子比值法、主成分分析及多元线性回归模型判源,表明湖区外沉积物和土壤中PAHs来源主要为燃烧源,而湖区内沉积物中PAHs来源为燃烧源和石油类产品泄漏的混合来源.生态风险评价显示,滴水湖及其水体交换区沉积物和土壤中PAHs生态风险较低.  相似文献   

12.
孙盼盼  谢标  周迪  宋一民  杨浩 《环境科学学报》2016,36(10):3615-3622
采用GC-MS检测了滇池宝象河水库沉积物中16种美国环保署(US EPA)优先控制的多环芳烃(PAHs)的含量,并对其垂直分布特征及来源进行分析,以此了解宝象河水库近年来PAHs的变化.结果表明,水库沉积物中16种PAHs均有检出,其含量范围为162.26~762.24ng·g~(-1),平均值为423.30 ng·g~(-1).自底层50 cm至表层,沉积物中PAHs含量呈上升趋势.从多环芳烃环数来看,沉积物中的PAHs以2~3环为主,其含量为128.34~518.81 ng·g~(-1),平均值为279.88 ng·g~(-1),占PAHs总量的42.2%~84.1%,平均值为67.6%.FLA/(FLA+PYR)、Ba A/(Ba A+CHR)和Icd P/(Icd P+Bghi P)3组比值及PAHs各组分的分析结果表明,燃烧过程是沉积物中PAHs的主要来源,主要为煤炭、生物质的燃烧.PAHs含量与总有机碳(TOC)之间有显著正相关关系,TOC影响宝象河水库沉积物中PAHs的分布.  相似文献   

13.
分析了巢湖流域和太湖流域表层沉积物中苄氯菊酯和高效氰戊菊酯,并结合毒性单元法(Toxic Unit,TU)和物种敏感性分布法(Species Sensitivity Distributions,SSD)评价了两种拟除虫菊酯的生态风险.结果显示,两大流域沉积物中均广泛检测出两类污染物.总体而言,巢湖流域苄氯菊酯含量较高,而太湖流域高效氰戊菊酯含量较高.同时,两种污染物在巢湖流域呈现显著的正相关,但太湖流域二者之间没有相关关系.3种风险评价方法(TU法、沉积物SSD法、水体SSD法)均揭示苄氯菊酯对巢湖流域水生环境影响较大,而高效氰戊菊酯对两个流域影响均较大.因此,需要加强对流域高效氰戊菊酯污染的关注.其中,TU法预测的风险最小,沉积物SSD法预测的风险最大,主要原因在于TU法采用的毒性数据为LC50,而SSD法则选用了NOEC/LOEC,同时沉积物SSD法是出于保护大部分底栖生物为目的的方法.各种方法对于评价沉积物毒害污染物的生态风险均存在不足,尽管沉积物SSD法最为合理,但由于其毒性数据较少,最终预测结果存在一定的不确定性.因此,需要进一步加强对底栖生物毒性的研究和数据积累.  相似文献   

14.
Emission intensity and climate change control the transport flux and fate of persistent organic pollutants (POPs) in multiple environmental compartments. This study applied a multimedia model (BETR model) to explore alternations in the spatio-temporal trends of concentrations and transport flux of benzopyrene (BaP), phenanthrene (Phe), perfluorooctane sulfonates (PFOS) and polychlorinated biphenyls (PCBs) in the Chaohu watershed, located in the lower reaches of the Yangtze River, China in response to changes in source emissions and climate. The potential historic and future risks of these pollutants also were assessed. The results suggest that current trends in concentrations and transport were similar to that of their emissions between 2005 and 2018. During the next 100 years, temporal trends and spatial patterns were not predicted to change significantly, which is consistent with climate change. Based on sensitivity and correlation analyses, climate change had significant effects on multi-media concentrations and transport fluxes of BaP, Phe, PFOS and PCBs, and rainfall intensity was the predominant controlling factor. Risk quotients (RQs) of BaP and Phe-in soil increased from 0.42 to 0.95 and 0.06 to 0.35, respectively, from 2005 to 2090, indicating potential risks. The RQs of the other examined contaminants exhibited little potential risk in soil, water, or sediment. Based on spatial patterns, it was inferred that the ecosystem around Lake Chaohu is the most at risk. The study provides insights needed for local pollution control of POPs in the Chaohu watershed. In addition, the developed approach can be applied to other watersheds world-wide.  相似文献   

15.
本文利用微电极测量系统对高原深水型湖泊红枫湖沉积物-水界面O2和H2S的微剖面分布进行了高分辨率研究。结果表明,红枫湖北湖中部和大坝沉积物-水界面扩散边界层厚度约为0.7mm,O2的扩散通量(J)分别为5.80和7.65mmol·m-2·d-1,O2的渗透深度分别为3.6±0.3mm和3.4±0.9mm,H2S的剖面变化主要受沉积物组成、O2消耗速率和硫酸盐还原菌(SRB)分布的影响。微电极测量系统具有原位测定、时空分辨率高、数据可靠性好等优点,在湖泊沉积物-水界面微尺度生物地球化学过程和驱动机制研究方面可发挥重要作用。  相似文献   

16.
在新疆博斯腾湖及其上游采集了8个表层沉积物和1根湖心沉积柱样品,分析了其中16种多环芳烃(PAHs)的含量,对其时空分布特征、来源和潜在生态风险进行了研究,并采用~(210)Pb同位素测年法分析了沉积速率和沉积柱的时间跨度.结果表明:表层沉积物样品中PAHs含量范围为57.37~360.24 ng·g~(-1)(干重),开都河沉积物中PAHs以低分子量PAHs(2~3环)为主,博斯腾湖沉积物中PAHs以高分子量PAHs(4~6环)为主.开都河和博斯腾湖沉积物中萘(Nap)、菲(Phe)、苯并(b)荧蒽(BbF)和茚并(1, 2, 3-cd)芘(IP)等单体的含量较高.空间分布呈现出上游河流开都河高于博斯腾湖区,且湖区污染主要集中在湖心处的污染特征.沉积柱样品中15种PAHs含量范围为29.85~211.13 ng·g~(-1),沉积速率为0.18 cm·a~(-1),PAHs组成以5环和6环为主.沉积时间跨度为1852—2016年,PAHs含量峰值出现在1994年.采用比值法对表层沉积物和沉积柱样品进行源解析表明,博斯腾湖流域PAHs主要来源于生物质和煤热解过程,近年来有向煤炭和石油燃烧复合源转变的倾向.效应区间低/中值法(ERL/ERM)和平均效应区间中值商法(M-ERM-Q)评估结果表明,博斯腾湖及其上游表层沉积物中PAHs表现出低生态风险.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号