首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
选择高效快速的处理方法来降解垃圾渗滤液中高浓度有机污染物具有重要的实际意义.本研究采用化学合成施氏矿物/H2O2/UV法,探究了施氏矿物添加量、V(H2O2)/m(施氏矿物)等对垃圾渗滤液色度、TOC、COD去除效果的影响.结果表明,渗滤液色度、TOC、COD去除率随施氏矿物添加量的增加均呈先显著上升后逐渐稳定的趋势,在最佳添加量12 g·L-1时,色度、TOC去除率随着V(H2O2)/m(施氏矿物)的增大均有所提高,而当V(H2O2)/m(施氏矿物)大于2时,COD去除率受H2O2影响反而呈下降趋势,最佳去除率为44.9%;另外,高强度紫外光更有利于施氏矿物/H2O2光化学氧化污染物,在500 W条件下,最佳起始pH=2.5的渗滤液光化学处理2.5 h后,色度、TOC和COD去除率分别为90.0%、78.8%和52.6%;同时,研究发现常温条件更有利于施氏矿物/H2O2/UV法处理垃圾渗滤液,当温度大于25℃时,COD去除率呈逐渐下降趋势.对照试验表明,与传统均相Fenton反应相比,施氏矿物/H2O2法有利于渗滤液色度的去除.  相似文献   

2.
纳米Fe_3O_4强化混凝-Fenton氧化预处理垃圾渗滤液   总被引:1,自引:1,他引:0       下载免费PDF全文
采用纳米Fe_3O_4与Fe Cl3制备复合混凝剂,利用混凝沉淀-Fenton氧化工艺预处理垃圾渗滤液原水,研究其处理效果。结果表明:在纳米Fe_3O_4投加量为2 g/L,Fe Cl3投加量为1.4 g/L时制备的复合混凝剂,在p H值为6.5,转速为300 r/min下快速搅拌1 min,转速为100 r/min下慢速搅拌30 min,沉淀时间为30 min的条件下,COD去除率为56.8%,ρ(COD)可由5 240 mg/L降低到2 264 mg/L;利用Fenton氧化处理混凝处理出水,在H_2O_2的投加量为5.5 g/L,n(H_2O_2)∶n(Fe2+)=4,p H值为6,反应时间为80 min,反应温度为25℃的最佳条件下,COD和氨氮的去除率分别为55.7%和40.1%,最终出水ρ(COD)和ρ(氨氮)分别为1 003 mg/L和670 mg/L;该组合工艺对垃圾渗滤液有较好的处理效果,COD、色度和氨氮的去除率分别为80.8%、59.5%和76.2%。  相似文献   

3.
电化学氧化法处理高浓度垃圾渗滤液的研究   总被引:24,自引:0,他引:24  
实验利用电化学氧化法法除垃圾渗滤液中部分难降解有机物,以提高废水的可生化性,为后续生物处理创造条件。系统考察了温度、极板间距、氧离子浓度、pH值等因素对电化学处理垃圾渗滤液效果的影响,并通过GC-MS分析,探讨渗滤中有机污染物的去除情况,包括渗滤液中典型有毒难降解有机化合物的电化学氧化结果。结果表明:温度升高,COD和NH2-N的去除率均提高;极板间距太大或太小都会降低去除效果,极板间距10mm,处理效果较好,COD和NH3-N去除率分别达到86%和100%;随着渗滤液中Cl^-浓度的增加,COD去除率明显提高,同时高浓度Cl^-和较高的电流密度对垃圾渗滤液中难降解有机污染物的处理有相当强的协同作用效应,可以明显提高处理效果;在强酸性和强碱性条件下的电化学反应都不利于对COD、NH3-N的去除;在添加Cl^-4000mg/L,极板间距为10mm,电流密度为15A/dm^2,pH为8,初始温度为50℃的条件下,经4h的电化学氧化,COD、氨氮和色度的去除率分别达88%、100%和98%,苯酚的去除率为82%,电流效率可达84%以上。可见电化学氧化法不仅可有效的去除COD、氨氮、色度,而且对有毒的难降解有机污染物(苯酚等)有很好的去除作用,采用电化学氧化作为垃圾渗滤液废水处理的前处理,可大大改善后续生物处理的效果。  相似文献   

4.
Fenton法对老龄垃圾渗滤液难降解有机毒物的削减   总被引:1,自引:1,他引:0  
采用Fenton法进行削减老龄垃圾渗滤液难降解有机毒物的实验,研究了初始pH值、Fe2+投加量、H2O2投加量、反应时间等对难降解有机毒物削减效果的影响,采用呼吸耗氧速率法和发光细菌的相对发光度法评估了Fenton法对处理前、后老龄垃圾渗滤液可生化性的改善程度和生物毒性削减情况。结果表明:当初始pH值为3.0,Fe2+投加量为17.6 mmol/L,H2 O2投加量为88.2 mmol/L(n(H2 O2)/n(Fe2+)=5),反应时间为2 h时,Fenton法对难降解有机物去除率达到84.7%,以COD表征的有机物去除率达到60.3%。经Fenton法处理后水样呼吸耗氧速率较原水提高了3.35倍,可生化性显著提高;发光细菌相对发光度从原水的1.9%提高到57.2%,处理后渗滤液的生物毒性得到较大幅度削减。  相似文献   

5.
铁促电解法处理垃圾渗滤液中有机污染物   总被引:1,自引:0,他引:1       下载免费PDF全文
采用铁促电解法处理垃圾填埋场渗滤液;考察了FeSO4浓度、初始pH值、电流(电压)对污染物去除的影响.结果表明,与传统电解氧化降解有机物相比,铁促电解显著提高了有机污染物的去除效率;FeSO4浓度越大,有机物去除效果越高;电解介质合理的初始pH值为3.0~4.0;铁促电解对渗滤液CODCr与NH3-N的去除率分别为68.37%,89.07%,色度和浊度的去除率大于98%.  相似文献   

6.
针对难处理垃圾渗滤液,详细研究了微波/Fenton化学氧化/混凝工艺及其之间的协同作用。结果表明,该法能有效处理高浓度垃圾渗滤液,在H2O2和Fe2+用量分别为3.0g.L-1和0.12g.L-1,混凝剂PMSi用量为40mg.L-1,微波功率800W,共辐射2m in的最佳条件下,浊度、色度和CODCr去除率分别高达98.02%、97.33%和89.91%。  相似文献   

7.
研究了以固定相TiO2为催化剂光催化降解垃圾渗滤液中有机污染物的可行性。试验了制备TiO2膜的适宜条件以及光照时间等各种因素对COD的去除率和UV335脱色率的影响。研究表明,COD为418mg/L的垃圾渗滤液经400W高压汞灯光照30min,COD的去除率和UV335脱色率分别为44.3%和75.0%。光照时间60min时,COD的去除率和UV335脱色率可提高至54%和90%。光照30min后与活性炭柱联用,COD的去除率和UV335脱色率分别提高到68.3%和84.6%。  相似文献   

8.
采用连续式超临界水氧化小试装置处理垃圾渗滤液,以双氧水作为氧化剂,研究了超临界水氧化反应的温度、压力、氧化剂比例K和催化剂等因素对渗滤液中污染物去除效果的影响,结果表明在不同温度、不同压力、不同K值单因素实验条件下,温度480℃,压力26 MPa,K=3.0是处理垃圾渗滤液的最佳工艺参数。试验加入催化剂能够提高COD和氨氮去除率,当Cu2+浓度为45 mg/L时,垃圾渗滤液中COD和氨氮去除率分别达到78.9%和38.8%。正交试验表明,主要的工艺参数中温度对处理效率的影响最大,其次是氧化剂比例K,压力影响最小。试验结果的氨氮去除率相对较低,这可能是由于垃圾渗滤液水质复杂,各污染物之间存在相互干扰,氨氮的去除机理还有待进一步的深入研究。  相似文献   

9.
垃圾渗滤液膜过滤浓缩液含盐量高,色度和有机污染物浓度高,处理难度大。采用批式试验,以Ti/RuO2-IrO2为阳极、不锈钢为阴极对垃圾渗滤液膜过滤浓缩液进行电化学氧化处理,研究电解时间、电流密度和极板间距对浓缩液色度、COD、氨氮去除率和电导率的影响。结果表明:电流密度为6 A/dm2,电解3 h时,色度去除率达94%,出水色度为15倍;电解5 h,氨氮去除率为99.67%,出水氨氮为1.4 mg/L;电解6 h,COD去除率为60.43%,出水COD浓度为1156 mg/L。以Ti/RuO2-IrO2为阳极电化学氧化技术对垃圾浓缩液色度和氨氮的去除效果较好,适宜的电流密度和极板间距分别为6 A/dm2和4 cm。  相似文献   

10.
微波催化氧化法预处理垃圾渗滤液的研究   总被引:6,自引:0,他引:6       下载免费PDF全文
采用微波-活性炭-Fenton催化氧化预处理垃圾渗滤液,研究了不同因素对垃圾渗滤液处理效果的影响.结果表明,COD和氨氮去除率随活性炭用量、微波辐射时间和微波功率增加而增加;随Fe2+用量和H2O2用量增加,COD和氨氮去除率先增加而后下降;随pH值增加,氨氮去除率显著增加,COD去除率变化不明显.在微波功率为300W,pH值为8,活性炭9g/L,Fe2+用量为0.02mol/L,H2O2用量为7mL/L,辐射时间6min条件下,垃圾渗滤液中COD和氨氮去除率分别达到68.22%和78.08%,SS去除率达到78.55%,浑浊度去除率达到99.02%,颜色由黑褐色去除为接近无色,BOD5/COD由0.21提高到0.45;研究比较了不同处理对垃圾渗滤液的处理效果.结果显示,微波催化氧化对垃圾渗滤液中COD和氨氮去除率明显高于其他处理.  相似文献   

11.
Soil contaminated with heavy metals cadmium(Cd)and lead(Pb)is hard to be remediated.Phytoremediation may be a feasible method to remove toxic metals from soil,but there are few suitable plants which can hyperaccumulate metals.In this study,Cd and Pb accumulation by four plants including sunflower(Helianthus annuus L.),mustard(Brassica juncea L.),alfalfa(Medicago sativa L.), ricinus(Ricinus communis L.)in hydroponic cultures was compared.Results showed that these plants could phytocxtract heavy metals, the ability of accumulation differed with species,concentrations and categories of heavy metals.Values of BCF(bioconcentration factor)and TF(translocation factor)indicated that four species had dissimilar abilities of phytoextraction and transportation of heavy metals.Changes on the biomass of plants,pH and Eh at different treatments revealed that these four plants had distinct responses to Cd and Pb in cultures.Measurements should be taken to improve the phytoremediation of sites contaminated with heavy metals,such as pH and Eh regulations,and so forth.  相似文献   

12.
The oxidation of As(Ⅲ) with potassium permanganate was studied under conditions including pH, initial As(Ⅲ) concentration and dosage of Mn(Ⅶ). The results have shown that potassium permanganate was an effective agent for oxidizing of As(Ⅲ) in a wide pH range. The pH value of tested water was not a significant factor affecting the oxidation of As(Ⅲ) by Mn(Ⅶ). Although theoretical redox analyses suggest that Mn(Ⅶ) should have better performance in oxidization of As(Ⅲ) within lower pH ranges, the experimental results show that the oxidation efficiencies of As(Ⅲ) under basic and acidic conditions were similar, which may be due to the adsorption of As(Ⅲ) on the Mn(OH)2 and MnO2 resulting from the oxidation of As(Ⅲ).  相似文献   

13.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

14.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

15.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

16.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

17.
The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentration and distribution of chlorobenzenes (CBs) in both water and waterweeds collected from 4 stations in the Xijiang River (Gangdong section) of the Pearl River in April and November were determined. The result showed that nearly every congener of CBs was detected. The total contents of CBs (∑CBs) in the river water ranged from 111.1 to 360.0 ng/L in April and from 151.9 to 481.7 ng/L in November, respectively. The pollution level of CBs in the water in April was higher than that in November. The contents of ∑ CBs in waterweeds ranged from 13.53×102 μg/g to 38.27×102μg/g dry weight (dw). There was no significant difference between April and November in waterweeds. The distribution of CBs in roots, caulis, and leaves of Vallisneria spiralis L. showed different patterns. The leaves mainly contained low-molecular-weight CBs(DCBs), whereas the roots accumulated more PCBs and HCBs. The average lgBCFlip (bioconcentration factor) of CBs ranged from 0.64 to 3.57 in the waterweeds. The spatial distribution character of CBs in the Xijiang River was: Fengkai County < Yunan County <Yun'an County < Gaoyao County according to the ∑CBs, and the pollution deteriorated from the upstream to the downstream of the Xijiang River. Further analysis demonstrated that the discharge of waste containing CBs may be the main source of CBs pollution in the Xijiang River.  相似文献   

18.
Degradation of 2,4-dichlorophenol(2,4-DCP)was studied in a novel three-electrode photoelectrocatalytic(PEC)integrative oxidation process,and the factors influencing the degradation rate,such as applied current,flow speed of O_2,pH,adscititious voltage and initial 2,4-DCP concentration were investigated and optimized.H_2O_2 was produced nearby cathode and Fe~(2 )continuously generated from Fe anode in solution when current and O_2 were applied,so,main reactions,H_2O_2-assisted TiO_2 PEC oxidation and E-Fenton reaction,occurred during degradation of 2,4-DCP in this integrative system.The degradation ratio of 2,4-DCP was 93% in this integrative oxidation process,while it was only 31% in E-Fenton process and 46% in H_2O_2-assisted TiO_2 PEC process.So,it revealed that the degradation of 2,4-DCP was improved greatly by photoelectrical cooperation effect.By the investigation of pH,it showed that this integrative process could work well in a wide pH range from pH 3 to pH 9.  相似文献   

19.
The influence of coexisting copper (Cu) ion on the degradation of pesticides pyrethroid cypermethrin and cyhalothrin in soil and photodegradation in water system were studied.Serial concentrations of the pesticides with the addition of copper ion were spiked in the soil and incubated for a regular period of time,the analysis of the extracts from the soil was carried out using gas chromatography (GC).The photodegradation of pyrethroids in water system was conducted under UV irradiation.The effect of Cu~(2 ) on the pesticides degradation was measured with half life (t_(0.5)) of degradation.It was found that a negative correlation between the degradation of the pyrethroid pesticides in soil and Cu addition was observed.But Cu~(2 ) could accelerate photodegradation of the pyrethroids in water.The t_(0.5) for cyhalothrin extended from 6.7 to 6.8 d while for cypermethrin extended from 8.1 to 10.9 d with the presence of copper ion in soil.As for photodegradation,t_(0.5) for cyhalothrin reduced from 173.3 to 115.5 rain and for cypermethrin from 115.5 to 99.0 min.The results suggested that copper influenced the degradation of the pesticides in soil by affecting the activity of microorganisms.However, it had catalyst tendency for photodegradation in water system.The difference for the degradation efficiency of pyrethroid isomers in soil was also observed.Copper could obviously accelerate the degradation of some special isomers.  相似文献   

20.
以三峡大学的校园河道求索溪为研究对象,利用综合水质标识指数法确定求索溪水质类别,分析其水质时空变化规律,并利用对应分析法得出求索溪中不同监测点的主要污染因子.研究结果表明:求索溪整体的综合水质标识指数为7.423,整体水质为劣V类(地表水环境质量标准GB 3838-2002)且黑臭.从时间变化来看,求索溪4月份的水质最差,5月份次之,4、5月份所有监测点的水质都劣于V类且黑臭;8月份水质最好,水质为Ⅳ类;从空间分布来看,8个监测点综合水质标识指数均超过6.0,水质为劣V类,其中6号监测点的水质相对最好,监测点3号的水质相对最差;对应分析法得出求索溪的整体水体污染程度受总氮因子的影响最大,其次为总磷.该研究拟为求索溪及类似校园河道的水环境治理研究提供基础依据和参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号