首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
准确评估大气CO2浓度和人为CO2排放时空变化对于减缓温室气体排放导致的气候变化至关重要,因此,本文基于GOSAT和OCO-2卫星数据融合生成的全球长时间序列、时空连续的Mapping-XCO2产品,研究2010~2020年中国大气CO2柱浓度(XCO2)时空变化特征以及卫星监测人为CO2排放能力.结果表明:Mapping-XCO2与中国大气本底站观测存在较高的一致性,具有良好的适用性;2010~2020年中国XCO2呈现东高西低的空间分布,年均XCO2为400.4×10-6,年增长速率为2.47×10-6;非生长季XCO2异常可刻画人为CO2排放时空变化,各省级行政区非生长季XCO2异常与人为排放清单EDGAR和ODIAC的相关系数分别为0.71、0.67;2010~2020年京津...  相似文献   

2.
为深入了解四川省碳源、碳汇情况,该研究基于XGBoost机器学习算法,对多源卫星(GOSAT、OCO-2和OCO-3)的CO2干空气柱平均摩尔分数(XCO2)数据进行融合填补,重构四川省2015-2021年1 km网格XCO2逐日浓度时空分布。结果表明,XGBoost模型基于网格和天的留出验证R2分别为0.98和0.96,可实现XCO2数据的高精度时空分布重构。四川省2015-2021年XCO2年平均浓度为406.5×10-6,年平均增长速率为2.50×10-6,增长速率呈逐年下降趋势。多年XCO2浓度在春季最高,秋季最低,季节差异为3.4×10-6。XCO2浓度在空间上呈现“东部高,西部低”的分布特征,四川盆地内的城市XCO2浓度普遍较高。各个城市的XCO2在空间上呈现不同的分布特征,与当地碳源、碳汇密...  相似文献   

3.
针对人为碳排放的空间分布量级差异大导致排放数据的非正态分布问题,提出了一种基于卫星大气CO2柱浓度(XCO2)时空变化特征聚类分区构建人为碳排放神经网络估算模型方法.通过利用与人为碳排放强相关的卫星XCO2数据时空变化(2010~2021年)特征的聚类分区,利用卫星观测的XCO2和SIF以及夜间灯光、人口密度和人为排放清单数据EDGAR作为训练学习数据,以聚类区为单位分别构建人为碳排放神经网络估算模型,估算了2021年研究区人为碳排放.与EDGAR交叉验证结果显示,相比以中国全区数据作为训练学习样本统一建模方法的估算,本研究提出的分区建模估算结果从相关系数(R2)的0.43提高到了0.82;空间分布更为合理;平均偏差由0.03 9Mt CO2降低到0.018Mt CO2.研究表明利用多源数据的神经网络训练学习进行人为碳排放的估算,能够为区域碳排放特征和排放清单的不确定性提高提供评估分析依据.  相似文献   

4.
为了评估华南地区国庆期间频发的大范围区域光化学污染事件对华南背景大气的影响,2018年国庆节前后(9月19日~10月19日),在广东南岭国家大气背景站对光化学污染的代表产物过氧乙酰硝酸酯(PAN)开展了连续在线观测,并对PAN的浓度特征和来源进行了分析.结果表明,研究期间南岭PAN的平均体积浓度为(0.66±0.54)×10-9,最大值为2.33×10-9,显著高于国内外其他背景站点((0.21~0.44)×10-9),且PAN的夜间浓度一直维持在较高的水平;PAN和O3r=0.90)、NO2r=0.87)的相关性较强,通过PAN和O3的线性拟合估算出O3的大气背景体积浓度为(46.22±0.65)×10-9,表明南岭光化学反应十分活跃;受区域光化学污染事件的影响,国庆期间南岭PAN的浓度显著升高,达到(1.18±0.45)×10-9,而同期NO/NO2比值降低,导致PAN大气寿命延长,有利于PAN的本地累积;结合气团后向轨迹,潜在源贡献分布以及前体物NO2的全国分布特征分析,发现国庆期间高浓度PAN主要来自湖南,湖北、河南、江西等华中地区.  相似文献   

5.
于2020年12月1日~2021年12月1日分别在深圳市大学城和路边站两点位对大气CO2和CO浓度进行了为期1a的观测.本次观测期间内两点位大气CO2平均浓度分别为432×10-6和439×10-6,均呈现了“秋冬季高、春夏季低”的季节变化特征与“昼低夜高”日变化特征,且日变化特征在早晚高峰期受到交通源排放的显著影响.此外,通过引入CO2和CO的净变化值得到大学城和路边站两点位的ΔCO2/ΔCO值分别为136.8~184.8、59.0~119.3,结果表明机动车排放对深圳市大气CO2贡献突出.  相似文献   

6.
为探究盐湖区不同植物群落土壤CO2排放速率及影响因素,以新疆达坂城盐湖沿岸小獐毛、鸢尾、芨芨草、黑果枸杞群落和撂荒地土壤为研究对象,在2016年4~12月采用Li-8100A监测了不同植物群落土壤CO2排放特征,分析了CO2排放与5(ST5),10(ST10),15cm(ST15)土壤温度、含水量、电导率的关系.结果如下:4~12月小獐毛群落土壤CO2日排放呈单峰曲线,7月土壤CO2排放速率最高,峰值出现在14:00左右;7月鸢尾、芨芨草、黑果枸杞和撂荒地土壤CO2排放呈双峰曲线,峰值出现在10:00和14:00~16:00左右,其余月份均呈单峰曲线,峰值出现在12:00~14:00;不同植物群落类型、同一植物类型不同月份土壤CO2排放存在显著差异(P<0.001).4~12月芨芨草群落土壤CO2累积排放量最高(2508.01g/m2),大于撂荒地(2235.01g/m2)、鸢尾(1903.03g/m2)、黑果枸杞(1690.27g/m2)和小獐毛(550.34g/m2)植物群落处理.小獐毛群落土壤CO2排放与ST15显著相关(R2=0.739,P<0.05),且对ST15变化最敏感;鸢尾、芨芨草、黑果枸杞群落和撂荒地处理土壤CO2排放与ST5相关性较高(R2=0.708~0.821),对ST10变化响应敏感.小獐毛群落土壤温度敏感系数(Q10)最大值出现在6月(7.97),鸢尾(21.74)、芨芨草(13.21)、黑果枸杞(18.23)和撂荒地(7.65)处理则出现在11,12月.不同植物群落土壤CO2排放与含水量相关性较低;一元线性方程(logeCf=-0.149EC+0.943)能较好的模拟土壤电导率(EC)与CO2排放(Cf)的关系.除土壤温度外,盐分也是影响盐湖沿岸土壤碳排放的重要因素.因此,在考虑陆地生态系统碳收支时不能忽略盐湖生态系统,以及盐分对土壤碳过程的影响.  相似文献   

7.
为定量分析近地面XCO2与人为碳排放的时空特征,文章首先使用GOSAT、OCO-2卫星长时间序列近地面XCO2数据集分析成渝地区XCO2时空特征;再对XCO2浓度及人为CO2排放量进行EMD时间维分解,分析四川、重庆、北京不同时间尺度的变化特征。并用北京地面观测站点数据与卫星数据对比验证数据可靠性。结果表明:(1)201001-202112成渝地区近地面年均XCO2浓度集中在389×10-6~410×10-6内,总体呈条带状分布,总年均增幅达19.6×10-6;XCO2低值区位于西部、高值区位于中部及东部。(2)EMD及EEMD分解201001-202112成渝地区XCO2后各IMF具有年际变化和季节变化的时间周期特性,RSE仍呈上升趋势。IMF1~IMF4为人为源碳排放,IMF5~IMF7为自然源碳排放。结果存在一定滞后性。(3)EMD分解201901-202012四川省、重庆、北京日尺度人为CO2<...  相似文献   

8.
依据合肥市科学岛2013~2016年的CO2体积比浓度廓线,分别从夜间、季节和年度分析了亚热带季风气候的CO2分布特点和合肥科学岛的CO2源汇特征.(1)大气CO2体积比浓度随高度增加而减小,390m的CO2浓度约为15m浓度的95%,夜间随时间推移浓度增加幅度约5%,天亮时CO2浓度有减小的趋势;(2)测量点高度大于100m时,季节特征较明显,CO2体积比浓度夏季最低,冬季最高,浓度相差约10×10-6;(3)测量点高度大于100m时,2013~2016年CO2体积比浓度的年分布随高度变化的梯度相关系数大于0.9,体积比浓度年增长约2.1648×10-6.通过三个时间尺度的CO2体积比浓度廓线分析得出,CO2浓度特征是动植物活动和大气运动等共同作用的结果;CO2长期循环过程中,存在近地面CO2向高空的传输效应.  相似文献   

9.
基于五台山站2017年1月~2020年12月的大气CO2连续观测资料,采用平均移动过滤法(MAF)和后向轨迹分析方法,对五台山大气CO2本底浓度及源汇特征进行研究.结果表明:五台山大气CO2浓度受到区域或局地源汇的影响,筛分后的CO2本底小时浓度振幅为44.9×10-6,小于未经筛分的CO2浓度振幅94.7×10-6.2017~2020年CO2本底浓度呈逐年上升趋势,但增幅放缓;抬升浓度占比有所下降,吸收浓度占比波动较小,表明人类活动对CO2浓度的影响逐年减弱,而五台山周边地区陆地生态系统碳汇作用相对稳定.CO2本底浓度夏季最低,秋冬季次之,春季最高;日变化夏季最明显,峰谷值分别出现在05:00和16:00,其他季节日振幅仅在0.7×10-6~1.8×10-6之间.与本底浓度相比,抬升浓度的差异值自10月至翌年3月明显增大,而吸收浓度的差异值在6~9月最显著,分别反映出人为活动排放源以及陆地生态系统吸收汇对CO2本底浓度的影响.源汇浓度日变化均为单峰结构,抬升浓度白天高、夜间低,吸收浓度刚好相反.春、秋和冬季造成CO2浓度明显抬升的地面风向主要为西南风,且随风速的增加CO2浓度能够保持较高水平,而夏季主要为东北偏东风;春、夏季,2~4m/s的风速有利于进一步降低CO2吸收浓度.后向轨迹分析表明,气团远距离输送对源汇浓度的影响除了取决于气团途径区域的CO2排放情况,还与气团的空间垂直输送路径有关.  相似文献   

10.
以长三角城市群为研究对象,利用卫星遥感观测数据协同分析长三角地区大气NO2和CO2浓度的时空变化特征和驱动因子,揭示了长三角地区污染物和CO2高浓度地区空间格局.结果表明长三角城市群地区大气NO2和CO2浓度的时空分布及变化特征呈现了受化石燃料燃烧和机动车排放等人为活动以及区域地形、地表覆盖、气候等自然条件的综合影响结果.大气NO2和CO2高浓度值围绕太湖明显呈口对西南向的U字形分布,一致于围绕太湖分布的杭州、上海、苏州、无锡、常州和南京等大型城市区域,以及安徽铜陵地区的工业排放区.大气NO2浓度值呈现秋冬时期较高,夏季最低的季节分布特征.大气CO2浓度受植被CO2吸收和CO2的积累影响,8~9月最低,4~5月最高.此外,随着人为排放活动的急剧减少,2020年1~3月的大气NO2浓度比2019年同时期降低了50%以上,其中分布了以钢铁厂、燃煤厂为主的大型工业热源的城市NO2浓度下降最多,如镇江、南京、马鞍山.  相似文献   

11.
基于日本GOSAT及美国AIRS反演数据产品,对我国中部六省大气CO2时空分布特征进行研究,结果表明:由GOSAT反演的中部地区2010~2013年大气CO2年均柱浓度由389.36×10-6增长到396.52×10-6,年均绝对增长率达2.39×10-6/a,呈现出冬春季高值、夏秋季低值的季节变化特征,其柱浓度年均值及去长期趋势后的月均值均略低于长三角地区,高于京津冀和东三省地区;其CO2柱浓度高值区集中在湖南、江西及周边一带,年均绝对增长率为2.01×10-6,其柱浓度年均值及去长期趋势后的月均值与长三角地区相当,略低于京津冀和东三省地区,由于受地面源汇影响较小,其与GOSAT反演结果相反,可能是由于AIRS反映了对流层中层大气状况,而GOSAT则更多地反映了近地面层大气CO2变化.  相似文献   

12.
为研究唐山城市上空CO2与CO浓度时空分布,进一步定量其碳排放,于2018年11月~2019年3月,利用运十二飞机搭载高精度温室气体分析仪和相关辅助设备,对唐山市上空(200m~4600m)CO2与CO浓度进行飞机探测.探测期间共取得6组CO2和CO浓度垂直廓线数据.结果表明:探测期间CO2浓度变化范围406×10-6~453×10-6,CO浓度变化范围27×10-9~1135×10-9.夜间探测有明显的混合层存在时,CO2与CO浓度分布在混合层内有向上聚集现象,且在混合层顶均达到最大值;白天探测无明显的混合层存在时,浓度整体随高度增加而减小.在探测期间整层的平均风力小于4级时,CO2和CO浓度极显著相关,CO2和CO浓度比变化范围32.2~43.9.以2019年2月23日白天的架次为案例进行分析,微风条件下空气团经过城市后,CO2和CO浓度均有所增加,显示当日唐山是CO2和CO的源,结合质量平衡法或大气反演模式可以进一步估算城市CO2和CO排放量.  相似文献   

13.
运用吹扫-捕集气相色谱法于2016年6月对东海海水和大气中5种短寿命挥发性卤代烃的浓度含量、分布来源特征及海-气通量进行了研究.结果表明,表层海水中CH3I、CH2Br2、CHBrCl2、CHBr2Cl和CHBr3浓度平均值及范围分别为8.93(0.39~23.49) pmol/L、15.02(4.77~32.75) pmol/L、0.97(0.30~2.16) pmol/L、9.35(6.8~18.46) pmol/L和12.24(2.60~50.04) pmol/L.受陆源输入、水团和生物活动释放的影响,表层海水中CH3I、CH2Br2和CHBrCl2的浓度分布呈现近岸高远海低的趋势,CHBr2Cl和CHBr3浓度呈现点状分布.相关性分析发现CHBr3和Chl-a存在显著相关性,推断浮游植物生物量可能影响CHBr3的浓度分布.大气中CH3I、CH2Br2、CHBrCl2、CHBr2Cl和CHBr3浓度平均值及范围分别为3.52×10-12(1.72×10-12~10.00×10-12)、3.82×10-12(0.20×10-12~34.95×10-12)、1.40×10-12(0.46×10-12~6.18×10-12)、1.55×10-12(0.16×10-12~4.66×10-12)和6.63×10-12(2.20×10-12~11.61×10-12).受陆源气团输送、生物生产和气象条件的共同影响,春季大气中5种短寿命挥发性卤代烃浓度分布较为复杂.海-气通量的估算结果表明春季东海是大气中CH3I、CH2Br2、CHBrCl2、CHBr2Cl和CHBr3的源.  相似文献   

14.
根据东亚酸沉降网(EANET)和全球温室气体数据中心(WDCGG)等观测资料,对比各地区近地面O3的季节变化特征,在全球大气化学传输模式MOZART-4中引入在线源追踪方法,结合收支分析,确认各项作用对不同地区O3的贡献量.研究表明,模拟结果能够再现各地区O3的季节变化特征以及收支量:清洁背景地区(海洋站居多)近地面O3各项收支量较小,体积分数在-3×10-9-3×10-9/d之间,且净的化学作用大多处于损耗O3的状态;大多数陆地测站净的光化学作用为产生O3(约33.8×10-9/d).近地面O3的源主要来自对流层内部,平流层的贡献较小(约10×10-9).对于极地及清洁背景地区,平流层的贡献是O3季节变化的重要原因.平流层的贡献呈现明显的季节变化,即冬季最大(约20.7×10-9),夏季最低(约2×10-9).  相似文献   

15.
王博  陈红  夏敦胜  李刚  马珊  刘慧 《中国环境科学》2019,39(8):3178-3185
通过采集兰州市不同功能区小叶黄杨和刺柏叶片样品,对叶片表面滞尘量、叶表颗粒物磁性特征和黑碳(EC)浓度进行系统分析,探究其对周围大气污染的响应.结果显示,小叶黄杨和刺柏叶表颗粒物磁性特征以低矫顽力的亚铁磁性矿物为主导,磁晶体粒径以假单畴(PSD)颗粒为主.交通区小叶黄杨和刺柏饱和等温剩磁(SIRM)(489.40×10-6A,290.73×10-5A·m2/kg)显著高于公园(99.56×10-6A,74.00×10-5A·m2/kg)和生活区(61.91×10-6A,209.79×10-5A·m2/kg),表明SIRM明显受到周围环境中污染物浓度的影响.小叶黄杨和刺柏叶表颗粒物亚铁磁性矿物浓度与黑碳浓度的高值分布区域在空间上具有一致性,并且二者高度相关(r=0.94,0.94;P<0.0001),表明二者来源具有一致性.同时,不同采样高度不同树种叶片磁性对叶表颗粒物中黑碳浓度均有稳定的指示性,进一步表明叶表颗粒物SIRM可以作为指示叶表颗粒物黑碳污染的重要磁学参数.以城市绿化植物叶片为载体的环境磁学研究可实现颗粒物污染高空间分辨率的环境友好型监测.  相似文献   

16.
中国亚热带重要树种植硅体碳封存潜力估测   总被引:21,自引:15,他引:6  
研究选取中国亚热带阔叶林、针叶林、竹林等3 种森林类型中常见的7 个树种,通过微波消解法提取其植硅体,并对其植硅体中碳含量进行测定,计算植硅体产量并估测碳封存量,结果表明:① 7个树种叶子植硅体碳占干物质含量分别为毛竹3.31±0.53 g·kg-1、杉木0.30±0.06 g·kg-1、马尾松0.40±0.11 g·kg-1、苦槠0.19±0.04 g·kg-1、青冈0.88±0.09 g·kg-1、木荷0.49±0.18 g·kg-1、枫香1.12±0.33 g·kg-1;② 相关分析表明,硅与植硅体含量(P<0.05,R2=0.989 7)、植硅体与植硅体碳占物质含量(P<0.05,R2=0.881 6)、植硅体碳与植硅体碳占干物质含量(P<0.05,R2=0.354 4)之间的相关性达显著水平.③ 毛竹的植硅体碳封存速率最高,若以最高植硅体碳封存速率0.050 6t- e-CO2·hm-2·a-1计算,面积为3.87×106 hm2的毛竹林每年可封存约1.96×105 t CO2;④ 杉木、马尾松的植硅体碳封存速率分别为0.005 6 和0.010 8 t-e-CO2 ·hm-2 ·a-1,面积分别为1.13×107、1.20×107 hm2的杉木林、马尾松林每年可封存约6.33×104、1.30×105 t CO2;⑤ 阔叶林植硅体碳封存速率介于0.000 5~0.019 3 t-e-CO2·hm-2·a-1之间,面积为2.49×107 hm2的阔叶林每年可封存1.25×104~48.15×104 t CO2.  相似文献   

17.
于2019年9月~2020年7月对深圳市福田区路边的大气CO2、CH4、N2O和CO浓度进行了观测分析.结果显示,其观测时段平均浓度分别为(430.8±6.1)×10-6、(2318.5±137.9)×10-9、(332.6±1.6)×10-9和(333.4±121.2)×10-9.CO2与CO浓度的季节变化表现为冬季...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号