首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
徐贵达  李冬  刘志诚  陶博  张杰 《中国环境科学》2021,41(11):5133-5141
鉴于厌氧氨氧化工艺进水必须包含NO2--N和NH4+-N两种基质,且只能脱氮,为在此基础上进一步实现除磷,提出辅以短程硝化技术,将除磷、脱氮技术相耦合,即短程硝化反硝化除磷串联厌氧氨氧化工艺.生活污水首先进入短程硝化反硝化除磷单元,主要实现NH4+-N转化为NO2--N并去除COD,其部分出水与生活污水原水相混合再进入厌氧氨氧化单元,同时短程硝化反硝化除磷单元于缺氧条件下反硝化吸磷,待反应结束后两个处理单元的出水混合排放.实验结果表明,控制进水混合比为4.2可保证Anammox单元中C/N和NO2--N/NH4+-N值分别为2和1.5,平均△NO2--N/△NH4+-N=1.41,△NO3--N/△NH4+-N=0.12,Anammox脱氮平均占比为85.2%,反硝化与Anammox反应耦合良好.整个系统稳定运行后出水COD、P、NH4+-N、NO2--N和NO3--N浓度分别为15.2,0.85,0.59,5.56,3.33mg/L,TN去除率为89.4%,通过PNDPR-Anammox耦合新工艺成功实现模拟生活污水的高效处理.  相似文献   

2.
以太湖流域上游南苕溪流域农业区竹林河岸带土壤为研究对象,采用乙炔抑制法研究不同外源硝态氮(NO3--N)添加量(模拟添加NO3--N浓度分别为0、5和10 mg·L-1的污水,分别用N0、N5和N10处理表示)对不同离水距离(0~3、3~6、6~12 m)、不同深度(0~10、10~20、20~40 cm)土壤反硝化速率的影响.结果表明,N0、N5和N10处理的土壤72 h内的反硝化速率均值分别为59.65、163.56和295.81μg·kg-1·h-1,不同处理间差异显著.N5和N10处理的土壤对外源NO3--N的脱氮率均值分别为0.45和0.51,且N5处理显著低于N10处理;土壤反硝化速率和对外源NO3--N脱氮率均随NO3--N添加量的增大而增加.土壤反硝化速率随离水距离的增加而降低,表层土壤的...  相似文献   

3.
采用序批式反应器-厌氧序批式反应器(SBR-ASBR)组合工艺处理常温低C/N比实际生活污水,通过调控SBR缺氧:好氧时间分别为80min:60min、120min:60min和150min:60min时,实现半亚硝化,将其出水直接泵入ASBR反应器中,考察不同进水NO2--N/NH4+-N和COD/NH4+-N对厌氧氨氧化耦合反硝化同步脱氮除碳的影响,并采用响应面法设计正交批次试验.结果表明:在NO2--N/NH4+-N为1.55,COD/NH4+-N为4.22时,出水NH4+-N、NO2--N和COD的浓度分别为2.79,0.47,38.37mg/L,其去除率分别高达87.56%,98.45%和62.69%.ΔNO2--N/ΔNH4+-N为2.23,生成的NO3--N的量比理论值小2.47mg/L,厌氧氨氧化和异养反硝化共同完成氮素去除,系统脱氮除碳性能最佳.当NO2--N/NH4+-N和COD/NH4+-N分别由0.84增加到1.55和3.24增加到4.22时,厌氧氨氧化和异养反硝化对脱氮贡献率分别由80.40%降至53.33%和19.60%增加到46.67%.NO2--N/NH4+-N和COD/NH4+-N对TN和COD去除的正交影响显著,均呈现正相关,R2分别为0.9243和0.9700.  相似文献   

4.
亚硝酸型反硝化除磷工艺特性及其应用   总被引:1,自引:0,他引:1  
以亚硝酸盐作为电子受体进行反硝化除磷污泥的驯化,并探究了工艺运行条件、性能及实际应用情况.研究表明:厌氧-缺氧-好氧驯化方式可快速富集以亚硝酸盐为电子受体的反硝化聚磷菌,通过逐步提高底物浓度可以驯化富集耐受高NO2--N浓度的DNPAOs.实际废水运行实验表明,反硝化除磷法处理猪场废水UASB-SFSBR尾水是可行的,当缺氧进水NO3--N、NO2--N和PO43--P浓度分别为5,70,30mg/L时,出水NO3--N和NO2--N浓度基本为0,PO43--P浓度在1.0mg/L以下.  相似文献   

5.
以处理实际低C/N生活污水的前置A2NSBR系统为研究对象,考察系统内生物膜的硝化特性和活性污泥的反硝化除磷特性.试验研究了有机物和NO2--N浓度对生物膜硝化性能的影响,以及不同电子受体浓度对反硝化吸磷速率的影响.结果测得硝化速率为11.3mgNH4+-N/(L·h),在填充率40%的条件下容积负荷为0.27kgNH4+-N/(m3·d),有机物的存在会对硝化有抑制,但是系统表现出了良好的抗有机负荷冲击能力,硝化速率为9.72mg NH4+-N/(L·h).NO2--N处理对AOB活性几乎无影响,对NOB活性抑制作用明显,当NO2--N浓度为400mg/L时,NOB活性仅为1.63%,几乎接近完全被抑制.根据本次不同电子受体条件下除磷批次试验的结果,好氧吸磷速率为17.62mg P/(g VSS·h),以NO3--N为电子受体的缺氧吸磷速率是12.94mg P/(g VSS·h),从而可知缺氧聚磷菌占总聚磷菌的比例大约是73.4%,其中在NO2--N浓度为30mg/L出现吸磷抑制,当NO2--N和NO3--N共存时,NO2--N在初始浓度为15mg/L便出现吸磷抑制.  相似文献   

6.
以厌氧氨氧化颗粒为对象,利用NH4+、NO2-、NO3-和N2O微电极测定了浓度连续分布,并建立微生物原位活性与N2O产生之间的关系.结果表明,NH4+和NO2-同步消耗的厌氧氨氧化活性区分布在颗粒的表层区域(0~1500μm),其中200~400μm活性最高;当NH4+-N浓度为14mg/L(c(NH4+):c(NO2-)=1:1.2)时,NH4+-N和NO2--N最大净体积消耗速率分别为1.19与1.65mg/(cm3·h).反硝化活性主要分布在1500~2500μm的深层区域,当采用...  相似文献   

7.
20世纪90年代以来,西南紫色土丘陵区大量坡耕地转变为果园,提高了农民的经济收益,但这一土地利用变化对土壤碳(C)、氮(N)空间分布特征的影响仍然缺乏研究.为探究紫色土丘陵区坡耕地转变为果园后土壤C、 N的空间分布特征,选取四川盆地中部紫色土丘陵区代表性柑橘园为研究对象,分析了由坡耕地转变为柑橘园后,土壤C、 N空间分布特征及其主要影响因素.结果表明,坡面位置(坡位)对土壤总氮(TN)、硝态氮(NO3--N)和可溶性有机碳(DOC)含量均有显著影响(P <0.05),而对土壤总有机碳(SOC)和铵态氮(NH4+-N)的含量没有显著影响(P> 0.05).在0~30 cm土层,土壤NO3--N含量沿坡面的变化趋势为:上坡位<中坡位<下坡位,而TN和DOC含量沿坡面的变化趋势为:上坡位>中坡位>下坡位.各坡位土壤C、 N含量随深度(0~30 cm)增加呈现整体降低趋势,其中土层深度对土壤TN、 SOC、 NO3  相似文献   

8.
为促进反硝化除磷与厌氧氨氧化工艺的耦合,实现污水氮、磷的同步高效去除,构建序批式反应器(Sequencing batch reactor,SBR),优化了反硝化除磷工艺实现亚硝酸盐积累的工艺参数.SBR在厌氧-缺氧-微好氧运行条件下,缺氧段投加模拟硝酸盐工业废水逐步实现了反硝化除磷过程的亚硝酸盐积累.结果表明,经过142d的培养驯化,在进水C/P比为55时,缺氧段引入NO3--N浓度为23mg/L时,亚硝酸盐积累率为51.01%,NO3--N→NO2--N转化率为40.22%,硝酸盐去除率为72.14%,PO43--P去除率最高达88.17%.出水COD浓度低于25mg/L,COD去除率维持在90%以上.微生物群落结构分析表明,拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)为系统内优势菌门.通过参数优化实现了聚磷菌的驯化,Candidatus Accumulibacter为代表的反硝化聚磷菌丰度增加(累积丰度由1.49%增加到5.08%),以Candidatus Competibacter为代表的反硝化聚糖菌丰度增加更为明显(累积丰度由1.02%增加到15.49%),聚磷菌与聚糖菌的共同作用有利于实现除磷过程的亚硝酸盐累积.  相似文献   

9.
采集宁夏引黄灌区排水沟道底泥,开展上覆水土柱培养试验,分别模拟0,5,10,20mg/L 4种外源氮输入梯度和0,100mg/L 2种外源碳输入梯度处理下沟道水质的变化情况.在水力停留培养47d内对上覆水NO3--N、NH4+-N、DOC及反硝化速率进行测定,并计算氮素消纳量以评估底泥反硝化脱氮潜势与阈值.结果表明:上覆水NO3--N浓度随时间延长而降低(P<0.01),且同时段内上覆水NO3--N浓度在外源碳添加较无碳源条件下显著降低(P<0.05),试验末期NO3--N浓度在无碳源和添加碳源条件下分别下降52.1%,93.6%;添加碳源条件下上覆水NO3--N浓度在20d时已稳定至较低水平,而未添加碳源处理NO3--N浓度在试验47d后仍有较大消纳空间;无碳源和添加碳源条件下底泥反硝化氮素消纳量阈值分别为263.7,865.6μmol/L,氮素累积消纳量占培养柱体系内总氮量的比率随外源碳氮的增加而增大(P<0.05),未添加碳源条件下反硝化过程可以消纳培养土柱体系内10.3%~11.4%的氮量,而在添加碳源后提高至17.7%~37.3%本研究可为引黄灌区农业面源污染高效治理提供科学依据.  相似文献   

10.
针对固相反硝化体系,以聚己内酯复合花生壳(PCL/PS)的固体碳源为基底,耦合以S和Fe O主导的自养反硝化,构建新型多功能碳源,考察其对典型微污染物(Cr(Ⅵ)、Cl O4-、BPA、NPX)与硝酸盐的同步降解效能,探究自养异养共存的反硝化体系内微生物群落特征及微观作用机制.结果表明,PCL/PS异养反硝化体系具有更好的反硝化脱氮和同步去除Cr(Ⅵ)、BPA性能,对NO3--N、Cr(Ⅵ)的去除率分别为94%、92%,对NO3--N、BPA的去除率均可达99%以上;PCL/PS同时耦合Fe O和S的体系反硝化脱氮同步去除Cl O4-、NPX性能良好且稳定,在反硝化率均维持90%的基础上,对NO3--N、Cl O4-的去除率分别达90%、96%,对NO3--N、NPX的去除率分别达9...  相似文献   

11.
该研究从烟台某水产养殖公司循环海水养殖系统(MRAS)的曝气生物滤器中成功分离出一株高效好氧反硝化菌,结合形态学特征和16S r RNA基因鉴定确定为海杆菌属,命名为Marinobacter sp.strain B108。采用单因素实验确定了Marinobacter sp.strain B108好氧脱氮最适条件,并明确其在最适条件下的生长特性、好氧反硝化性能及氮平衡特征。Marinobacter sp.strain B108具有高效的好氧反硝化性能,无异养硝化能力。该菌好氧反硝化脱氮最适条件为:碳源为CH3COONa、C/N为16、盐度为30‰。以NO3--N为底物时,Marinobacter sp.strain B108在最适条件下24 h对102.86 mg/L NO3--N去除率为100%,TN去除率为98.89%;以NH4+-N为底物时,该菌在最适条件下24 h对100.08 mg/L NH4+...  相似文献   

12.
为探索浅层地下水氮浓度及水位波动对土壤剖面中氮转化功能基因丰度的影响,以洱海近岸农田原状土壤剖面为对象,研究了模拟常规氮浓度的浅层地下水进行水位波动(SND)和持续淹水(SNF),以及无氮浓度的浅层地下水位波动(0ND)后土壤剖面氮浓度和氮转化功能基因丰度的变化,探讨了土壤因子与功能基因丰度的关系。结果表明:SNF、SND和0ND处理较试验前土壤剖面中溶解性总氮(TDN)浓度分别降低了44%、21%和30%,NO3-N浓度分别降低了55%、28%和38%。同时,0ND和SNF处理较SND处理土壤剖面中反硝化功能基因丰度分别降低20%和1%,厌氧氨氧化功能基因丰度则分别增加68%和7%,硝化功能基因丰度分别降低34%和增加23%,土壤含水率(MC)、NH4+-N、NO3-N和TDN均为功能基因丰度变化的重要驱动因子。土壤剖面持续淹水会显著降低溶解性氮浓度,浅层地下水波动及水中氮浓度引起的土壤剖面干湿交替和氮浓度变化是氮转化功能基因丰度变化的主要驱动力。  相似文献   

13.
采用生物滤池探究部分反硝化(NO3--N还原到NO2--N)工艺应用于城市污水厂深度脱氮的可行性.以实际二级出水为进水,考察滤速、碳氮比(C/N)等影响因素对滤池快速启动及稳定运行的影响,分析了滤池沿程水质变化和系统微生物群落结构.结果表明,控制高滤速和低C/N,3d可实现部分反硝化滤池的快速启动,滤池120d平均亚硝态氮累积率(NTR)为60.3%,最高可达82.1%,成功构建了连续流生物膜部分反硝化工艺.高滤速条件有助提高滤池的NO2--N积累率,C/N对NO2--N积累率的影响较小,C/N为2~4,部分反硝化滤池的NTR维持在62.0%.沿程数据表明底部40cm的滤料层是部分反硝化滤池NO3--N去除和NO2--N累积的主要反应区域.由于采用实际水厂二级出水进行研究,扫描电镜和高通量测序结果表明存在多种具有反硝化功能的微生物,系统的微生物多样性较高.  相似文献   

14.
采用包埋固定化技术制备了包埋硫铁生物填料(ESI Filler),基于升流式自养反硝化反应器开展动态实验研究,通过改变水力停留时间(HRT)、pH值、溶解氧(DO)等运行条件,探究ESI Filler反应器的脱氮效果及微生物群落结构组成。结果表明,当进水硝酸盐氮(NO3--N)浓度为30mg/L,HRT为10h时,NO3--N去除率不断上升至99.80%。当HRT缩短为2.5h时,NO3--N去除率降至61.35%。ESI Filler反应器对pH值和DO的改变具有较高的稳定性,NO3--N平去除率可维持在82.5%以上。但对低温的耐受性较差,当温度从35℃降低至15℃时,NO3--N平均去除率由90.12%降低至68.80%。运行164d后,球体未出现破裂散落的现象,表现出较长的使用寿命。通过扫描电镜发现,填料表面疏松多孔,附着大量杆状细菌,已成为微生物的良好载体。高通量测序结果表明,包埋颗粒中优势菌属为典型的自养反硝化功能菌Thiobacillus,丰度为80.79%。  相似文献   

15.
为探明在土壤环境有利于氨氧化作用发生的条件下,稻壳生物炭对酸性农田土壤N2O排放的影响,将生物炭分别按质量比0%(对照)、2%、5%和10%与土壤充分混匀,开展为期17d的室内静态土壤培养实验,研究土壤N2O排放速率的日变化以及整个培养期间的N2O累积排放量.同时,测定了培养终态土壤样品的pH值、NH4+-N、NO3--N、NO2--N和溶解性有机碳(DOC)含量,分析稻壳生物炭对土壤N2O排放影响的机理.结果表明,不同稻壳生物炭添加量均显著抑制了酸性农田土壤的N2O排放(P<0.001),且以5%和10%处理的抑制作用最明显;与对照处理相比,2%、5%和10%处理的N2O累积排放量分别减少了87.68%、94.59%和96.90%.培养前后土壤pH值、NH4+-N和NO3--N含量的变化表明,稻壳生物炭显著促进了土壤的硝化作用,尤其是5%和10%处理.线性回归分析表明,土壤N2O排放速率与NO2--N含量显著正相关(P<0.01),且NO2--N含量对N2O排放速率的解释程度为45%.由于稻壳生物炭促进了土壤的硝化作用,使NO2-更易转化为NO3-,减少了NO2-积累,进而减少了通过硝化菌反硝化作用途径产生的N2O.培养结束时,5%和10%处理的DOC含量显著高于对照处理,但培养过程中,稻壳生物炭并未显著促进土壤有机碳矿化.  相似文献   

16.
抑制剂对淹水土壤反硝化和氨挥发的影响   总被引:1,自引:0,他引:1  
通过室内培养试验,设置3个硝化抑制剂双氰胺(DCD)(氮肥用量的2.5%(DCD1)、5.0%(DCD2)、7.5%(DCD3)),3个脲酶抑制剂氢醌(HQ)(氮肥用量的0.1%(HQ1)、0.3%(HQ2)、0.5%(HQ3))和3个硝化抑制剂DCD+脲酶抑制剂HQ联合施用(氮肥用量的2.5%+0.1%(HH1)、5.0%+0.3%(HH2)、7.5%+0.5%(HH3))试验处理,探讨抑制剂联合施用对淹水土壤反硝化和氨挥发过程及其环境因子的影响,并借助通径分析探讨环境因子对反硝化和氨挥发过程的影响程度,探求抑制剂、氮素转化过程及其环境因子之间定量影响关系.结果表明,单独施用硝化抑制剂DCD能显著减少反硝化速率,但是增加氨挥发损失.单独施用脲酶抑制剂HQ能不同程度减少氨挥发损失,但对反硝化作用效果不稳定.而联合施用DCD和HQ,尤其是HH2(5.0%的DCD+0.3%的HQ)联合施用可有效地同时抑制反硝化和氨挥发损失,相比CK,其反硝化和氨挥发速率分别减少31.3%和12.5%.通径分析发现,硝化抑制剂DCD和脲酶抑制HQ主要影响土体NO3--N和NH4+-N浓度、上覆水体NH4+-N和DON浓度,从而影响反硝化和氨挥发速率.  相似文献   

17.
支尧  张光生  钱凯  李激  王硕 《中国环境科学》2018,38(6):2097-2104
为了实现深度脱氮除磷效果,利用生物吸附/MBR/硫铁自养反硝化组合工艺进行优化研究,考察了不同HRT和硫铁体积比对系统脱氮除磷的影响.结果表明,MBR池和硫铁自养反硝化滤池的HRT分别在9h和3h条件下,污染物去除效果最佳,63%的COD在生物吸附段被去除,工艺系统平均出水COD、NH4+-N、NO3--N、TN浓度分别为18.9,0.36,0,3.3mg/L,实现了污染物的超低排放.硫铁反硝化滤池的硫铁体积比为3:1条件下,出水TP平均浓度为0.29mg/L;其中大部分NO3--N在滤池高度10~30cm处被去除,脱氮速率约为46.1gNO3--N/(m3·h).同时组合工艺在运行期间,采用间歇抽吸方式和较高曝气量能有效减缓膜污染进程.  相似文献   

18.
采用无机含氨和硫酸盐(SO42-)废水作为升流式污泥床(USB)反应器进水,研究了其对铵(NH4+)和SO42-的去除以及不同高度污泥层含氮、硫元素的转化途径.结果表明在反应器进水口处由于进水自含氧(外源性氧)和兼性厌氧菌受到氧化应激产生过氧化氢(内源性氧),两种“氧”共同存在下,反应器内生物脱氨量(以氮计)最高达40mg/L左右,且在USB反应器不同高度污泥层含氮化合物和含硫化合物的转化途径不同.在反应器底部污泥层,颗粒污泥表面氨氧化菌利用O2将氨(NH4+)氧化成亚硝酸盐(NO2-),在颗粒污泥内部厌氧氨氧化菌利用NH4+和NO2-生成氮气(N2)和硝酸盐(NO3-);同时,O2的存在使得反应器底部污泥层部分厌氧颗粒污泥裂解,产生少量有机物,在颗粒污泥内部硫酸盐还原菌利用有机物将SO42-还原生成硫离子(S2-);硫自养反硝化菌利用NO2-/ NO3-将S2-重新氧化为SO42-.在反应器上部污泥层,由于只有少量内源性氧的存在,硫自养反硝化菌只能利用少量NO2-/ NO3-将S2-氧化为硫单质(S0);在USB反应器底部污泥层实现NH4+的去除和SO42-的循环,在上部污泥层实现了SO42-的去除.  相似文献   

19.
氮是控制蓝藻生长和水华形成的关键元素之一,反之蓝藻水华也会对氮的浓度变化和形态转化产生影响.通过采集太湖竺山湾蓝藻、沉积物和水样,设立湖水对照组(A0)、湖水加藻避光培养处理组(A1)、泥柱避光培养处理组(A2)、泥柱加藻避光培养处理组(A3)、湖水加藻光照培养处理组(A4)、泥柱加藻光照培养处理组(A5)进行室内培养试验,探究在蓝藻生长和衰亡的不同时期中氮的转化过程.结果表明:(1)蓝藻生长会大量吸收水体中的溶解态氮,最终A4和A5处理组中DTN浓度分别降低46.4%和60.7%、NO3--N浓度分别降低61.7%和80.6%.(2)蓝藻的衰亡会降低水体DO浓度,加速底泥氮素脱除,试验结束时A0和A1处理组中NO3--N浓度基本无变化,A2和A3处理组中NO3--N浓度分别降低40.8%和56.6%.(3)蓝藻衰亡时会释放大量NH4+-N,大幅提高水体中DTN浓度,并因试验期间的低溶氧条件使得NH4+...  相似文献   

20.
从经过高盐驯化的好氧颗粒污泥系统中筛选出一株异养硝化-好氧反硝化菌HY3-2,通过形态学观察及16S rDNA序列分析得出HY3-2为Klebsiella quasipneumoniae subsp.quasipneumoniae.研究了HY3-2对氨氮、硝酸盐和亚硝酸盐的去除特性,结果表明该菌具有良好的异养硝化和好氧反硝化功能,对氨氮、硝酸盐和亚硝酸盐的去除率分别达63.57%、88.11%和98.38%.对菌株脱氮性能研究表明:HY3-2以甘油为碳源,C/N为25,温度为20℃或30℃,转速为150r/min,盐度低于50g/L时,对100mg/L的NH4+-N去除效果良好,去除率达90.7%;以柠檬酸钠为碳源,C/N为25,温度为30℃,转速为150r/min,盐度低于15g/L时能进行良好的好氧反硝化作用,NO3--N去除率达99%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号