首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
利用2013年秋季(8─10月)多景镶嵌的高分辨率遥感卫星数据,解译得到2013年北京市平原区居住平房的空间分布及面积,并结合典型区实地调查,细化平房面积. 在此基础上,利用调查统计数据(包括平房面积、散煤与蜂窝煤用量等指标)估算了居住平房区散煤和蜂窝煤用量,并结合相关文献调研的无烟煤排放因子,测算北京平原区平房燃煤PM、SO2、NOx、PAHs、BC(黑碳)和OC(有机碳)的排放量. 结果表明:2013年在北京城市发展新区,居住平房分布较为集中,并且燃煤总量最大,达到225.3×104 t,特别是房山、顺义和通州,三者均在3.5×105 t以上;在城市拓展区,居住平房密度相对较小,但燃煤总量相对较大,为79.4×104 t. 北京市平原区(不包括核心区)居住平房燃煤消耗共排放PM、SO2、NOx、BC、OC、PAHs分别为 4 882.1、14 200.0、7 614.9、18.0、132.3和0.5 t. 位于北京西南、东南部的房山、大兴和通州等地大气污染排放水平较高,其中房山区的PM和NOx排放量最高,分别达到760.5和1 162.6 t. 针对城市发展新区和生态涵养区每年高达3.0×106 t的高用煤量和3 000 t以上颗粒物的高排放量,应加快煤改气和集中供热建设,进一步推广清洁能源.   相似文献   

2.
棕色碳(brown carbon,Br C)即吸光有机碳,因其吸光效应对全球气候变化、区域能见度、人体健康等影响而备受关注。我国是化石燃料和生物质燃料消耗大国,在居民生活领域每年有大量的煤炭和生物质燃料的使用,但目前尚没有相应的Br C排放因子(EFBr C)的实测数据。该研究通过七波段黑碳仪对农村冬季居民生活用煤和生物质燃烧产生的烟气进行现场实测研究,利用Br C和黑碳(BC)吸光波长指数(魡)的差异,计算二者比值(RBr C/BC),并结合碳平衡法测得的黑碳排放因子(EFBC)计算EFBr C;利用我国2000年居民生活用燃煤和生物质燃料的使用量,进而初步估算我国Br C的排放量。结果表明:(1)居民生活用煤EFBr C平均值为(0.031±0.040)g/kg,居民生活用生物质EFBr C平均值为(0.061±0.060)g/kg,后者是前者的2倍多,说明生物质燃料在居民生活领域Br C的排放效率高于煤炭;(2)居民生活用煤的EFBr C随干燥无灰基挥发分(Vdaf)的增加呈先增大后减小的变化趋势,与EFBC随Vdaf的变化趋势相似,呈"小钟型"分布特征,其中中等挥发分烟煤的EFBr C最大。不过,由于测试样品只有3个煤样,这个结果有待以后的研究进一步确认;(3)居民生活用生物质室内燃烧排放的RBr C/BC比生物质户外开放燃烧(焚烧)明显偏低,可能原因是由于室内燃烧使用的燃料较干燥、使用的炉具有利于燃料较充分的燃烧;(4)测得的生物质燃料燃烧的Br C与烧焦型EC(char-EC)有较好的相关关系(R20.96),说明两者存在某种密切的联系,但从数值上前者远小于后者;(5)估算出我国2000年Br C排放总量为(449.1±305.1)Gg(以BC当量计,下同),相当于同期BC排放量的55.0%,其中居民生活用煤的Br C排放量为(357.4±245.4)Gg,居民生活用生物质的Br C排放量为(91.7±59.8)Gg。下一步需要根据我国居民生活用煤和生物质的分类和特点,开展更加系统的测试和研究工作,以便对棕色碳问题进行更深入的了解。  相似文献   

3.
长期以来,对碳气溶胶的定量研究主要关注OC(有机碳)、EC(元素碳)或BC(黑碳)的整体测定结果,很少有对测定结果细节特征的深入解读.为全面掌握和利用仪器分析结果包含的科学信息,使用热光法IMPROVE_A协议(model 2001A)测定了2015年10月(秋季)和2016年1月(冬季)北京市PM2.5中的ρ(OC)和ρ(EC),使用光学法(黑碳仪AE31)测定了相应的ρ(BC).结果表明:① ρ(OC)和ρ(EC)的秋季平均值分别为8.59、3.89 μg/m3,冬季分别为16.45和6.19 μg/m3,冬季明显高于秋季;② 热光法测定结果显示,秋季样品中ρ(OC1)/ρ(OC)的平均值为0.08±0.04,而冬季则升至0.22±0.05,这可能与冬季较高的挥发性有机物(VOCs)排放及低温带来的冷凝效应有关;③ 七波长黑碳仪测定结果显示,在秋季,紫外波段(370 nm)测定的BC当量[ρ(BC370)]与红外波段(880 nm)测定的BC标准量[ρ(BC880)]的比值[ρ(BC370)/ρ(BC880)]为1.05±0.11,说明棕色碳(BrC)的吸光影响非常弱,而冬季该比值升至1.47±0.11,升幅达40%;④ 结合两种方法对强吸光碳的测定结果,发现ρ(BC)/ρ(EC)与ρ(PM2.5)的变化趋势一致,证明污染程度加重会带来EC内混合比例上升,因而提高其吸光能力,使黑碳仪测得的ρ(BC)上升.然而,进一步考察表明,这种上升是有限度的,当ρ(PM2.5)达到50~70 μg/m3时,ρ(BC)/ρ(EC)进入"平台状态",秋季"平台值"约为1.05,冬季约为0.55.研究显示,仪器的测定结果包含大量被忽略的信息,对其细节的深入解读有利于更好地了解碳气溶胶的综合特征.   相似文献   

4.
大气棕碳(BrC)是对大气颗粒物中具有吸光能力的一类有机物的总称,其对空气能见度及气候系统均有重要影响.自2021年3月至2022年2月底于南京北郊利用黑碳仪测定了气溶胶中BrC的光吸收系数,利用最小相关性法分别定量一次(BrCpri)和二次棕碳(BrCsec)贡献,结合后向轨迹、潜在来源和日均变化,分析季节变化特征.结果表明,观测期间BrC的平均光吸收系数(370 nm)为(7.76±7.17)Mm-1,对于总气溶胶光吸收贡献率为(22.0±8.8)%.不同波长下棕碳吸光系数在四季呈现U字形变化,即春季和冬季高,夏季和秋季低.BrCpri和BrCsec(370 nm)全年光吸收贡献分别为(62.9±21.4)%和(37.1±21.4)%;前者在四季均占主导,但随着波长增加,BrCsec的贡献逐渐增加并最终占主导(如在660 nm时).除冬季以外,BrC在其他季节受到来自海上气团的显著影响,而冬季受当地及周边地区排放影响更为显著.交通排放在春、夏和秋季对一...  相似文献   

5.
天津市EC和OC气溶胶排放源的估算   总被引:4,自引:1,他引:3       下载免费PDF全文
王娉  马建中 《环境科学研究》2009,22(11):1269-1275
通过调研天津市污染源,在原有NOx,SO2,NMVOC,CO,NH3,PM10和PM2.5等污染物的基础上,从工农业生产和居民生活方面计算了天津市各行业、各区县的元素碳(EC)和有机碳(OC)排放量,对天津市2003年大气污染源排放清单进行了发展和补充. 结果表明:天津市2003年EC排放量为1.30×104 t,OC为2.40×104 t. 从排放源的行业分布来看,燃煤源是天津市EC和OC的重要排放源,对EC和OC排放量的贡献均为42%. 移动源与秸秆燃烧也是较大排放源,移动源对EC和OC排放量的贡献分别为43%和35%,秸秆燃烧对EC和OC的贡献分别为15%和23%. 炼焦、钢铁行业是EC和OC的主要工业源,炼焦行业的EC和OC排放量分别占工业源排放量的47%和23%,钢铁行业的EC和OC排放量分别占工业源排放量的24%和18%. 2003年天津市区对EC和OC的贡献均高于其他区县,其次,武清区、塘沽区对2种污染物的贡献也很高. 民用源的EC排放量在PM2.5中占33.7%. 集中供热的OC排放量在PM2.5中占67.6%,在各行业中最高. EC和OC排放量在PM2.5中所占比例最高的区域均在市区,最高值分别为25.0%和43.3%,其次是大港区和塘沽区.秸秆燃烧和移动源的估算误差较小,工业燃煤源的估算误差较大. 秸秆燃烧的正负误差分别为+18%和-16%,工业燃煤源的正负误差分别为+300%和-50%.   相似文献   

6.
316国道沿线大气降尘黑碳污染特征及来源分析   总被引:1,自引:0,他引:1  
采用热光反射法对316国道沿线大气降尘中黑碳的含量进行了测定,研究降尘黑碳的污染水平和空间变化特征。同时,结合黑碳/有机碳(BC/OC)和焦炭/烟炱(char/soot)比值法来解析降尘黑碳的可能来源。结果表明:不同公路段降尘中黑碳含量水平存在较大的差异,其变化范围为5.16~35.22 mg/g,平均值为11.46 mg/g,总体污染较为严重。黑碳、焦炭和烟炱含量的高值一般出现在钢铁厂或冶炼厂附近,可能受工业燃煤排放的影响较大。降尘中BC/OC比值的变化范围为0.23~0.63,平均值为0.44,反映了不同地区有机碳来源的不同以及黑碳来源的复杂性。char/soot比值变化较大,平均值为0.90,说明降尘中烟炱组分在黑碳含量中所占比例要稍高于焦炭,也反映出公路沿线机动车排放对降尘黑碳的重要贡献。不同碳组分(有机碳、黑碳、焦炭和烟炱)之间都存在较好的相关性,指示了其来源的相似性。316国道沿线公路段大气降尘中黑碳的主要来源是机动车排放,局部地区(如工矿企业周边)受工业排放的影响较大,还有部分采样点可能受居民燃煤和生物质燃烧排放的影响。  相似文献   

7.
随着对碳气溶胶吸光性认识的提高,近年来吸光有机碳——BrC(brown carbon,棕色碳)的吸光问题成为继BC(black carbon,黑碳)之后国际大气环境领域的新热点. 基于已有的研究报道,将BrC大体分为焦油类物质、类腐殖质(HULIS)和其他吸光性有机气溶胶三大类,其来源包括一次排放和二次生成2种. 由于BrC缺少BC所具有的类石墨烯结构,致使颗粒间较为分散,加之含氧官能团比重较高,因而在水及有机溶剂中均有较强的可溶性. BrC的光学性质通常借助AAE(ngstrm吸收波长指数)、MAE(质量吸收效率)、RI(折射率)及SSA(单次散射反照率)来表示,其中由于BrC分子结构中缺少sp2杂化成分,形成了区别于BC的典型特征,即AAE>1(而对于BC,其AAE=1)). 虽然已有借助于光学法、热光法、化学法和质谱法进行BrC测定的报道,但目前没有公认的标准测定方法和参考物质,测定结果实际依赖于选定的测定方式. 在排放估算研究方面,BrC远落后于BC,致使有些排放估算方法多以相伴的BC排放量作为参照. 建议今后对BrC研究应主要面向气候影响、生成机理、测定方法、排放因子与控制策略等领域来展开.   相似文献   

8.
为研究轻型汽油车尾气PM2.5的排放特征,利用整车测试台架和颗粒物稀释采样系统,对12辆轻型汽油车尾气的PM2.5进行了采集,并进一步分析了PM2.5排放因子及其碳质组分——OC(有机碳)和EC(元素碳)的排放特征;在此基础上,参考文献研究结果,计算了我国轻型汽油车分阶段PM2.5排放因子,结合活动水平数据估算轻型汽油车PM2.5排放量.结果表明:测试的国Ⅰ前~国Ⅳ轻型汽油车PM2.5平均排放因子分别为(73.2±3.8)(50.5±45.4)(34.7±18.4)(22.6±10.3)和(1.0±0.2)mg/km,随排放阶段升级而显著降低.OC是轻型汽油车尾气PM2.5中的主要碳质组分,在TC(总碳)中所占比例超过90%. 2012年我国轻型汽油车PM2.5排放量为21 828.7 t,占机动车颗粒物排放总量的3.5%,其中仅占轻型汽油车保有量17%的国Ⅰ及以前车辆排放了约43%的PM2.5. 研究显示,轻型汽油车尤其是国Ⅰ及国Ⅰ前车辆颗粒物排放不容忽视,在机动车颗粒物减排工作中应给予足够重视.   相似文献   

9.
为准确掌握贵州省生物质燃烧源大气污染物的排放状况,基于收集资料和实地调查结合的方式获取活动水平,引用文献和本地实测数据结合的方式选取排放系数,采用排放系数法结合GIS技术,建立了贵州省2019年3 km×3 km生物质燃烧源9种大气污染物排放清单.结果表明:(1)全省生物质燃烧源CO、 NOx、 SO2、 NH3、 VOCs、 PM2.5、 PM10、 BC和OC的排放量分别为:293 505.53、 14 781.19、 4 146.11、 8 501.07、 45 025.70、 39 463.58、 41 879.31、 6 832.33和15 134.74 t.户用生物质炉具CO、 SO2、 NH3和BC的排放量贡献率最大,秸秆露天焚烧NOx、 VOCs、 PM2.5、 PM10和OC的排放量贡献率最大.(2)各市(州)生物质燃烧源排放的大气污染物分布不均衡,主...  相似文献   

10.
秸秆露天焚烧典型大气污染物排放因子   总被引:2,自引:0,他引:2  
利用烟气污染物稀释采样系统,基于实际测试,针对玉米、小麦、花生和棉花4种农作物秸秆开展露天焚烧排放大气污染物采集和分析.利用修正燃烧效率区分燃烧状态,根据碳平衡法计算烟气中颗粒物和气态污染物排放因子.结果表明,4种秸秆露天焚烧CO、SO2、NOx和CH4平均排放因子分别在7.39~92.4g/kg、0.11~0.89g/kg、0.72~3.86g/kg和0.2~5.45g/kg之间,PM2.5平均排放因子在1.48~13.29g/kg之间.OC和EC的质量分别占PM2.5全部质量的27.7%~54.3%和4.4%~17.1%,是PM2.5的主要组成成分.污染物排放主要来自混合燃烧状态,焖烧状态排放污染物浓度相对较高.随着含水率升高,焖烧过程增强显著,CO、CH4、PM2.5和OC的排放因子升高,其中PM2.5排放量增高主要是由OC排放占比升高导致.  相似文献   

11.
吴星麒  曹芳  洪一航  邢佳莉 《环境科学》2023,44(12):6518-6528
碳质气溶胶是大气细颗粒物(PM2.5)的重要组成部分,对空气质量、人体健康和气候变化均有重要影响.针对生物质燃烧(BB)这一碳质气溶胶的重要来源,于2017年11月至2018年10月在广西壮族自治区背景地区采集了PM2.5样品,分析了样品中的碳质组成、糖类化合物和水溶性棕色碳(BrC)的吸光系数(babs).使用气团老化指数(AAM)校正LG浓度以消除LG降解带来的影响,进而结合贝叶斯混合模型与分子示踪剂法量化了BB对有机碳(OC)的贡献率,并通过相关性分析法探讨了BrC的可能来源.结果表明,研究期间AAM指数平均值为0.40±0.28,表示LG存在光化学降解过程.农作物秸秆是广西地区最主要的生物质燃料类型,在未考虑LG降解下,全年玉米、水稻和甘蔗秸秆焚烧排放的OC分别占总OC的22%、23%和18%;考虑LG在大气中的降解后,相对贡献率分别降低至16%、21%和17%.LG的降解会导致BB对OC的贡献率评估被低估,经过AAM指数校正后,全年BB对OC的贡献率平均值为49.0%.水溶性BrC的babs全年的平均值为(8.7±10.7) Mm-1,其中BB、化石燃料燃烧以及初级生物气溶胶排放可能是BrC的重要来源.  相似文献   

12.
Lake Baikal is the biggest reservoir of fresh water with unique flora and fauna; presently it is negatively affected by climate change, water warming, industrial emissions, shipping, touristic activities, and Siberian forest fires. The assessment of air pollution - related Baikal's ecosystem damage is an unsolved problem. Ship, based expedition exploring the Baikal atmospheric aerosol loading, was performed over the lake area in July 2018. We combine the aerosol near - water and vertical distributions over the Lake Baikal basin with meteorological observations and air mass transportation simulations. Lidar sounding of aerosol fields in the troposphere assesses the atmospheric background in the pristine areas and the pollution during fire-affected periods. Aerosol optical properties (scattering and spectral absorption) converted to the particle number size, black carbon (BC) mass, and Absorption Angstrom Exponent (AAE) provide the inside into aerosol characterization. Transport of industrial emissions from Krasnoyarsk and Irkutsk regions, and wildfire plumes from Republic of Yakutia relates the pollution sources to the increased concentrations of fine particle numbers, PM10 and BC mass over Southern and Northern/Central Baikal, respectively. The highest PM10 and BC are associated to the harbor and touristic areas of intensive shipping and residential biomass burning. Deposition estimates applied to aerosol data exhibit the pollution fluxes to water surface over the whole Baikal area. AAE marks the impact of coal combustion, residential biomass burning, and wildfires indicating the high pollution level of the Lake Baikal ecological system .  相似文献   

13.
徐楠  王甜甜  李晓  唐荣志  郭松  胡敏 《环境科学》2021,42(5):2101-2109
为探讨北京冬季大气细颗粒物(PM2.5)中有机气溶胶的浓度水平、分布特征和来源变化,对2016年11月10日~12月10日采集的北京大气PM2.5样品进行气相色谱-质谱测定,定量了129种颗粒有机物(POM),约占有机物总量的(9.3±1.2)%.其中含量最高的是糖类,仅左旋葡聚糖即可占到定量有机物的18%,其次是正构烷酸、正构烷烃、二元羧酸和多环芳烃.根据POM示踪物的变化特征,分析了供暖和生物质燃烧传输对北京冬季有机气溶胶的影响.相比于非供暖期间,供暖期间化石燃料示踪物藿烷的质量浓度及在有机物中的占比都明显升高,各组分间的分布也更加趋向于燃煤排放的特征.正构烷烃主峰碳数和奇偶分布的变化,反映了化石燃料贡献增强的影响.生物质燃烧示踪物左旋葡聚糖的浓度权重轨迹(CWT)模型结果表明,北京周围区域的秸秆燃烧污染会通过传输影响北京的有机气溶胶组成.利用分子示踪-化学质量平衡(MM-CMB)模型对2016年北京冬季有机碳(OC)进行了来源解析,并与2006年的结果进行比较,以定量10年间各污染来源贡献发生的变化.2016年与2006年相比,机动车对有机气溶胶贡献明显增加,燃煤和木材燃烧的贡献则大幅度降低,餐饮排放的贡献也不容忽视.因此,控制机动车和餐饮源的排放对改善北京冬季PM2.5污染问题至关重要.  相似文献   

14.
生物质露天焚烧及家庭燃用的多环芳烃排放特征研究   总被引:4,自引:0,他引:4  
农村地区生物质燃烧排放是大气多环芳烃(PAHs)的重要来源之一.本研究利用建立的烟尘罩稀释通道采样系统,对我国典型的生物质燃烧方式—水稻、玉米、花生、大豆秸秆的家庭炉灶燃烧,并对水稻、玉米、花生秸秆以及荔枝树、大叶榕、小叶榕等落叶的露天焚烧进行实验室模拟,实测了秸秆野外焚烧、落叶野外焚烧、秸秆炉灶燃烧等3种典型生物质燃烧类型排放的气相及颗粒相PAHs的排放因子.结果表明,本研究生物质露天焚烧PAHs排放因子高于大部分已有实验结果,秸秆炉灶燃烧PAHs排放因子亦高于大部分排放清单采用值.3类燃料燃烧排放PAHs的谱分布相近,均以中低环PAHs为主,中高环(4~6环)PAHs比例为22.2%~28.8%.采用某单一数值作为某类源PAHs特征比的取值,并将其运用于大气PAHs的来源解析可能会造成偏差.  相似文献   

15.
对农村薪柴(杨木和毛竹)燃烧排放的4类溶解性棕色碳(BrC)组分,包括水溶性有机物(WSOM)、水溶性类腐殖质(HULISWS)、碱溶性有机物(ASOM)和碱溶性类腐殖质(HULISAS)的组成特征和光学性质进行了初步研究.结果显示,薪柴燃烧排放出大量的BrC,其中BrCT(WSOM+ASOM)占烟气PM2.5质量的46%~56%,排放因子为(7.5~16)g/kg.HULIS是薪柴燃烧排放BrC的重要组分,占BrCT的44%~46%.4类BrC的特征吸收指数(SUVA254)、光吸收效率(MAE365)和Ångström指数(AAE)值分别为1.9~4.0m2/g、0.4~2.1m2/g和6.2~11.1,说明薪柴燃烧排放BrC具有较高的芳香度、较强的光吸收能力且其光吸收具有较强的波长依赖性.三维荧光光谱分析结果显示,薪柴燃烧排放BrC主要以类蛋白荧光物质组成为主,这与雨水和大气气溶胶中水溶性BrC以类腐殖质荧光物质组成为主的特征存在显著差异.相关性分析结果显示,BrC的MAE365与HIX和SUVA254呈现显著的正相关性,与E2/E3、FI、BIX和βα呈现显著的负相关性,说明薪柴燃烧排放BrC的光吸收特性与其芳香性、腐殖化程度、自生源贡献和新鲜度等紧密相关.本研究结果有助于进一步认识生物质燃烧BrC的排放特征,为探索大气BrC的来源和环境效应提供数据基础和科学依据.  相似文献   

16.
南京北郊重金属气溶胶粒子来源分析   总被引:4,自引:4,他引:0  
秦鑫  张泽锋  李艳伟  沈艳  赵姝慧 《环境科学》2016,37(12):4467-4474
通过2013年1~12月使用在线单颗粒气溶胶质谱仪(SPAMS)在南京北郊对含有Cu、As、Pb、Cd、V、Co、Cr、Zn、Ni、Ba和Hg这11种重金属气溶胶粒子进行连续观测,并结合自适应共振理论神经网络算法(ART-2a)对其化学特征进行了分析,结果表明,南京北郊重金属气溶胶粒子来源按照化学组成特征可分为5类:工业排放(35.7%)、生物质燃烧(34.45%)、交通排放(13.6%)、化石燃料燃烧(11.03%)和矿尘(4.07%),其中,含Pb、Cd和Cr气溶胶粒子主要来源于工业排放,含Cu、Co和Hg气溶胶粒子主要来源于生物质燃烧,含V、Zn和Ba气溶胶粒子主要来源于交通排放,含As和Ni气溶胶粒子主要来源于化石燃料燃烧.  相似文献   

17.
西宁市生物质燃烧源大气污染物排放清单   总被引:2,自引:2,他引:0  
高玉宗  姬亚芹  林孜  林宇  杨益 《环境科学》2021,42(12):5585-5593
本研究根据调查的西宁市生物质燃烧源活动水平数据,采用排放因子方法,建立了 2018年西宁市生物质燃烧源9种大气污染物的排放清单,并分析了清单的时空分布特征和不确定性.结果表明,西宁市2018年生物质燃烧源CO、NOx、SO2、NH3、VOCs、PM2.5、PM10、BC 和OC 的排放量分别为 11 718.34、604.41、167.80、209.72、1 617.97、2 054.04、2 135.04、281.07和 1 224.78 t.秸秆露天焚烧 CO、NOx、VOCs、PM2.5、PM10、BC 和OC 的排放对生物质燃烧源的排放贡献率最高;其中,秸秆露天焚烧NOx、VOCs和CO的贡献率分别为72.35%、63.94%和53.18%.户用生物质炉NH3和SO2的排放对生物质燃烧源的贡献率最大,分别为41.49%和42.05%.生物质燃烧源大气污染物排放地区分布不均衡,主要集中于大通县和湟中区.生物质燃烧源9项污染物的排放量在1、2、3、10、11和12月较大,占比在5%~33%.蒙特卡罗模拟结果表明,在95%置信区间下,不确定度最高的是森林和草原火灾的PM2.5排放,不确定度为-26.71%~29.78%.  相似文献   

18.
大气颗粒物中包含多种组分的气溶胶,其中碳质气溶胶由于对人体健康、能见度有较大影响,已受到越来越多的关注.为研究碳质气溶胶的长期变化规律,采集了成都市2009—2013年的PM10样品,对其中所含的无机元素、水溶性离子及碳组分分别进行测定,并使用“PMF(正定矩阵因子分解法)-比值”模型分别对PM10和所含的碳质气溶胶的来源进行分析.结果表明,1月、2月、5月和12月的碳质气溶胶浓度较高,其中1月、2月和12月的OC/EC(有机碳与元素碳质量浓度之比)较高,并且PMF-比值模型计算结果也显示冬季SOC增多,表明冬季可能有更多的二次有机碳(SOC)生成;5月的char-EC/soot-EC(二者质量浓度之比,其中char-EC=EC1-OP,soot-EC=EC2+EC3,它们可更好地区分源类)较高,K含量也较高,表明可能有更多的生物质燃烧排放.PM10解析共发现6类源,依次为地壳扬尘(26.5%)、二次硫酸盐(25.1%)、燃煤&生物质燃烧混合源(17.3%)、二次硝酸盐&二次有机碳混合源(12.3%)、机动车源(11.8%)和水泥尘源(7.0%);碳质气溶胶解析发现,OC主要来源依次为机动车源(38.2%)、燃煤&生物质燃烧混合源(33.1%)和二次有机碳(25.3%),char-EC的主要来源是燃煤&生物质燃烧混合源和机动车源,分别占50.5%和45.4%,soot-EC则主要受机动车影响(达73.2%).研究显示,成都市PM10主要来自于地壳扬尘、二次生成和燃煤&生物质燃烧,而碳质气溶胶主要来自于机动车、燃煤&生物质燃烧.   相似文献   

19.
民用燃煤含碳颗粒物的排放因子测量   总被引:9,自引:3,他引:9  
通过烟尘罩稀释通道系统采样,实验室模拟民用燃煤的燃烧方式,获取了不同成熟度的散煤、蜂窝煤的PM2.5、EC和OC的排放因子.民用燃煤的排放与煤炭成熟度有很大相关,不同煤种排放因子差距很大.在6种实验煤炭中,烟煤散烧的排放因子较大,其中S3煤种的排放因子最大,其PM2.5、EC和OC的实测值分别为11.06、3.51和5.39 g·kg-1;无烟煤散烧排放因子较少,S1煤种的排放因子最小,其PM2.5、EC和OC分别为0.78、0.02和0.49 g·kg-1;蜂窝煤的颗粒物以及OC排放因子与相似成熟度的散煤燃烧相当,但是EC排放相对散煤较低.EC、OC源清单工作需要对民用燃煤源进行更详细的分类,结合相应的排放因子,才能更加准确的估计这一重要排放源的贡献率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号