首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
有机物对厌氧氨氧化系统的冲击影响   总被引:5,自引:0,他引:5       下载免费PDF全文
接种稳定运行300余天的厌氧氨氧化污泥,通过批次试验,研究了不同浓度乙酸钠和不同种类有机物对厌氧氨氧化系统的冲击影响.结果表明:在初始NO2--N浓度为35mg/L左右,乙酸钠浓度为0~200mg/L时,乙酸钠的冲击不会抑制厌氧氨氧化菌的活性,且一定程度上促进厌氧氨氧化反应的进行,最大比氨氧化速率与乙酸钠浓度呈正相关性;不同有机物对厌氧氨氧化系统的促进作用不同,氨氧化速率从高到低依次为乙酸钠、蛋白胨、葡萄糖和淀粉;反硝化作用伴随整个反应过程,但硝态氮还原速率[0.0155~0.0442mgN/(L?min)]小于氨氧化速率[0.1090~0.1498mgN/(L?min)],因此厌氧氨氧化菌在系统中一直占主导地位.在有机物的冲击下,厌氧氨氧化反应可协同反硝化反应去除系统中的总氮,提高系统总氮的去除率,从而改善出水水质.  相似文献   

2.
IntroductionTheanaerobicammoniaoxidation(Anammox)isanovelbiologicalreactionthatproducesmolecularnitrogenwithammoniaaselectrondonorandnitriteaselectronacceptor,respectively (vandeGraff,1995 ;1996 ) .Anammoxprocesshasbeenshowntobeapromisingwayofremovingnitr…  相似文献   

3.
生物膜反应器厌氧氨氧化脱氮效能研究   总被引:7,自引:0,他引:7  
利用厌氧氨氧化生物膜反应器,分别研究提高基质浓度和缩短水力停留时间(HRT)对提高反应器总氮容积去除负荷的影响。实验之前总氮容积去除负荷达到2.11kgN(/m·3d),总氮去除率为87.9%。以提高基质浓度的方式经过50d的培养,总氮容积去除负荷稳定在4.0kgN(/m·3d),进水总氮浓度从300mg/L逐渐提高到700mg/L,NH4+-N、NO2--N出水浓度分别达到70mg/L和100mg/L;以缩短HRT的方式经过55d的培养,总氮容积去除负荷达到7.0kgN(/m·3d),HRT由3h缩短至0.67h,NH4+-N、NO2--N出水浓度分别达到40mg/L和60mg/L。实验结果表明随着进水基质浓度的增加水中游离氨和亚硝酸的浓度随之增加,从而抑制厌氧氨氧化菌活性,不利于反应器脱氮效能的提高。在相同总氮容积负荷下缩短HRT有利于厌氧氨氧化细菌的富集,但过短的HRT容易导致微生物流失。  相似文献   

4.
通过序批实验的方法,直接接种厌氧氨氧污泥,研究了Zn2+对厌氧氨氧化(Anammox)脱氮效能的影响。研究结果表明,当进水Zn2+质量浓度小于2 mg/L时,对厌氧氨氧化生物活性有促进作用,可增强微生物的脱氮效能;当进水Zn2+质量浓度在2 mg/L和4 mg/L之间时,脱氮效能无明显变化,说明对厌氧氨氧化微生物活性无明显影响;当进水Zn2+质量浓度大于4 mg/L,对厌氧氨氧化反应有抑制作用,Zn2+浓度越高,抑制作用越明显。 Zn2+对厌氧氨氧化的半抑制质量浓度(CI,50)为32.3 mg/L,NO2--N与NH4+-N转化比的平均值为1.28。  相似文献   

5.
水解酸化-反硝化-硝化组合工艺处理土霉素废水的效果   总被引:7,自引:0,他引:7  
采用水解酸化 反硝化 硝化的组合工艺对土霉素废水进行实验室规模连续处理 ,水解酸化和反硝化均采用上向流污泥床 ,硝化采用2个使用不同填料的生物膜反应器 ,稳定运行 70d .当进水COD和NH4+-N浓度分别为2200~3000mg/L和400~460mg/L时 ,该系统在总水力停留时间为56h的条件下 ,稳定实现80%以上的COD和TN去除率 .生物处理出水经48mg/L聚合硫酸铁(以铁计)处理后COD降至293mg/L,实现了废水的达标排放.  相似文献   

6.
启动炭管膜曝气生物膜反应器实现全程自养脱氮   总被引:1,自引:0,他引:1  
宫正  刘思彤  杨凤林  张捍民  孟军 《环境科学》2008,29(5):1221-1226
启动包裹无纺布的多微孔炭管为膜组件的膜曝气生物膜反应器(MABR),实现基于短程硝化和厌氧氨氧化的完全自养脱氮.首先接种普通硝化污泥启动反应器,在温度35℃, pH为7.9条件下,通过对膜内腔压力的适当控制逐步降低反应器溶解氧浓度,实现亚硝酸盐的积累.然后再次接种厌氧氨氧化污泥,使无纺布上形成好氧氨氧化菌与厌氧氨氧化菌稳定共存的膜曝气生物膜,从而实现全程自养脱氮结果表明,经过120 d连续运行,在膜内压力为0.015MPa,水力停留时间6 h,进水NH 4-N为200 mg/L±10 mg/L条件下, NH 4-N转化率达到88.7%,出水总氮平均为48.65mg/L,总氮去除率达到83.77%.荧光原位杂交(fluorescent in situ hybridization, FISH)分析表明,好氧氨氧化菌(AOB)和厌氧氨氧化菌作为主要功能菌群分别控制着靠近炭管膜/生物膜界面区域和靠近生物膜/液体界面区域.  相似文献   

7.
基于低碳源污水易硝化难反硝化的问题,构建了在A2O缺氧池添加天然碳源玉米芯的中试系统,采用物料衡算、反硝化速率测定和微生物群落分析等方法,研究了该系统的脱氮效能和反硝化体系特征.结果表明,TN去除率提升13%,出水从16.2降至10.0mg/L;同时不会造成出水氨氮和色度超标的风险.物料衡算表明,COD碳源的氧化消耗量和出水排放量降低,更多的碳源用于反硝化和污泥增殖,从而提升了氮素的去除量,其中反硝化的提升贡献更大.缺氧池形成了悬浮污泥加生物膜的复合型脱氮体系:在污水自身碳源存在时,生物膜和悬浮污泥的反硝化速率分别为24.89和32.42mg/(L∙h),可实现快速脱氮;当自身碳源消耗殆尽,二者的反硝化速率分别是4.71和1.73mg/(L×h),单位生物量反硝化速率分别是1.58和59.1mg NO3--N/(g VSS×h),表明玉米芯主要被生物膜利用以维持反硝化进行.该体系的主要反硝化菌属为Azospira,此外在生物膜表面还富集了能够附着生长的IamiaHaliangium,以及能够降解玉米芯木质素的Sulfuritalea等反硝化菌属.  相似文献   

8.
采用内循环生物流化床反应器处理模拟高浓度氨氮废水,以确定其对处理高浓度氨氮废水的可行性,同时对试验条件进行了优化。结果研究表明:控制温度为(31±1)℃,利用反应器自身流化所携带溶解的空气,反应器内DO值可维持在1.5~2.5 mg/L,调节pH为8.0~8.5。经过42 d的污泥驯化适应时期,进水氨氮(NH4+-N)浓度由50 mg/L提高到300 mg/L。由于流化床采用填料载体微生物膜与活性污泥双重作用,同时载体呈流化状态,接触均匀,有巨大的比表面积,可以使床内保持高浓度的生物量,从而达到高效快速的传质效果。在HRT由开始的16 h缩短到8 h的条件下,氨氮(NH4+-N)的去除率达到90%以上,亚硝氮(NO2--N)的积累率达到75%。且在以后30 d的稳定运行阶段,氨氮(NH4+-N)去除率和亚硝氮(NO2--N)积累率均保持稳定。同时反应器最后出水水质澄清,无需二沉池及污泥处理。  相似文献   

9.
晚期渗滤液脱氮过程中的抑制现象及其消除   总被引:7,自引:0,他引:7  
对于垃圾填埋过程中高氨氮浓度、低C/N的晚期渗滤液,反硝化碳源不足会造成A/O脱氮系统的亚硝酸积累,导致对氨氧化和亚硝酸氧化过程的抑制作用.A,2/O流程中的厌氧处理对难降解有机物的水解酸化作用可为后续反硝化提供易降解有机碳源,可消除亚硝酸盐的积累及其对硝化过程的抑制.试验表明,厌氧处理可使氨氧化速率和反硝化速率提高约1倍和1.3倍,分别达0.123mgN/(mgMLSSd)和0.0675mgN/(mgMLSSd),TN去除率由8%提高到15%.使浓度高达1000mg/L的氨氮,在0.138mgN/(mgMLSSd)的进水负荷下较为彻底地氧化为安全的硝酸盐.  相似文献   

10.
通过批式实验,得到超声波强化Anammox菌活性的最优工作参数,超声频率25kHz、超声时间3min、超声强度0.2 W/cm2,而后在此最优超声强化条件下采用固定床反应器接种传统活性污泥启动Anammox工艺.整个试验过程,温度维持在35℃.在启动阶段,水力停留时间(HRT)为2d,控制进水NH4+-N和NO2--N浓度为70mg/L.反应器运行至第38d,首次表现Anammox活性.运行至53d时,NH4+-N、NO2--N去除速率和去除率分别为30.81,34.97mgN/(L·d)和88.03%、99.91%,总氮去除速率和去除率达60.34mgN/(L·d)和86.20%.R1和R2分别稳定在1.14和0.18.在负荷提升阶段(53~135d),当进水NH4+-N和NO2--N负荷维持在最高值380mg/(L·d)时,NH4+-N和NO2--N平均去除效率分别为82.74%和97.89%.NH4+-N和NO2--N最大去除速率分别为320.67和379.85mgN/(L·d),最大总氮去除速率和去除率为698.00mgN/(L·d)和91.84%.负荷提高阶段末,R1稳定在1.18左右,R2接近于0.反应器内Anammox菌占主导,存在少量反硝化菌强化总氮去除.  相似文献   

11.
反硝化生物滤池的挂膜与启动   总被引:2,自引:0,他引:2  
研究了反硝化生物滤池的挂膜与启动过程,为反硝化生物滤池的挂膜过程提供理论依据。在滤速1.2ngh(HRT=20min)时,当反硝化生物滤池运行到第25天时,进水硝态氮质量浓度由50mg/L左右下降到25mg/L左右时,硝态氮去除负荷由1.18kg/(m^3·d)下降到1.10kg/(m^3·d),负荷变化很小,说明挂膜成功。在反硝化生物滤池中,氨氮主要由反硝化细菌的合成作用去除,去除率不高。在碳源和硝态氮浓度都充足的情况下,反硝化反应遵循零级反应动力学规律,反硝化速率与污染物浓度无关,只与反硝化菌的数量有关。  相似文献   

12.
内循环移动床生物膜反应器的研究与应用   总被引:2,自引:0,他引:2  
对传统移动床生物膜反应器进行改进,开发了内循环移动床生物膜反应器,通过处理模拟生活污水的研究,考察了反应器去除有机物和脱氮的能力。结果表明,在填料投加率为35%、进水COD为200~800mg/L、HRT为6h、有机负荷为0.8~3.2kg/(m.3d)的条件下,系统COD的去除率在89%以上;同时反应器具有良好的同步硝化反硝化脱氮能力,在DO为2.0mg/L、C/N为25、HRT为6h的条件下,NH4-N和TN的平均去除率分别可以达到98%和93%。另外,内循环移动床生物膜反应器与移动床生物膜反应器的对比实验结果表明,前者对COD和氮的去除效果都优于后者。  相似文献   

13.
蚀刻液废水厌氧氨氧化脱氮性能研究   总被引:3,自引:0,他引:3       下载免费PDF全文
李祥  黄勇  朱莉  袁怡  李大鹏  张丽 《中国环境科学》2012,32(12):2199-2204
采用上流式生物膜反应器接种厌氧氨氧化污泥,研究了印制电路板行业蚀刻液废水厌氧氨氧化脱氮可行性.结果表明,蚀刻液废水作为NH4+-N源时,其所携带的物质对厌氧氨氧化污泥活性具有毒性作用.当蚀刻液废水稀释到NH4+-N浓度150mg/L进入反应器14d后,厌氧氨氧化氮去除速率从3.2kg/(m3·d)下降到1.2kg/(m3·d).但是通过驯化培养可以很好地缓解蚀刻液对厌氧氨氧化污泥的毒性影响.经过110d的驯化,蚀刻液废水稀释到NH4+-N浓度300mg/L进入反应器后并未出现明显的抑制现象.厌氧氨氧化氮去除速率从1.6kg/(m3·d)上升到6.0kg/(m3·d).说明通过驯化培养后,厌氧氨氧化工艺能够很好的运用到PCB行业高NH4+-N废水的处理.  相似文献   

14.
针对低C/N合成氨废水反硝化脱氮处理中碳源不足的难题,探究了以剩余污泥碱解液作为补充碳源的可行性。结果显示:与葡萄糖和甲醇相比,碱解液作为碳源时,体系的反硝化速率分别提高了25.3%和23.7%。通过优化实验条件获得最佳反硝化脱氮工艺参数:C/N=5.5,T=35 ℃,初始pH=8,水力停留时间为5 h。此条件下NO3--N去除率达86%以上,NO2--N无积累。将污泥碱解液用于A/O工艺处理大连化学工业公司低C/N合成氨废水,碱解液以稀释方式加入厌氧段,投加量使原低C/N合成氨氮废水C/N=5.5左右。A/O工艺连续运行结果显示:出水ρ(TN)<15 mg/L,ρ(NH4+-N)<5 mg/L,NOx--N基本无积累,出水氮素指标均达到GB 18918—2002《城镇污水处理厂污染物排放标准》一级A排放标准。研究证实了污泥碱解液适用于低C/N合成氨废水的处理,为此类废水的处理和剩余污泥的资源化处置提供了有力支撑。  相似文献   

15.
采用部分反硝化活性污泥耦合厌氧氨氧化生物膜处理低碳氮比废水(C/TN=1.63),考察生物膜-活性污泥复合系统(IFAS)进行部分反硝化耦合厌氧氨氧化(PD/A)处理低碳氮比废水的可行性及其耦合后两相中功能菌活性与菌群分布变化规律.结果显示,系统耦合运行期间,出水TN为(5.07±0.2)mg/L,去除率为(90.7±0.1)%,厌氧氨氧化途径对TN去除的贡献率高达(86.61±3.4)%;固着相对厌氧氨氧化活性的贡献率为100%,悬浮相上,μ(NO3--N)占比为99.32%,μ(NO2--N)占比为99.22%;与耦合前相比,悬浮相中硝酸盐还原酶(Nar)活性由(0.43±0.05)μmol/(mg protein·min)增加至(0.49±0.09)μmol/(mg protein·min),亚硝酸盐转化率明显升高[(70±2.2)%~(90.01±2.3)%];Illumina MiSeq结果显示,固着相上的优势菌属为Candidatus_Brocadia,且耦合前后丰度无明显变化(33.61%~33.43%),悬浮相上反硝化菌属Prosthecobacter,Ferruginibacter,OLB8丰度增加.以上结果表明,在IFAS系统中可以实现稳定的PD/A协同脱氮,耦合后部分反硝化由悬浮相主导,厌氧氨氧化由固着相主导,厌氧氨氧化菌(AnAOB)与反硝化菌对NO2­--N的竞争强化了悬浮相部分反硝化能力.  相似文献   

16.
任健  李军  周军  张帅  甘一萍 《中国环境科学》2009,29(12):1249-1254
采用两级完全混合发酵工艺进行碳源开发试验,研究了水力停留时间(HRT)和污泥停留时间(SRT)对工艺开发碳源效果的影响.研究表明,固定SRT为4d,污泥回流比为1,HRT在32~36h,系统出水的溶解性COD(SCOD)可维持在1090~1180mg/L,且浓缩池泥水分离效果较好,出水的SS保持在50~80mg/L.保持系统的HRT为32h,污泥回流比为1,SRT在4~7d时,可实现厌氧系统中产酸菌与产甲烷菌的分离,系统能够保持良好的产酸效果,此时系统出水的SCOD值基本稳定于980~1179mg/L.碱度可以作为衡量水解酸化系统是否有效运行的重要参数.HRT为32h,SRT为4d的工况下,初沉污泥酸化发酵系统对氨氮和磷的释放率分别为3.88 mgN/gVSS和0.27mgP/gVSS.  相似文献   

17.
焦化废水厌氧氨氧化生物脱氮的研究   总被引:4,自引:1,他引:3       下载免费PDF全文
采用厌氧氨氧化(ANAMMOX)工艺处理焦化废水,在厌氧34℃、pH值7.5~8.5,HRT为33h的条件下,经过115d成功启动厌氧氨氧化反应器.当进水NH4+-N、NO2--N浓度分别为80、90mg/L左右时, TN负荷可达160mg/(L·d),系统NH4+-N和NO2--N的去除率最高分别达86%和98%,TN去除率可达75%. GC-MS分析结果表明,酚类是焦化废水中较易被生物利用的有机物,ANAMMOX过程对好氧短程硝化工艺出水残余低浓度酚类有机物有进一步去除作用.  相似文献   

18.
为解决AnMBR(厌氧膜生物反应器)出水NH4+脱除的问题,提出利用AnMBR出水中残余CODCr、溶解性CH4以及低价态硫元素,通过构建缺氧滤池和好氧滤池进行生物异养和硫自养脱氮的方法,进一步削减AnMBR出水CODCr、去除溶解性CH4、同时同步生物脱氮.结果表明:①缺氧滤池与好氧滤池经过120 d单独驯化与33 d串联驯化后,在HRT(hydraulic retention time,水力停留时间)为6 h、进水为实际AnMBR出水的工况条件下,出水ρ(TN)为17.93 mg/L,去除率为52.7%;出水ρ(NH4+-N)为2.78 mg/L,去除率为92.3%,达到GB 18918-2002《城镇污水处理厂污染物排放标准》一级B标准.在HRT为8 h工况条件下,出水ρ(TN)为14.60 mg/L,去除率为59.0%;出水ρ(NH4+-N)为2.22 mg/L,去除率为93.7%,达到GB 18918-2002一级A标准.②脱氮滤池中氮脱除路径主要包括残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化,并通过物料衡算评价了三者对于氮脱除的贡献,在HRT为6 h的工况条件下,脱氮滤池脱氮过程中残余CODCr异养反硝化、溶解性CH4异养反硝化和硫自养反硝化三者占比分别为54.1%、24.3%和21.5%;在HRT为8 h的工况条件下,脱氮滤池脱氮过程中3种途径占比分别为70.4%、13.8%和15.8%.研究显示,脱氮滤池可以实现对AnMBR出水的低耗生物脱氮以及整体水质的达标排放.   相似文献   

19.
一体式厌氧氨氧化工艺处理高氨氮污泥消化液的启动   总被引:1,自引:0,他引:1  
利用新型固定生物膜一活性污泥反应器处理实际污泥消化液,通过接种短程硝化污泥和厌氧氨氧化生物膜填料,逐渐提高进水氨氮浓度并控制溶解氧浓度在0.11~0.42mg/L,系统在65d内实现了短程硝化-厌氧氨氧化反应的启动.反应器系统稳定运行阶段具有良好的污染物去除效果,进水COD和氨氮浓度为921和1120.8mg/L,COD、氨氮和总氮去除率分别为66.8%,99.0%和94.4%,总氮去除负荷为0.27kgN/(m3·d).试验表明采取逐步提高进水中消化液比例的策略,有利于一体式厌氧氨氧化工艺的快速启动.进一步分析发现系统同时存在厌氧氨氧化和反硝化的脱氮途径,对总氮去除的贡献率分别为67.4%~91.1%和8.9%~32.6%.  相似文献   

20.
Anammox transited from denitrification in upflow biofilm reactor   总被引:5,自引:2,他引:5  
Anammox was successfully transited from heterotrophic denitrification and autotrophic denitrification in two upflow biofilm reactors, respectively. The results showed that the volumetric loading rate and nitrogen removal efficiency in the reactor transited from heterotrophic denitrification were higher than that in its counterpart. When the hydraulic retention time was 12 h or so, the total nitrogen loading rate was about 0.609 kg N/(m^3 .d), and the effluent ammonia and nitrite concentrations were less than 8.5 mg/L and 2.5 mg/L,respectively. The upflow anammox biofilm reactor was capable of keeping and accumulating the slow-growing bacteria efficiently. During operation of the reactor, the biomass color was gradually turned from brownish to red, and the ratio of ammonia consumption, nitrite consumption and nitrate production approached the theoretical one. These changes could be used as an indicator for working state of the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号