首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 129 毫秒
1.
采用连续搅拌釜式反应器(CSTR)成功启动了餐厨垃圾与剩余污泥混合发酵平行系统,重点探究了不同污泥停留时间(SRT)缩减幅度对于餐厨垃圾和剩余污泥混合发酵系统的影响。结果表明,较大幅度的缩减SRT(8.3d)提升反应器运行负荷,不利于反应器的稳定运行;随着反应器运行负荷的增加,SRT缩减幅度应逐渐降低(5~0.9d),能够取得餐厨垃圾和剩余污泥混合发酵系统的高负荷稳定运行。经过282d的运行,CSTR混合发酵系统能够在SRT为9.1d,进料负荷(以COD计)为(12.9±1.5)g·(L·d)-1的条件下稳定运行,相应的甲烷产量为3.94~4.25L·(L·d)-1,甲烷产率(以COD计)为288~302mL·g-1,pH和挥发性脂肪酸(VFA,以COD计)分别稳定在7.80~7.83和0.32~0.39g·L-1。此外,还探究了高负荷条件下餐厨垃圾和剩余污泥混合发酵污泥特性,结果表明,餐厨垃圾和剩余污泥混合发酵系统甲烷转化途径以乙酸转化途径为主,具有较高的乙酸、丙酸、丁酸和戊酸的产甲烷活性和辅酶F420的浓度。  相似文献   

2.
造纸污泥和餐厨垃圾混合发酵联产氢气和甲烷试验   总被引:3,自引:0,他引:3  
采用联产氢气和甲烷复合工艺,对造纸污泥和餐厨垃圾进行中温-高温混合厌氧消化,通过设计两种物料的不同配比(质量比,以VS计),研究了不同比例混合的物料联产氢气和甲烷的性能.试验结果表明,造纸污泥和餐厨垃圾混合比例为2:2的反应器总气体产率最高,达496.78mL·g-1(其中,氢气64.48mL·g-1,甲烷432.3mL·g-1,均以VSfed计,下同),其VS去除率也最高,达41.33%,在反应30h后和产甲烷18d后分别完成了80%的氢气产量和甲烷产量,而单纯造纸污泥总气体产率为144.99mL·g-1,单纯餐厨垃圾总气体产率为80.4mL·g-1.综合氢气和甲烷产率、产气速率、VS去除率等指标发现,造纸污泥和餐厨垃圾混合发酵联产氢气和甲烷的最佳配比为2:2.  相似文献   

3.
污泥和餐厨垃圾联合干法中温厌氧消化性能研究   总被引:8,自引:3,他引:5  
采用完全混合式反应器R1~R5(进料脱水污泥与餐厨垃圾的湿重混合比分别为1:0、4:1、3:2、2:3和0:1),在半连续运行的状态下,考察了停留时间(solid retention time,SRT)为20 d时脱水污泥和餐厨垃圾混合干法厌氧消化的产气性能、有机质降解性能和系统稳定性.结果表明,随着进料中餐厨垃圾所占比例的增大,系统的产气率和甲烷产率呈上升趋势,产气中甲烷含量呈下降趋势,污泥中添加餐厨垃圾有助于在利用原有消化罐容积的前提下显著提高有机负荷和体积产气率.餐厨垃圾比例越大,混合物料的水解速率常数越大,有机质降解率越高,R1~R4中有机质水解速率常数分别为0.25、0.61、1.09和1.56 d-1,有机质降解率分别为37.4%、50.6%、60.7%和68.2%,水解速率差异是导致VS降解率不同的主要原因.随着餐厨垃圾比例的增大,系统内pH、总碱度(total alkalinity,TA)、总氨氮(total ammonia nitrogen,TAN)和游离氨氮(free ammonianitrogen,FAN)呈下降趋势,当污泥中添加的餐厨垃圾提高60%时,系统内pH、总碱度、总氨氮和游离氨氮分别下降6%、16%、22%和75%.游离氨和Na+分别是影响污泥和餐厨垃圾单独干法消化稳定性的重要因素,污泥和餐厨垃圾混合消化可降低潜在抑制性物质的浓度,显著提高系统稳定性.  相似文献   

4.
污泥和餐厨垃圾共消化具有提高污泥稳定化的作用,为进一步强化污泥与餐厨垃圾共消化效果,提出高温预处理强化污泥与餐厨垃圾中温厌氧共消化的运行策略,并从宏观和微观2个层面探讨了共消化系统的运行机制。结果表明:污泥与餐厨垃圾经过1 d高温预处理后,其SCOD/TCOD从33.9%提高到65%;中温厌氧消化时的甲烷产率和有机物去除率高达0.54 L/g和78.8%(SRT=20 d)、0.76 L/g和56.6%(SRT=15 d),略高于某实际餐厨废弃物及市政污泥协同处理项目一期的0.53 L/g和53.5%,该项目采用150~170℃高温、1 MPa高压热水解进行预处理;采用Illumina MiSeq测序技术得出水解酸化菌属如Porphyromonadaceae、Draconibacteriaceae、Eubacterium和Romboutsia在高温预处理后的共消化系统中得到富集,促进了系统的水解和产酸过程,为系统中产甲烷菌Archaea提供了丰富的基质,强化了污泥与餐厨垃圾共消化产气效果。  相似文献   

5.
比较了厌氧动态膜生物反应器(DMBR)与完全混合式反应器(CSTR)在处理餐厨垃圾(FW)和剩余污泥(WAS)时的发酵产气过程,验证了高负荷餐厨垃圾和剩余污泥混合发酵时DMBR系统运行的稳定性,考察了动态膜(DM)基材孔径(300目、200目和100目)对DMBR运行性能及其固液分离效果的影响.结果表明:一体式DMBR能够强化餐厨垃圾和剩余污泥混合发酵的高负荷稳定运行,DMBR过膜滤液中平均总挥发性脂肪酸(TVFA)为86.1 mg·L-1,低于CSTR排泥中TVFA的浓度(527.3 mg·L-1).当动态膜基材孔径为300目时,DMBR过膜滤液中总有机物(TCOD)为(1.6±1.1)g·L-1,相应的固液分离效果优于200目((3.2±1.9)g·L-1)和100目((32.0±1.3)g·L-1)动态膜基材,即当动态膜基材孔径为100目时,DMBR过膜滤液中TCOD比300目动态膜基材高6.7倍.与200目动态膜基材孔径相比,300目动态膜基材相应的跨膜压差增长缓慢,反洗频率和运行能耗均较低,而100目动态膜基材孔径过大,固液分离效果较低.因此,在高负荷餐厨垃圾和剩余污泥混合发酵系统中,选用300目动态膜基材形成的动态膜过滤效果最优.此外,本文还对比分析了有机废物和废水处理领域中较优的动态膜基材孔径及DMBR的应用情况,为拓展DMBR在有机物处理领域的应用提供依据.  相似文献   

6.
以中温餐厨垃圾(FW)厌氧消化反应器为研究对象,结合稳定运行过程中的微生物群落结构特征,考察了两种常见的厌氧消化反应器—完全混合式反应器(CSTR)和有回流的推流式反应器(R-PFR)的运行效率和稳定性.结果表明,两种构型的反应器均能在3.0 kg·m-3·d-1(以VS计)负荷下稳定高效地运行.R-PFR具有更稳定的稳定性指数,如总碱度(TA)和挥发性脂肪酸比TA值(VFA/TA),以及更低的氨氮(TAN)和游离氨(FAN)浓度,但产气效率(如比甲烷产率(SMP))不及CSTR.R-PFR中以Chloroflexi门(37.35%)和Firmicutes门(31.22%)为优势细菌,而CSTR中以Bacteroidetes门(31.14%)与Firmicutes门(44.41%)为优势细菌.CSTR和R-PFR均以Methanosaeta属为优势产甲烷菌(98.72%和84.90%),乙酸型产甲烷途径为主要的产甲烷途径.但CSTR中除Methanosaeta属以外还有一定丰度的混合营养型的Methanosarcina,以及氢营养型Methanospirillum和Methanolinea.CSTR中具有对VFA和TAN更具耐受性的产甲烷菌群,更有利于餐厨垃圾产甲烷过程的稳定进行.由于R-PFR的敏感性较低,有利于处理剧烈变化的底物,但R-PFR容易出现严重的局部酸化现象,不利于长期处理过高负荷的易降解底物(如餐厨垃圾).这些结果可为优化餐厨垃圾厌氧消化工艺设计提供基础依据.  相似文献   

7.
采用厌氧膜生物反应器(anaerobic membrane bioreactor,AnMBR)进行剩余污泥与餐厨垃圾的共消化,研究其有机物的去除特性、产气性能和微生物群落组成等运行性能.结果表明,反应器运行过程中有机负荷(organic loading rate,OLR,以VS计)稳定在0.59~0.64 kg·(m~3·d)~(-1),挥发性固体(volatile solids,VS)降解率由单消化17.5%上升至共消化40%,COD截留率为95.3%.消化液含固率提高了3.9倍,最终CH_4体积分数稳定在60%,CH_4产量(以COD_(added)计)为78.7 mL·g~(-1).跨膜压差(transmembrane pressure,TMP)和平均Flux分别维持在-3.1~-2.7 kPa和0.106 L·(m~2·h)~(-1),膜污染较轻.16S rRNA微生物多样性分析表明,AnMBR内部厌氧消化细菌主要是Proteobacteria(变形菌门)、Bacteroidetes(拟杆菌门)和Cloacimonetes(阴沟单胞菌门),产甲烷菌中的优势菌科为Methanobacterium(甲烷杆菌科),优势菌属为Methanosaeta(甲烷鬃毛菌属)和Methanolinea(甲烷绳菌属).这将为AnMBR处理污泥及其它高含固率废物流的稳定性和运行性能研究提供有力的理论参考依据,进而为生物质资源化和能源危机提供有效解决途径.  相似文献   

8.
用生活污水在常温下培养厌氧颗粒污泥的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
用COD为300mg/L左右的生活污水在常温下(>17·C)启动5L升流式厌氧污泥床(UASB)反应器.接种消化污泥5.6keSS/m3,初始有机容积负荷为0.6kgCOD/(m3·d),水力停留时间为8h.稳定后逐步增加有机容积负荷.一个月后即有颗粒污泥出现,50d后反应器达到稳定的处理效果.运行145d后,污泥中大于0.5mm的颗粒污泥占总重量的73.5%,最大粒径可达3mm,比重为1.07SVI在20左右,污泥中产甲烷菌主要是索氏甲烷丝菌.用颗粒化后的反应器处理生活污水时,水力停留时间可短至6~4h,当水温不低于17℃时,出水COD均低于100mg/L,可达到排放要求。   相似文献   

9.
研究了餐厨垃圾与污水污泥在不同混合比例、不同污泥停留时间条件下的共消化产酸效果。试验结果表明:当餐厨垃圾与污水污泥TS比为1∶3时,SRT=1 d的反应器酸化效率最高,且乙酸含量占优,产酸效果较佳;当TS之比为1∶1时,各反应器产酸量普遍高于1∶3时,其中SRT=5 d产酸反应器,最高酸化效率达5.94,产酸量最大,且乙酸含量占优,运行效果最佳。  相似文献   

10.
餐厨垃圾渗滤液强化城市污泥消化作用研究   总被引:1,自引:0,他引:1  
针对城市污水厂污泥热值低、C/N比低,厌氧消化效率低的问题,结合餐厨垃圾渗滤液中有机物含量高、C/N比高的特点,研究了城市污泥、餐厨垃圾渗滤液共消化过程.结果表明:垃圾渗滤液的添加促进了污泥厌氧消化甲烷气的产生,添加生、熟垃圾渗滤液的消化污泥累计产甲烷量分别为542 mL、2102 mL,是未添加渗滤液(参照样)的污泥消化产气量的1.2倍、4.6倍,甲烷单位产量分别为261(参照样)、675.8、971.0L·kg-1(以VS计);同污泥单独厌氧消化相比,添加生、熟垃圾渗滤液能强化污泥VS/TS的去除,其去除率分别为15.3%和26.3%;通过共消化,污泥上清液的SCOD去除率均高于90%,出水COD也基本一致,并未因垃圾渗滤液的添加而发生大的波动.污泥与餐厨垃圾渗滤液的共消化能够促进有机物的去除,强化甲烷气的产生,实现了污泥与渗滤液的稳定化、无害化和资源化.  相似文献   

11.
The organic matter degradation process during anaerobic co-digestion of municipal biomass waste (MBW) and waste-activated sludge (WAS) under different organic loading rates (OLRs) was investigated in bench-scale and pilot-scale semi-continuous stirred tank reactors. To better understand the degradation process of MBW and WAS co-digestion and provide theoretical guidance for engineering application, anaerobic digestion model No. 1 was revised for the co-digestion of MBW and WAS. The results showed that the degradation of organic matter could be characterized into three different fractions, including readily hydrolyzable organics, easily degradable particulate organics, and recalcitrant particle organics. Hydrolysis was the rate-limiting step under lower OLRs, and methanogenesisis was the rate-limiting step for an OLR of 8.0 kg volatile solid (VS)/(m^3·day). The hydrolytic parameters of carbohydrate, protein, and lipids were 0.104, 0.083, and 0.084 kg chemical oxygen demand (COD)/(kg COD·hr), respectively, and the reaction rate parameters of lipid fermentation were 1 and 1.25 kg COD/(kg COD.hr) for OLRs of 4.0 and 6.0 kg VS/(m^3·day). A revised model was used to simulate methane yield, and the results fit well with the experimental data. Material balance data were acquired based on the revised model, which showed that 58.50% of total COD was converted to methane.  相似文献   

12.
零价铁和微波预处理组合强化污泥厌氧消化   总被引:3,自引:3,他引:0  
以中温(100℃)常压的微波预处理结合零价铁投加为对象,考察了低投加量5. 19~41. 51 g·kg~(-1)(以TS计)、高投加量83. 35~853. 46 g·kg~(-1)(以TS计)下的零价铁对微波预处理污泥厌氧消化的进一步强化作用.结果表明,微波预处理与零价铁组合可使污泥厌氧消化产甲烷潜势提升17%~23%.零价铁对微波预处理后污泥厌氧消化具有一定的促进作用,且提升了厌氧消化初期(1~4 d)产甲烷速率,零价铁投加量为31. 13 g·kg~(-1)(以TS计)时,产甲烷潜势提升了7. 42%,反应第2 d的产甲烷速率提高了11. 02%.高投加量的零价铁并未表现出更好的强化效果.零价铁促进了厌氧消化初期溶解性有机物的释放,投加量为31. 13 g·kg~(-1)(以TS计)时,溶解性蛋白质较单独预处理组提高21. 16%,并且零价铁投加加快了乙酸、异丁酸、异戊酸的消耗.零价铁的投加,导致上清液中的磷酸根和硫酸根浓度降低,相应地,上清液中铁元素的浓度反而下降,说明零价铁的形态转化后,易与磷酸盐、硫反应形成沉淀,这可能是铁投加作用效果不明显的重要原因.  相似文献   

13.
杨娜  陈秀荣  林逢凯  黄华  章斐  赵骏  丁毅 《环境科学》2014,35(4):1414-1420
在处理双酚A(BPA)模拟废水的序批式活性污泥系统(SBR)反应器中,保持进水COD含量均为300 mg·L-1左右,通过改变水力停留时间HRT从12~8 h,污泥龄SRT从20~10 d,考察污泥有机毒性和其他水质指标的变化.试验分析了空白组和40 mg·L-1初始浓度BPA对照组在不同工况条件下周期末出水COD值、污泥有机毒性分布规律以及稳定期单周期内COD值和污泥有机毒性的变化趋势.结果表明,缩短水力停留时间和污泥龄有利于活性污泥降解BPA,并消减稳定期污泥的有机毒性;出水COD稳定在50 mg·L-1左右,且水相和泥相均无BPA残留.在应用PCR-DGGE技术分析SBR系统内微生物菌群多样性和不同样品间的相似性过程中,得出污泥总毒性抑制率与微生物多样性呈负相关性关系,进水成分的不同和运行参数改变是导致污泥总毒性差异的主要原因.  相似文献   

14.
针对剩余活性污泥和餐厨垃圾厌氧联合消化产气效率不高的问题,通过投加微米零价铁,研究其对厌氧联合消化的强化效果及作用机制.结果说明,零价铁的添加强化了厌氧联合消化的产甲烷阶段,但对溶解、水解及酸化阶段没有明显影响.当零价铁的投加量为10 g·L-1时,经过15 d的厌氧消化,累积甲烷产量(以VS计)达到238.68 mL·g-1,相比于空白组提高了20.05%.机制分析表明:零价铁提高了系统的电子传递体系(ETS)活性,当零价铁投加量为10 g·L-1时,最终的ETS活性(以INTF/TS计)达到21.50 mg·(g·h)-1,而空白组仅为13.43 mg·(g·h)-1.此外,零价铁还强化了细菌和产甲烷菌之间的直接性种间电子传递(DIET),微生物群落的变化显示DIET相关的微生物,例如SyntrophomonasMethanosarcinaMethanobacterium,在有零价铁添加的条件下显示出更高的丰度.  相似文献   

15.
剩余活性污泥和厨余垃圾的混合中温厌氧消化   总被引:23,自引:2,他引:21  
付胜涛  于水利  严晓菊  付英 《环境科学》2006,27(7):1459-1463
研究了混合比例和水力停留时间对剩余活性污泥和厨余垃圾混合中温厌氧消化过程的影响,混合进料按照TS之比分别采用75%∶25%、50%∶50%和25%∶75%,HRT为10d、15d和20d.结果表明,在整个运行期间,进料VS有机负荷为1.53~5.63g/(L.d),没有出现pH降低、碱度不足、氨抑制和VFA积累等抑制现象.进料TS之比为50%∶50%时,具有最大的缓冲能力,稳定性和处理效果都比较理想,相应的挥发性固体去除率为51.1%~56.4%,单位VS的甲烷产率为0.353~0.373 L/g,甲烷含量为61.8%~67.4%.  相似文献   

16.
欧阳二明  王伟 《环境科学》2010,31(10):2405-2410
采用高温ASBR处理水热改性污泥.结果表明,高温ASBR处理水热改性污泥的有机负荷(COD)由7.762kg/(m3·d)提升到13.106kg/(m3·d)后,会导致反应器内VFA的积累,pH和产气量的下降,反应器出现"酸化"现象.这种酸化现象属可恢复性酸化.系统恢复后,ASBR的有机负荷(COD)能达到10kg/(m3·d).高温ASBR在有机负荷(COD)为2.523、4.196、7.762、10.091kg/(m3·d)时的产气率(CH4/COD投入)分别为250、247、219、187mL.高温ASBR的有机负荷OLR与产甲烷速率MPR和COD产气率之间都呈现良好的线性关系,随着OLR的增加,产甲烷速率增大,COD产气率减少.  相似文献   

17.
污泥龄及pH值对反硝化除磷工艺效能的影响   总被引:2,自引:1,他引:1  
以SBR成功富集后的反硝化聚磷菌(DPBs)为研究对象,分别考察了污泥龄(SRT,35、25、15 d)及pH值(7.5、8.0、8.5)对反硝化除磷过程的影响.结果表明,SRT从35d缩短至25d,使活性污泥浓度(MLVSS)从2821 mg·L-1降低为2301 mg·L-1,而污泥负荷(F/M,以COD/MLVSS计)从0.256kg·(kg·d)-1增加至0.312 kg·(kg·d)-1,虽然净释磷量及净吸磷量有所下降,但是由于污泥活性的增加,此阶段厌氧释磷、缺氧吸磷及比反硝化速率均达到最高,分别为25.07、15.92及9.45 mg·(g·h)-1,污泥含磷率从4.78%升为5.33%,出水PO43--P浓度保持在0.5 mg·L-1以下,即PO43--P去除率稳定在95%以上;当SRT进一步缩短为15d时,MLVSS低至1448 mg·L-1,污泥中DPBs占聚磷菌(PAOs)的比例从82.4%骤降为65.7%,表明过短的SRT使得DPBs逐渐从系统中流失,此阶段污泥含磷率降至3.43%,释磷、吸磷及比反硝化速率亦出现不同程度的降低.随着pH值的升高(7.5~8.0),厌氧释磷及缺氧吸磷速率也升高,pH值为8.0时分别达到25.86mg·(g·h)-1和16.62 mg·(g·h)-1;当pH超过8.0后,除磷效率快速下降,推测为磷化学沉淀导致.  相似文献   

18.
采用有效容积为700 L的推流式生物沥浸反应器对城市污泥进行连续14 d的生物沥浸处理,利用折流方式将反应器从进泥端到排泥端沿程方向依次划分为1~6区.对不同污泥停留时间(SRT)条件下反应器运行时各区的pH.溶解氧(DO)值及污泥的脱水性能(用污泥比阻SRF表征)进行了系统的比较研究.结果表明,当反应器曝气量为1.2 m3.h-1,微生物营养剂加入量为4 g.L-1,SRT为2.5 d时,反应系统在72 h时运行达到稳定,相应反应器各区的pH分别为5.00、3.00、2.90、2.70、2.60与2.40.污泥的比阻值由1区的0.64×1013m.kg-1逐渐降低至6区的0.33×1013m.kg-1.当SRT为2 d时,生物沥浸系统在120 h达到稳定,各区相应的pH分别为5.10、4.10、3.20、2.90、2.70与2.60.相应的DO值分别为0.43、1.47、3.29、4.76、5.75与5.88 mg.L-1.污泥的比阻值由1区的0.56×1013m.kg-1逐渐降低至6区的0.20×1013m.kg-1.当SRT为1.25 d时,运行第48 h,反应器6区pH升高至3.00.污泥沿程流动过程中,微生物菌群对营养剂利用率降低,导致系统失衡.生物沥浸反应器污泥停留时间越长,推流式生物沥浸系统越易达到稳定.停留时间2 d可以作为工程应用时的较优污泥停留时间.生物沥浸后将污泥收集经过增强聚丙烯厢式压滤机脱水至含水率60%以下,此研究将为城市污泥生物沥浸后期工程化运行提供必要的参数支持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号