首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
江南  周明华  李红  李子阳  章熙峰  朱波 《环境科学》2020,41(10):4539-4546
长江上游山区以浅层地下水作为主要供水水源,但其极易受到农业生产等活动所导致的硝态氮(NO3--N)污染.本文选取长江上游典型山区农业小流域作为研究对象,对土地利用与管理强度和水文地质条件等进行了野外调查,阐明其浅层地下水NO3--N时空变异特征并分析其影响因素.结果表明,研究小流域地下水中NO3--N质量浓度变化范围为0.40~12.51 mg ·L-1,超标率近30%.受降雨和管理强度影响,丰水期降雨量和施肥量增加,土壤中氮素在降雨驱动下淋溶流失进入浅层地下水,呈现出丰水期NO3--N质量浓度(6.73 mg ·L-1)高于枯水期NO3--N质量浓度(6.28 mg ·L-1)的时间变异特征.在空间上,小流域地下水中NO3--N质量浓度呈现坡耕地和居民区集中分布的截留和大兴子流域中地下水NO3--N质量浓度(截留子流域:6.58mg ·L-1;大兴子流域:6.34 mg ·L-1)高于苏荣子流域(5.20 mg ·L-1)的特征,主要由不同子流域地下水埋深和土地利用类型的空间分异特征导致.此外,浅层地下水NO3--N质量浓度与Cl-、NH4+-N、DOC和SO42-质量浓度呈正相关,而与pH值呈负相关,表明地下水化学因子亦是其不可忽略的影响因素.因此,加强山地农业小流域浅层地下水NO3--N时空变异特征及其影响因素研究对防控山区农村浅层地下水硝态氮污染和保障饮用水安全十分必要.  相似文献   

2.
为研究太原地区的大气氮湿沉降时空变化规律,于2016年1月~2017年12月采用雨量器对太原市市中、近郊和远郊三地大气氮湿沉降进行了为期2年的监测。得到市中、近郊、远郊的NO3--N平均浓度为12.9、18.4、1.3 mg/L,NH4+-N平均浓度分别为3.6、2.3、1.6 mg/L。季节变化上看,NH4+-N浓度值四季相对平均,春夏季稍高,而NO3--N浓度变化较大且冬春季浓度值较高。三个采样点大气氮湿沉降量(无机氮)年均沉降量分别为40.0、48.0、14.2 kg/hm2,以近郊的沉降量最高。市中、近郊、远郊的NH4+-N沉降量分别为9.0、5.0、8.2 kg/hm2,占总无机氮湿沉降量的比重分别为22%、11%、57%,NO3--N沉降量分别是31.0、43.0、6.0 kg/hm2,占总无机氮湿沉降量的比重分别为78%、89%、43%。从上可知城市降水中主要以NO3--N沉降为主,农村则以NH4+-N沉降为主。结合市中、近郊、远郊NH4+-N/NO3--N浓度比值分别为0.54、0.30、1.31,充分表明市中和近郊大气氮湿沉降主要来自工业和交通运输源,远郊则来自农业源。另外,市中、近郊月氮湿沉降量与降雨量差异不显著,远郊则达到极显著水平,说明影响市区两点氮湿沉降的因素较为复杂。由以上数据看出市中和近郊氮污染情况比较严重,应根据各自沉降特点予以控制。  相似文献   

3.
太湖地区农田土壤中铵态氮和硝态氮的时空变异   总被引:29,自引:4,他引:25  
陈效民  吴华山  孙静红 《环境科学》2006,27(6):1217-1222
对太湖地区农田土壤3种主要水稻土类型:白土、黄泥土和乌栅土在小麦和水稻生长期间土壤剖面中NH4+-N和NO3--N含量的时空变异进行了研究.结果表明:NH4+-N在1a中的2月份和9月含量较高;4月份和11月的含量较低.NH4+-N在土壤剖面中的空间变异为土壤上层到土壤下层呈逐渐递减趋势,以表土层含量为最高,在40cm以下基本上趋于稳定.NO3--N的含量低于NH4+-N,在1a中小麦生长季节(旱作)高于水稻生长季节(水作);NO3--N在土壤剖面中的空间变异为:旱作时的土壤表层到底层迅速下降;但在水稻生长季节土壤剖面中表层土壤的NO3--N含量低于底层的NO3--N的含量,出现明显的淋溶现象.在旱作期间NO3--N随NH4+-N呈指数曲线变化,而在水稻生长期间没有这种关系.NH4+-N和NO3--N含量与土壤有机质呈显著的直线线性正相关关系.但NH4+-N和NO3--N仅在旱作时随土壤粘粒含量和土壤pH值的升高而呈对数曲线下降.  相似文献   

4.
农田氮肥和垃圾填埋场渗滤液是我国地下水氮素污染的两大来源,从氮肥-垃圾渗滤液复合影响区域内采集6份土壤剖面-地下水样品,分析非饱和-饱和带全剖面中氮素的分布特征,来清晰判识该类典型区域的氮素跨介质污染特征和途径,同时通过高通量测序进行氮循环功能微生物分析,来解析氮循环功能微生物对氮素分布的响应.结果发现,在高施肥量采样点中,土壤中的硝态氮(NO3--N)和溶解性有机氮(Dissolved Organic Nitrogen,DON)含量均显著高于低施肥量采样点(p<0.01),NO3--N大量分布在深度0~240 cm的土壤中(p<0.05),部分NO3--N下渗进入地下水,高施肥量采样点地下水中NO3--N浓度在总溶解性氮(Total Dissolved Nitrogen,TDN)中占比达31.93%~84.70%,硝化菌在氮循环功能菌中占比为27.08%~87.99%,说明氮肥是该区域地下水NO3--N的主要来源.铵态氮(NH4+-N)在非饱和带深度0~20 cm和400~460 cm的范围内含量较高(p<0.05),垃圾填埋场下游的地下水NH4+-N浓度均超标,在TDN中占比为26.40%~59.71%.统计分析表明,垃圾填埋场渗滤液可能是造成地下水中NH4+-N浓度空间差异的重要因素,并很可能是导致地下水位波动带附近出现NH4+-N高积累的主要原因(p<0.05).这些结果将有助于复合影响区氮素的污染评估和防控.  相似文献   

5.
环流曝气塔中生物脱氮过程的研究   总被引:3,自引:0,他引:3  
利用环流曝气塔进行同时硝化/反硝化(sND)脱氮实验.实验中,分别采用不同降解性能的碳源以及采用不同的碳源投加方式,研究反应器内的脱氮过程,监测处理过程中NOx--N浓度和溶解氧DO的变化.实验显示,在COD 800mg/L+800mg/L的分批加料方式下,NH4+-N的降解得到加强,出水中NH4+-N浓度低于3mg/L;利用较难降解物质作为碳源时,利于反应器内低溶解氧条件的出现,促进了反硝化的进行,实验在采用醇类碳源时脱氮效果好于葡萄糖的情况.  相似文献   

6.
选择密云水库上游承德市滦平盆地为研究区,通过不同土地利用类型地下水"三氮"含量、土壤全氮含量和包气带可溶硝态氮含量,结合水体硝酸盐氮氧双同位素、硫酸盐硫氧双同位素多种环境同位素特征和地下水放射性碳同位素测年示踪硝酸盐来源.结果表明,滦平盆地水体氮形态以硝态氮为主,地下水NO3-质量浓度与居民用地、旱地土地利用类型显著相关,硝酸盐污染主要集中于居民建设用地和农用地区域浅层地下水中.13.79%地下水样品NO3-质量浓度超过国标(GB/T 14848-2017)地下水硝酸盐限值Ⅲ类标准,超标范围为1.04~3.86倍;37.93%地下水样品NO3-质量浓度超WHO饮用水硝酸盐浓度限值,超标范围为1.08~6.83倍.地下水NO3-质量浓度、土壤全氮和浅层土壤可溶硝态氮空间变异受结构性因素和人为因素共同作用影响.地下水硝酸盐来源主要为家畜粪尿和生活污水混合污染,其次为化学肥料淋滤;盆地山前地下水径流区包气带-地下水氮循环主导过程为硝化作用.以盆地系统作为独立单元研究水环境硝酸盐污染来源和归趋规律,对流域整体地下水污染防治和修复具有重要意义.  相似文献   

7.
青岛市农区地下水硝态氮污染来源解析   总被引:6,自引:4,他引:2  
为了提高作物产量,肥料大量投入在农业种植区日益普遍,导致了农区地下水硝态氮(NO3--N)污染.农业面源污染是地下水硝态氮污染的主要原因.为了保障饮用水安全,明确农区硝态氮污染的来源是十分必要的.本研究分别于2009年和2019年在青岛农区随机选取35个采样点,借助反距离加权法(IDW)对硝态氮含量进行空间分布分析,通过测定氮、氧同位素进行溯源,运用SIAR模型量化污染源的贡献率.结果表明,青岛市地下水硝态氮含量(平均值)由2009年的38.49 mg·L-1降低为2019年的22.37 mg·L-1,但仍高于世界卫生组织(WHO)规定的饮用水中硝态氮的最大允许含量.2009年和2019年硝态氮含量都呈现由南向北逐渐增加的趋势,南部污染轻,北部污染重.δ15N-NO3-δ18O-NO3-的交叉图显示青岛市地下水硝态氮主要来源是化肥、土壤氮、粪肥和污水.水同位素表明降水是青岛市地下水的主要来源.贝叶斯混合模型(SIAR模型)表明污染源贡献率为:粪肥和污水(47.42%) > 土壤氮(27.80%) > 化肥(14.35%) > 大气氮沉降(10.43%).从2009~2019年青岛市地下水质量得到了改善,但硝态氮污染状况仍不容忽视,应根据硝态氮污染来源,有针对性地防治以确保农区饮用水安全和农业的可持续发展.  相似文献   

8.
文艳  单保庆  张文强 《环境科学》2021,42(6):2839-2847
本文以我国华北地区最大的浅水湖泊白洋淀为研究对象,探究其低温期沉积物-水界面无机氮的分布特征,分析沉积物孔隙水中无机氮扩散通量对上覆水水质的影响.结果表明,低温期白洋淀表层水总氮(TN)平均浓度范围为4.83~8.23 mg·L-1,氨氮(NH4+-N)平均浓度维持在0.21~0.34 mg·L-1之间,硝氮(NO3--N)平均浓度在0.01~2.75 mg·L-1之间.TN污染较严重,超过地表水Ⅴ类水质标准.表层沉积物TN平均含量在681~4365 mg·kg-1之间,其中有机氮(TON)为氮素的主要存在形式,占总氮比例61.6%~93.1%.NH4+-N为无机氮(TIN)的主要存在形式,平均含量范围为28.9~116.3 mg·kg-1,NO3--N含量整体较低,平均值范围为5.2~23.7mg·kg-1.低温期白洋淀0~30 cm沉积物孔隙水中NH4+-N浓度是上覆水中的3~16倍,呈现逐渐累积趋势.沉积物-水界面NH4+-N、NO3--N和NO2--N扩散通量范围分别为-0.55~4.09、-1.44~3.67和-0.88~0.04 mg·(m2·d)-1,冬季低温期仍具有潜在释放风险.低温期沉积物中积累大量的NH4+-N,可能会在温度升高后影响白洋淀上覆水体水质.因此研究低温期白洋淀沉积物-水界面氮的分布特征和沉积物中无机氮的内源释放风险对于改善白洋淀水质和认识浅水湖泊内源氮污染具有重要意义.  相似文献   

9.
低温下表面流人工湿地中氨氮型富营养化水体净化研究   总被引:4,自引:0,他引:4  
郑少奎  张燕燕  杨志峰  刘加刚 《环境科学》2006,27(10):2014-2018
以氨氮为主要氮组分的富营养化水体为研究对象,采用批量培养方式对比研究了6.8~7.2℃水温下浮水植物系统(2种水葫芦Eichhornia crassipes、浮萍Lemna minor)、泡沫板系统(无生命覆盖物系统)及空白系统(无覆盖物系统)的脱氮效果,并探讨了6.4~11.2℃水温下不同起始COD浓度(27~105 mg/L)对各污染物去除的影响.结果表明,溶解氧(DO)是影响NH4+-N去除的关键因子之一,好氧时期各系统NH4+-N去除率占整个时期NH4+-N去除率的61%~88%.3种植物系统中NH4+-N的去除率(45%~56%)普遍高于泡沫板系统(38%)与空白系统(38%),而TN和COD去除效果差异则与植物类型有关;随着水体中起始COD浓度的升高,系统中DO逐渐由好氧状态降至0,该结果对NO3--N去除率影响最大(去除率由67%上升至95%),而对其它水质指标(COD,TN,NH4+-N)的影响相对较小.  相似文献   

10.
为探究深水水库沉积物微生物功能特征及利用价值,于2019年在实验室对小湾水库表层沉积物微生物进行了驯化分离,并分析了其中一株细菌的脱氮效率.结果表明,分离出的细菌XW731经鉴定属于假单胞菌属(Pseudomonas sp.),是一种贫营养型好氧反硝化菌;在分别以NH4+-N、NO3--N和NO2--N为唯一氮源时,该菌对NH4+-N、NO3--N和NO2--N去除率分别为33.6%、68.5%和9.1%;以NH4+-N和NO3--N为氮源时,对NH4+-N和NO3--N去除率分别为66.4%、89.6%,同步硝化反硝化能力更强.将该菌投加到两种城市微污染水体后测试表明,该菌对城市河道水体的NH4+-N和NO3--N去除率分别为38.3%和42.4%,对城市降雨水体的NH4+-N和NO3--N去除率分别为22.2%和7.7%.  相似文献   

11.
镇江市位于长江和京杭大运河"十字黄金水道"的交汇处,是我国历史上最为重要的水上交通枢纽之一,区域内水量充沛、河网密布.近年来,该区域水环境存在不同程度的退化,故调查镇江市主要河湖水体及沉积物污染现状,将为当地水环境质量的改善提供重要的基础数据.基于此,本研究选择镇江市典型河湖水体共21个点位(金山湖10个点位,古运河及其支流共11个点位),在冬夏两季采集上覆水及沉积物样品测定其理化指标和氮素含量,并通过有机指数及有机氮对沉积物污染程度进行评价.结果表明:①上覆水总氮(TN)浓度在冬夏季节分别介于1.95~15.71 mg·L-1和0.64~12.09 mg·L-1之间,平均值为4.01 mg·L-1和4.07 mg·L-1,平均值浓度高于地表水Ⅴ类标准.上覆水氨氮(NH4+-N)浓度在季节上均表现为冬季<夏季,空间上则表现为河流>湖泊;②沉积物TN含量在冬夏两季分别介于394.61~3288.09 mg·kg-1和869.21~3598.04 mg·kg-1之间,平均值为1928.58 mg·kg-1和2068.40 mg·kg-1.湖泊沉积物TN、NH4+-N、硝态氮(NO3--N)和有机氮(Org-N)含量均表现为冬季>夏季,而河流沉积物TN平均含量为冬季<夏季,NH4+-N和NO3--N则表现为冬季>夏季,表明河流沉积物在季节上的分布规律更为复杂;空间上,冬夏两季沉积物NO3--N表现为湖泊>河流,NH4+-N含量则表现为湖泊<河流.C/N结果表明研究区域沉积物有机质主要来源于内源污染;③湖泊和河流沉积物超过60%点位属于有机氮污染Ⅳ水平,即存在有机氮污染,而超过70%和54.55%的湖泊和河流沉积物处于有机指数Ⅱ类水平,即较清洁水平,表明镇江市河湖沉积物主要为氮素污染.以上研究结果将为镇江市河流水体及沉积物氮素控制提供重要的基础数据.  相似文献   

12.
江汉平原地下水氨氮浓度普遍超标,但是氮污染来源尚不明晰,尤其是对潜在的有机来源氮的认识还很不充分。本研究对江汉平原中部浅层地下水和沉积物中的溶解性有机质(Dissolved organic matter,DOM)荧光组分与氨氮关系进行了调查研究,并对沉积物的氮形态进行分析,探讨了沉积物中有机质向氨氮的潜在转化过程。研究表明研究区内浅层地下水中广泛分布溶解性有机碳与NH4+,并且两者浓度呈现正相关关系(R2=0.42,p<0.01),该区域地下水呈现强还原环境有利于DOC与NH4+的赋存。DOM荧光光谱谱图的平行因子分析(Parallel factor analysis,PARAFAC)结果表明:地下水与沉积物中DOM均含有类氨基酸与类富里酸组分。有机质组分荧光强度与氨氮浓度相关性结果表明:沉积物DOM中类富里酸和类氨基酸组分与氨氮均呈现强正相关性(R2=0.92~0.96,p<0.01);地下水中DOM类富里酸组分与氨氮呈现较强的正相关性(R2=0.62~0.66,p<0.01),而类氨基酸组分与氨氮的正相关性不明显。地下水中相较沉积物中,DOM的类富里酸和类氨基酸组分与氨氮相关性减弱,这种变化可能指示了类富里酸稳定赋存在含水层,而类氨基酸更容易分解消耗。沉积物中凯氏氮占总氮的87.04%~93.51%,表明沉积物中的氮主要为可以转变为NH4+的有机氮形态,因而满足了地下水中的NH4+由沉积物有机氮转化产生的必备条件。江汉平原沉积物中有机氮的分解是浅层地下水氨氮的重要来源。  相似文献   

13.
含海水污水的短程硝化反硝化   总被引:27,自引:3,他引:24  
采用SBR工艺通过控制游离氨(FA)浓度实现了含海水生活污水的短程硝化反硝化脱氮,并研究了不同海水盐度情况下,温度、pH值、NH4+-N负荷等诸因素对短程硝化反硝化的影响.试验结果表明:大生活用水范围内的海水盐度情况下仍可实现短程硝化反硝化,但不同海水盐度情况下的NH4+-N去除率与NHH4+-N负荷有关,随着海水占生活污水比例的增加NH4+-N负荷应逐渐减少.当NH4+-N负荷小于0.15kg/(kg·d)时,短程硝化的NH4+-N去除率仍可达到90%以上.升高温度有利于提高短程硝化脱氮效率,当温度从20℃升高到30℃时,亚硝化比增长速率增加1倍.反应温度应保持在25℃~30℃,pH值的最佳范围为7.5~8.5.较高的进水pH值有利于通过游离氨浓度控制亚硝酸型硝化的形成.  相似文献   

14.
BACF处理高氨氮进水的硝化与反硝化作用   总被引:4,自引:1,他引:3  
采用生物活性炭滤池(BACF)深度处理高NH4+-N微污染水源水.结果表明,BACF对NH4+-N的去除率与进水NH4+-N浓度有关,当进水NH4+-N<1.0mg/L时,去除率达95%以上;当进水NH4+-N较高(1.5~4.9mg/L范围)、进水DO≤10mg/L时,去除率随进水浓度的增加而下降,最低降到30%左右.限制生物活性炭滤池硝化作用的主要因素是进水的DO,由于硝化菌与异养菌的共同竞争,在滤床0.4m深度内DO被消耗殆尽,出水DO基本为0(小于0.2mg/L),滤床被自然分成好氧区与缺氧区,在好氧区发生硝化与有机物的降解反应,在缺氧区则发生反硝化反应,由于碳源受限,反硝化反应进行得不彻底,造成滤池出水NO2--N升高.在缺氧区内除存在反硝化菌外,还存在好氧的硝化菌与异养菌.  相似文献   

15.
2002年7月采集崇明东滩低潮滩沉积物样和水样,运用模拟实验研究沉积物再悬浮作用对沉积物-水界面三态氮和可溶磷交换行为的影响实验发现,在沉积物不断发生再悬浮的过程中,水体中三态氮的含量明显增加,其中NO3--N变化最为显著,升高浓度值达11.869μmol·L-1,NH4+-N增长2.1713μmol·L-1,NO2--N的释放约为0.2μmol·L-1,可溶磷的含量也有少量的增加.同时,再悬浮作用对沉积物-水界面三态氮和可溶磷的环境地球化学行为也有一定的影响,与静置状态相比,NH4+-N和NO3--N表现出与静置状态截然相反的变化规律,NO2--N受多种因素的影响,变化比较复杂,初期与静置状态相反而后表现一致.再悬浮颗粒物浓度也是制约沉积物-水界面三态氮和可溶磷变化的主要因子之一.实验结果显示,NH4+-N在前7h以内的变化和悬浮颗粒物浓度表现出较好的相关关系,后5h呈负相关关系;NO2--N和可溶磷在整个过程中与悬浮颗粒物浓度的变化都有着很好的相关性,只有NO3--N的变化与其关系比较薄弱.  相似文献   

16.
通过室内模拟培养,研究了孔石莼存在下过量无机氮对水体无机碳体系变化的影响及其机制.结果表明,无机氮的添加均会导致水体DIC、HCO-3P(CO2)的减少,pH和CO2-3的增加.当NO-3-N和NH+4-N浓度分别低于71 μmol·L-1和49.7 μmol·L-1时,随着营养盐浓度的增加,水体无机碳体系各组分的变化幅度增大,其中以NO3-3和NH4-3组变化最为明显,至实验结束DIC分别较空白组下降了151 μmol·L-1和232 μmol·L-1;当NO-3-N和NH+4-N浓度分别高于355 μmol·L-1和248.5 μmol·L-1时,则随着浓度的增加无机碳各组分的变化幅度减小.对无机碳的减少与孔石莼的生长(Δm)做相关性分析发现,二者密切相关(R=-0.91, P<0.000 1,n=11),当营养盐浓度促进孔石莼的生长时,水体DIC浓度下降,孔石莼干重增加;反之,当营养盐过量时,则会对其产生毒性作用,抑制其对无机碳的吸收.NH+4-N对海水无机碳体系的影响较NO-3-N明显.  相似文献   

17.
三江平原农田渠系中氮素的时空变化   总被引:6,自引:3,他引:3  
陆琦  马克明  卢涛  张洁瑜  倪红伟 《环境科学》2007,28(7):1560-1566
以三江平原开发强度不同的浓江上游段和别拉洪河中游段的农田排水渠系为研究对象,根据毛、农、斗、支、干5个渠道级别设采样点,分析TN、NH+4-N和NO-3-N在渠系中的时空变化规律及其影响机制.结果表明,别拉洪河中游段渠系中的TN、NH+4-N和NO-3-N浓度大于浓江上游段;TN、NH+4-N、NO-3-N的浓度峰值沿着渠系从低级向高级移动,浓江上游段峰值出现的最高级别是干渠,而别拉洪河中游段是斗渠;多等级的排水渠系对氮素起到了一定的截留作用,且别拉洪河中游段渠系对氮素的截留大于浓江上游段;2个渠系中的TN、NH+4-N的季节变化趋势相一致,6~9月逐月减少,而NO-3-N的季节变化不明显且没有规律;TN与NH+4-N、NO-3-N呈显著性正相关,浓江上游段TN与NH+4-N、NO-3-N之间的关系适合幂函数模型,而别拉洪河中游段适合三次曲线模型;通过多元回归分析得到别拉洪河中游段渠系中的TN浓度与NH+4-N、NO-3-N之间的关系模型可以解释78%的TN浓度.  相似文献   

18.
李红岩  张昱  高峰  余韬  杨敏 《环境科学》2006,27(9):1862-1865
利用微生物呼吸醌指纹谱图结合传统分析方法研究了水力停留时间(HRT从30 h逐步缩短至5 h)对活性污泥硝化性能及种群结构的影响.结果表明,对于NH4+-N浓度为500 mg·L-1的废水,在HRT≥20 h时,氨氮去除率可达98%以上.若继续缩短HRT,污泥流失严重,尽管进水NH4+-N浓度降低,出水NH4+-N和NO2  相似文献   

19.
弹性填料微孔曝气生物膜法修复污染水源除NH4+-N   总被引:7,自引:0,他引:7  
采用弹性填料微孔曝气生物接触氧化法对受污染的水源进行修复除NH4+-N效果研究.结果表明,在正常水温20℃~27℃条件下,当污染水源CODMn7~14mg/L,NH4+-N 0.7~2.0mg/L和生物修复工艺运行参数HRT为1.4h,气:水=0.5:1,DO为7~9mg/L时,生物修复工艺可去除水源中的NH4+-N为64%~95%;在较低水温7℃~12℃条件下,当污染水源CODMn6~11mg/L,NH4+-N 1.2~8.0mg/L和生物修复工艺运行参数HRT为1.4h,气:水=0.5:1,DO为8~10mg/L时,生物修复工艺可去除水源中的NH4+-N为40%~63%.  相似文献   

20.
地下水硝态氮污染已成为一个全球性的问题,直接影响到人们的生活用水和身体健康.通过对海伦地区157口农村饮用水井取样分析,探讨了该地区地下水硝态氮污染的时空特征及其影响因素.结果表明,地下水中硝态氮平均含量14.01 mg·L-1,超标率(≥10.00 mg·L-1)达到26.11%.地下饮用水硝态氮的污染表现出明显的空间分异特征,在空间上地下水硝态氮污染程度从高到低依次为中部漫川漫岗农业区、东北丘陵漫岗农业区,西南平川漫岗农业区.在此基础上,从水井本身性质和污染物来源两方面分析了地下水硝态氮污染影响因素.在水井本身性质方面,水井管道材料不同导致地下水硝态氮受污染程度不同,其中单节管道水井的污染程度显著低于多节管道,平均浓度分别为5.08、 32.57 mg·L-1,超标率分布为12.26%、 82.35%;整个地区水井硝态氮污染程度与水井绝对深度无显著关系,但在28个同一取样单元,深水井污染程度显著低于浅水井,其中单节管深井、单节管浅井、多节管深井、多节管浅井的平均浓度分别为1.84、 12.02、 25.14、 45.61 mg·L-1.分析污染物来源可以发现,污染程度较高的地区多处于氮肥施用量较高、户均家禽牲畜量较多的地区,表明地下水硝态氮污染与化肥施用量以及家禽牲畜排泄量呈一定的正相关关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号