首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
我国人为源挥发性有机物排放清单的建立   总被引:43,自引:5,他引:38       下载免费PDF全文
以2000 年为基准年,使用排放因子法估算了75 种人为源挥发性有机物(VOC)的年排放量,建立了我国VOC 人为源的县级排放清单.研究表明,我国2000 年VOC 的排放总量为8273Gg,其中流动源排放2710Gg、溶剂使用排放2150Gg、固定燃烧源排放1600Gg、工艺过程排放1190Gg、石油精炼及运储排放量为498Gg、混杂源125Gg.排放量最高的5 个省依次为广东、山东、江苏、河北、河南.  相似文献   

2.
珠江三角洲地区重点VOC排放行业的排放清单   总被引:37,自引:5,他引:37       下载免费PDF全文
根据收集的珠江三角洲(珠三角)重点挥发性有机物(VOC)排放行业的活动水平数据,采用近年来VOC估算方面的研究成果及估算方法,建立了该地区2006年重点挥发性有机物排放行业和分城市的VOC排放清单.结果表明:珠江三角洲地区2006年重点挥发性有机物排放行业VOC排放总量为416.9kt,其不确定性(95%置信区间)为302.5~689.6kt(-31%~58%);家具制造业、建筑涂料使用、制鞋业是珠江三角洲重点VOC排放行业的主要来源,分别占总排放量的23.3%,21.2%和17.5%;东莞是珠江三角洲地区2006年重点挥发性有机物排放行业VOC排放量贡献最大的城市,其次是深圳,两者排放量分别占总排放量的23.6%和21.9%,主要的排放亦来源于家具制造业、建筑涂料使用与制鞋业.缺乏本地排放因子和良好的活动水平数据是本研究VOC排放量估算中主要的不确定性来源.  相似文献   

3.
农田肥料(氮肥、复合肥、有机肥)是我国N2O最大的排放源,其估计直接决定了排放总量的可靠性.为此,重新评估了中国农田肥料N2O的直接和间接排放,选择2008年县域尺度活动数据、具有空间分异性的本土排放因子和参数来重新评估其排放规模、结构、空间格局及不确定性;通过与IPCC、EDGAR等国内外研究结果的对比分析,阐述该排放清单的可靠性和全面性.结果表明,2008年我国农田肥料N2O排放总量为617.1 Gg(处于213.7~1149.2 Gg之间),其中,氮肥直接排放为458.8 Gg(74.5%),有机肥直接排放为121.0 Gg(19.6%),挥发沉降和淋溶径流造成的间接排放分别为28.0 Gg(4.5%)和9.3 Gg(仅占1.5%左右).排放集中在华北平原、东北的松辽平原、华中的淮河流域和四川盆地,以及华南的珠三角、雷州半岛和台湾地区的县(区、市、旗),主要分布在江苏(52.4 Gg)、四川(48.0 Gg)、湖北(43.2 Gg)、广东(40.8 Gg)、河南(39.6 Gg)、安徽(38.4 Gg)、湖南(31.6 Gg)、山东(28.9 Gg),其累积规模为全国总量的52%,其中,近50%的贡献源于164个县(区、市、旗).本排放清单具有更高的准确度和空间分辨率,而基于IPCC (2006)排放因子及参数的估计排放总量高估了约8.3%,对直接排放和间接排放则分别低估了12.5%和高估了330%.此外,在空间格局上还表现出高值区低估和低值区高估的特点,在491和1225个县(区、市、旗)的相对偏差超过了100%和50%,特别指出的是,间接排放在大部分县(区、市、旗)的相对偏差达到135%左右.  相似文献   

4.
通过收集各类S/IVOCs排放源的活动水平数据,选取合适的排放因子和估算方法,建立了2019年江苏省半/中等挥发性有机物(S/IVOCs)排放清单,分析了江苏省各地市以及各排放源的排放特征.结果表明,2019年江苏省排放S/IVOCs约637.31 Gg,其中工业源排放最多,占比达到63.42%,其次为道路移动源(22.23%),非道路移动源占比最少(0.06%).江苏省13地市中,苏州市S/IVOCs排放量最高(161.86 Gg),占江苏省S/IVOCs排放总量的25.40%;单位面积排放强度苏州市最高(18.70 t·km-2),而单位GDP排放强度连云港市最高(22.45 t·亿元-1).江苏南部S/IVOCs的排放量较中部和北部地区高,各地市S/IVOCs总排放量、单位面积排放强度和单位GDP排放强度相差均较大.全省S/IVOCs排放量的不确定范围在-88.46%~224.38%,其中生物质燃烧源的不确定范围最大,为-96.40%~277.17%.  相似文献   

5.
中国城镇污水处理厂温室气体排放时空分布特征   总被引:7,自引:2,他引:5  
城镇污水处理厂由于运行过程中能够大量产生二氧化碳(CO_2)、甲烷(CH_4)和氧化亚氮(N_2O),而被视为重要的人为温室气体释放源.采用基于污染物削减量的排放因子法建立了2014年中国城镇污水处理厂温室气体(CO_2、CH_4和N_2O)排放清单,并分析温室气体排放的时空分布和影响因素.结果表明,2014年中国城镇污水处理厂温室气体排放总量(以CO_2-eq计)为7 348.60 Gg,CO_2、CH_4和N_2O排放量分别为6 054.57 Gg、27.47 Gg(769.08 Gg,以CO_2-eq计)和1.98 Gg(524.95 Gg,以CO_2-eq计);各省份间排放量差异明显,华东地区排放量较高,西北地区排放量较低,西藏几乎没有排放,2005~2014年这10年间中国通过城镇污水处理厂排放的温室气体总量增长了229.4%,CO_2、CH_4和N_2O的涨幅分别为217.9%、217.9%和520.3%;地区经济的发展水平和污水处理量与当地城镇污水厂温室气体释放量相关性最大,人均蛋白质供应量与城镇污水厂N_2O产生量密切相关.  相似文献   

6.
利用林业二类调查蓄积资料,广泛调研植物源挥发性有机物(BVOCs)排放因子的最新研究成果,运用光温影响模型对北京森林BVOCs排放特征进行研究,并分析其对区域空气质量的影响.结果显示,2015年北京森林BVOCs排放量平均值为27.97×109g C/a,变化域值范围为(9.46~76.45)×109g C/a,其中异戊二烯、单萜烯和其他VOCs贡献率分别为75.09%、15.62%和9.29%.不同树种间BVOCs排放量差异较大,杨树和栎树是主要的异戊二烯排放源,贡献率分别为63.16%和25.92%;油松是主要的单萜烯排放源,贡献率为40.90%.不同龄级林对BVOCs排放的贡献不同,中龄林贡献率最大,占总量的39.14%.BVOCs排放呈夏季高、冬季低的特征,春、夏、秋、冬排放量分别占全年的12.55%、77.48%、9.76%和0.21%.BVOCs对O3生成潜势的贡献量为240.51×109g,其中异戊二烯占92.66%,是主要的贡献者;对二次有机气溶胶(SOA)生成潜势的贡献量为1.73×109g,异戊二烯和单萜烯分别占24.26%和75.73%.研究表明,北京森林BVOCs排放会导致大气年均SOA浓度增加0.94μg/m3,O3浓度上升9.01μg/m3,特别是对夏季O3污染具有较大贡献.建议城市绿化时应从有助于空气质量改善的角度考虑树种的VOCs排放能力.  相似文献   

7.
宁波人为源VOC清单及重点工业行业贡献分析   总被引:13,自引:9,他引:4  
李璇  王雪松  刘中  吴梁  翁燕波  胡杰 《环境科学》2014,35(7):2497-2502
宁波是我国华东地区的重要工业城市,也是长江三角洲南翼的经济中心.近年来,宁波工业活动的VOC排放及其对空气质量和人体健康的不利影响越来越受到关注.通过收集宁波市各类VOC人为源的活动水平数据,采用"自下而上"的估算方法,建立了宁波地区2010年人为源VOC的排放清单,并进一步分析了宁波市排放VOC的重点工业行业及其贡献大小.研究结果表明,宁波市2010年人为源的VOC排放总量为17.6万t,其中工业源、机动车排放源和居民源是宁波市人为排放VOC的主要来源,分别占总排放量的62.0%、17.2%和15.5%.而在工业源中,合成材料制造业、精炼石油产品制造业是宁波市两个重点VOC排放工业行业,其排放量分别占宁波VOC总量的18.6%和13.1%,反映出石油化工企业对宁波市VOC排放的影响程度.  相似文献   

8.
近年来的研究表明,在BC(黑碳)和OC(有机碳)之间,还存在着一种有弱吸光能力的OC,因大多显棕黄色而被称为BrC(brown carbon,棕色碳). 广泛存在的秸杆焚烧和冬季大量民用燃煤的使用,使国内BrC排放严重,但鲜见对其排放量的测算. 采用七波段黑碳仪(aethalometer)方法,对夏季小麦秸杆焚烧过程及冬季民用炉燃煤过程产生的烟气进行现场监测,根据BrC与BC的光谱关联性差别,分化出RBrC/BC(总光学衰减中BrC和BC的相对贡献). 结果表明:麦秆焚烧和民用燃煤烟气的RBrC/BC分别为1.754±0.278和0.183±0.142. 借助RBrC/BC值,结合现有的BC排放清单(2000年),初步推算出中国民用燃煤和秸杆田间焚烧BrC的排放总量(以BC当量计,下同)为(270.6±101.6)Gg,接近同期BC排放量的一半;其中秸杆焚烧的BrC排放量为(175.4±27.8)Gg,约占二者总量的65%;民用燃煤的BrC排放量为(95.2±73.7)Gg,约占35%. 该研究结果可为更全面的BrC排放测算奠定基础,并为研究BrC的大气化学及辐射强迫提供依据.   相似文献   

9.
中国森林生态系统的异戊二烯排放研究   总被引:7,自引:4,他引:3  
植被的非甲烷碳氢化合物(non-methane hydrocarbon,NMHC)排放对大气环境变化有重要的影响,异戊二烯是对流层最主要的NMHC之一.本文应用Guenther的光温影响模型,对1993年中国森林生态系统的异戊二烯排放量进行了估算.结果发现:中国森林生态系统异戊二烯总的排放量约为0.03~8.6Tg/a,对全球碳的贡献量以碳计为0.026~7.589Tg/a,年最大可能排放量约占全球年排放总量的1.5%~4.3%;排放有较大的空间(地域)差异,年排放大值区分布在南方多林区和东北地区,以云南和黑龙江2省最大,对全国排放的贡献率分别为22%和11%;不同植被对总排放量的贡献率有较大差异,贡献率较大的杨树和栎类分别达到52.28%和44.29%.  相似文献   

10.
利用Williams等和Guenther等的模型估计中国地区NOx和VOC的自然源排放.所得清单显示土壤NOx排放总量(以N计)为225.75 Gg;植被VOC年排放总量(以C计)为13.23 Tg,其中异戊二烯、单萜烯、其它VOC分别为7.77、1.86、3.60 Tg;排放有明显季节变化和空间变化.运用中尺度气象模式MM5以及光化学模式Calgrid研究这些排放在不同季节对对流层化学的影响.结果表明,O3、NOx、HNO3和PAN的全国平均浓度在土壤NOx排放影响下分别增加15.3%、15.7%、25.5%和6.5%;在植被VOC排放影响下改变5.6%、-4.9%、-19.3%和142.3%;在两者综合影响下增加26.1%、8.8%、4.3%和177.9%;浓度变化在夏季明显强于其它季节.自然源对中国地区光化学污染物空间分布有不同程度的影响,这种影响同区域气象条件、源排放和NMHC/NOx比值等因素有关.NOx和VOC的自然源排放对光化学特性影响显著,在光化学模拟过程中不容忽视.  相似文献   

11.
印刷业一直是中国工业源挥发性有机物(VOCs)排放和管控的重点行业.然而,由于原料和工艺的复杂性和多样性,印刷业VOCs精细化排放清单及其减排潜力尚未被很好表征.考虑印刷业以往被忽视的半/中等挥发性有机化合物(S/IVOCs)排放,对现有VOCs排放系数进行改进,建立了2011~2020年中国印刷业VOCs精细化排放清单.并以2020年为基准年,通过情景分析法,预测了2030年不同情景VOCs排放量并分析其减排潜力.结果表明,2011~2020年中国印刷业VOCs排放量呈现先稳增长和下降的趋势,2020年相对2011年增加了29.6%,年均增长率为3.0%,主要与日益增长的印刷业市场消费需求和缺乏有效的行业VOCs综合治理措施有关.2020年中国印刷业VOCs排放量为86.1万t,凹版印刷和包装复合是贡献最大的两大工艺,占比分别为52.0%和28.7%.广东、江苏和浙江是VOCs排放贡献最大的省份,三省合计占比44.12%,是中国印刷业VOCs管控的重点地区.2030年印刷业基准情景、一般控制情景和严格控制情景VOCs排放量分别为118.7、 68.4和36.2万t,相对2020年分别...  相似文献   

12.
魏巍  王书肖  郝吉明 《环境科学》2009,30(10):2809-2815
基于各行业的涂料当前消费量和未来消费预测,以及各行业使用涂料的挥发性有机物(VOC)含量,建立了分省、分行业、分化学组分的排放清单模型,获得2005~2020年中国涂料应用过程的VOC排放清单.结果表明,2005年,我国涂料应用共排放VOC约1 883 kt,以苯系物、醇、酯、醚、酮5类化合物为主,平均增量反应活性指标(以O3/VOC计)约为3.6 g/kg,其中31%的VOC为有毒物质.如不加强控制,到2020年该部门VOC排放量将激增至5 673 kt;因此,国家应及时开展其排放控制行动.排放控制情景分析表明,通过提高涂料产品品质达到发达国家上世纪末水平,且要求新建规模企业安装有机废气末端处理设施,2020年该部门VOC排放量可控制在3 519 kt;通过进一步将建筑涂料和木器涂料改进到当前欧美发达国家先进水平,且规模企业均安装有机废气末端处理设施,2020年该部门VOC排放量有可能控制在2 243 kt.2种控制情景下所排放VOC的化学毒性和大气氧化活性均得到了有效改善.  相似文献   

13.
采用红外掩日通量遥感监测(SOF)技术分别在2014年5月~2015年12月和2021年10月监测了我国7座大型炼油厂(其中6座原油年加工量均超过1000万t)非甲烷烷烃排放通量(kg/h)及分布.每座炼油厂监测3~8d,测量18~73次,总计获得328个排放通量测量数据,根据国内炼油厂VOCs排放烟羽中非甲烷烷烃质量分数估算了VOCs排放量,结合监测期间实际原油加工量计算了非甲烷烷烃和VOCs排放系数.结果显示:7座炼油厂2014~2015年的非甲烷烷烃排放系数测定值为0.016%~0.11%,平均为0.081%;VOCs排放系数估算为0.020%~0.14%,平均为0.10%.无组织排放约占炼油厂非甲烷烷烃排放总量的70%以上,其中轻油贮罐排放占比过半.国内7座炼油厂2014~2015年非甲烷烷烃排放系数的最好水平与美国南加州6座炼油厂同期SOF监测的最好水平相当,但非甲烷烷烃排放系数的平均水平约为其平均水平的3.9倍,国内炼油厂的VOCs排放控制水平更加参差不齐.国内1座千万吨级炼油厂2021年监测的非甲烷烷烃排放通量和排放系数分别较2015年削减72.4%和74.2%.SOF可为石化VOCs无组织排放监测、量化和排放清单修订提供最佳实用技术,本研究结果提供了国内石化行业VOCs综合整治初期典型炼油厂非甲烷烷烃和VOCs的基线排放实测数据,以及1座千万t级炼油厂6a后治理攻坚效果.  相似文献   

14.
长白山温带森林挥发性有机物的排放通量   总被引:2,自引:1,他引:1  
2010年夏季,在长白山温带森林开展了挥发性有机物(VOC)排放通量以及气象参数、PAR的综合测量.VOC排放通量采用松弛涡度积累(RelaxedEddyAccumulation)技术在森林冠层上进行测量.初步发现长白山阔叶林主要排放α-蒎烯、β-蒎烯、莰烯、香桧烯、月桂烯、蒈烯、柠檬烯、罗勒烯、松油烯、繖花烃、萜品油烯、三环烯等.研究表明,长白山阔叶混交林VOC排放有明显的日变化——早晚较低和中午前后较高.2010年夏季,单萜烯总排放通量的平均值为0.242mg·m·h-2-1,其变化范围为0.005~1.668mg·m·h-2-1;各成分排放通量的平均值(和最大值)分别为α-蒎烯0.072(0.234)、莰烯0.028(0.356)、月桂烯0.027(0.433)、蒈烯0.023(0.173)、柠檬烯0.037(0.197)、罗勒烯0.016(0.168)、萜品油烯0.053(0.320)、繖花烃0.067(0.755)mg·m·h-2-1.研究还发现VOC排放通量与气温之间存在一定的联系.  相似文献   

15.
区域高时空分辨率VOC天然源排放清单的建立   总被引:20,自引:9,他引:11  
将中尺度气象模式MM5应用于估算VOC天然源排放的研究,建立了高时空分辨率VOC天然源排放清单的估算方法.根据方法需要,确定了我国部分树木排放异戊二烯和萜烯的标准排放因子,各植被类型排放各种VOC的标准排放因子,以及各植被类型季节平均的叶生物量密度.应用该方法估算了华南地区满足区域空气质量数值模拟要求的高时空分辨率VOC天然源排放清单.结果表明,华南地区夏季典型日的VOC天然源排放总量约1.12×104t,VOC排放速率具有明显的时空分布,其中地理分布取决于植被类型及其分布,日变化规律则依赖于太阳辐射和温度的高低.并讨论了VOC天然源排放估算过程中误差的来源  相似文献   

16.
以南京市和北京市优势树种为研究对象,利用森林资源清查数据、小时气象观测资料和G95光温模型算法对中国南北典型城市南京和北京地区2015年森林天然源挥发性有机化合物(BVOCs)排放总量进行估算.研究发现,南京市总BVOCs排放主要来自湿地松、栎树类和杨树,北京市主要优势树种BVOCs排放量最高的是栎树类、杨树和油松.从...  相似文献   

17.
Vehicular emissions in China in 2006 and 2010 were calculated at a high spatial resolution based on the data released by the National Bureau of Statistics, by taking the emission standards into consideration. China's vehicular emissions of carbon monoxide(CO),nitrogen oxides(NO_x), volatile organic compounds(VOCs), ammonia(NH_3), fine particulate matters(PM_(2.5)), inhalable particulate matters(PM_(10)), black carbon(BC), and organic carbon(OC) were 30,113.9, 4593.7, 6838.0, 20.9, 400.2, 430.5, 285.6, and 105.1 Gg, respectively, in 2006 and 34,175.2, 5167.5, 7029.4, 74.0, 386.4, 417.1, 270.9, and 106.2 Gg, respectively, in 2010. CO,VOCs, and NH_3 emissions were mainly from motorcycles and light-duty gasoline vehicles,whereas NO_X, PM_(2.5), PM_(10), and BC emissions were mainly from rural vehicles and heavyduty diesel trucks. OC emissions were mainly from motorcycles and heavy-duty diesel trucks. Vehicles of pre-China Ⅰ(vehicular emission standard of China before phase Ⅰ) and China Ⅰ(vehicular emission standard of China in phase Ⅰ) were the primary contributors to all of the pollutant emissions except NH_3, which was mainly from China Ⅲ and China Ⅳ gasoline vehicles. The total emissions of all the pollutants except NH_3 changed little from2006 to 2010. This finding can be attributed to the implementation of strict emission standards and to improvements in oil quality.  相似文献   

18.
Fifteen heavy-duty diesel vehicles were tested on chassis dynamometer by using typical heavy duty driving cycle and fuel economy cycle. The air from the exhaust was sampled by 2,4- dinitrophenyhydrazine cartridge and 23 carbonyl compounds were analyzed by high performance liquid chromatography. The average emission factor of carbonyls was 97.2 mg/km, higher than that of light-duty diesel vehicles and gasoline-powered vehicles. Formaldehyde, acetaldehyde, acetone and propionaidehyde were the species with the highest emission factors. Main influencing factors for carbonyl emissions were vehicle type, average speed and regulated emission standard, and the impact of vehicle loading was not evident in this study. National emission of carbonyls from diesel vehicles exhaust was calculated for China, 2011, based on both vehicle miles traveled and fuel consumption. Carbonyl emission of diesel vehicle was estimated to be 45.8 Gg, and was comparable to gasolinepowered vehicles (58.4 Gg). The emissions of formaldehyde, acetaldehyde and acetone were 12.6, 6.9, 3.8 Gg, respectively. The ozone formation potential of carbonyls from diesel vehicles exhaust was 537 mg O3/km, higher than 497 mg O3/km of none-methane hydrocarbons emitted from diesel vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号