首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
上海城区典型污染过程VOCs特征及臭氧潜势分析   总被引:10,自引:7,他引:3  
利用在线气相色谱-氢火焰离子化(GC-FID)监测系统对上海市城区典型污染前、污染中和污染后的55种挥发性有机物(VOCs)进行了自动连续监测,分析了各个阶段VOCs(C2~C12)体积分数、物种变化特征.结果表明上海市城区典型污染前VOCs平均体积分数为27×10-9;污染中VOCs体积分数迅速增加,比污染前高3倍,达到87×10-9;具体以烷烃最高(35.2×10-9)、芳香烃次之(30.0×10-9)、烯烃最低(21.6×10-9);用最大臭氧生成潜势量(ΦOFP)对不同污染阶段污染VOCs大气活性进行了评估,结果表明不同污染阶段VOCs的ΦOFP均呈现污染前〈污染后〈污染中的变化特征.污染前期的ΦOFP依次是芳香烃(53.0%)〉烯烃(36.1%)〉烷烃(11.7%);污染中期的ΦOFP依次是芳香烃(54.7%)〉烯烃(36.7%)〉烷烃(9.8%);污染后期ΦOFP则依次是烯烃(52.7%)〉芳香烃(36.0%)〉烷烃(13.2%).具体关键活性物种主要包括甲苯、间、对二甲苯、1,3-丁二烯、乙烯、丙烯等芳香烃和烯烃物种,具体以烯烃C2~C4为主,芳香烃C6~C8为主.不同污染阶段O3与ΦOFP之间存在典型的非线性负相关关系,并且ΦOFP转化为O3的量均小于20%,说明臭氧浓度仍有很大上升空间;这对定量评估大气中VOCs对臭氧的影响具有重要意义.  相似文献   

2.
为估算重庆市夏秋季VOCs(挥发性有机物)对O3和SOA(二次有机气溶胶)的生成潜势,利用在线GC-MS/FID在2015年8月22日-9月23日对重庆市区点和郊区点VOCs开展了为期一个月的实时观测,获得市区点和郊区点$ \varphi $(TVOCs)(总挥发性有机物)分别为41.35×10-9和22.72×10-9,其中市区点以烷烃(35.2%)和烯炔烃(25.2%)为主,郊区点以含氧挥发性有机物(oxygenated volatile organic compounds,OVOCs)(30.6%)和烷烃(26.0%)为主.结合最大增量反应活性量化市区点和郊区点VOCs的OFPs(臭氧生成潜势)分别为149.11×10-9和71.09×10-9,市区点OFPs最大的是乙烯、丙烯、甲苯、C8和C9的芳香烃等,郊区点OFPs最大的VOCs是丙烯醛、异戊二烯和甲基乙烯基酮.结合气溶胶生成系数量化郊区点和市区点VOCs对SOA的生成贡献分别为0.36和1.26 μg/m3,相比国内其余城市VOCs的SOAP(二次有机气溶胶生成潜势)较小,主要以甲基环己烷、正壬烷、正葵烷和十一烷等高碳烷烃,以及甲苯、苯、二甲苯和乙苯等芳香烃的SOAP为主.研究显示,控制烯炔烃和芳香烃的浓度有助于控制重庆市O3的生成,控制高碳烷烃和芳香烃则有助于控制重庆市SOA的生成.   相似文献   

3.
厦门冬春季大气VOCs的污染特征及臭氧生成潜势   总被引:10,自引:4,他引:6  
2014年1~4月在厦门市城区和郊区开展冬春季节大气样品的采集,采用大气预浓缩系统与GC/MS联用技术定量了48种大气挥发性有机物(VOCs),对比分析了冬春季城区和郊区大气VOCs的污染特征,并利用最大增量反应活性(MIR)估算了大气VOCs的臭氧生成潜势(OFP).结果表明,冬季厦门城区和郊区大气中VOCs的平均体积分数分别为11.13×10-9和7.17×10-9,春季厦门城区和郊区大气中VOCs的平均体积分数分别为24.88×10-9和11.27×10-9,且均表现为烷烃芳香烃烯烃.通过B/T值探讨城区和郊区VOCs的来源发现,机动车和溶剂挥发是城区VOCs的主要来源,郊区VOCs除了局地源的贡献外,还受到外来污染物扩散传输的影响.城、郊区的主要VOCs包括丙烯、正丁烷、异丁烷、正戊烷、异戊烷、正己烷、苯、甲苯、乙苯和间对二甲苯,这10种组分对两地VOCs的贡献表现为春季(城区和郊区分别为62.83%和53.74%)高于冬季(城区和郊区分别为61.57%和45.83%).城、郊区VOCs的臭氧生成潜势分析显示,芳香烃的相对贡献率最大,其次是烯烃,烷烃最小.C3、C4类烯烃和苯系物是厦门城区和郊区活性较高的物种,对臭氧的贡献较大.比较观测期间城区和郊区VOCs的平均MIR值可知,郊区VOCs的活性高于城区.  相似文献   

4.
《环境科学与技术》2021,44(2):57-65
该研究选取深圳市工业区、城区、郊区等不同类型的5个典型地区在2017年8月(夏季)、10-11月(秋季)、12月(冬季)开展了挥发性有机物(VOCs)离线手工采样及监测,获得了113种VOCs物种的体积分数数据并分析了VOCs污染特征及臭氧生成潜势(OFP)。研究表明,观测期间深圳市VOCs平均体积分数为37.3×10~(-9),以含氧挥发性有机物(OVOCs)和烷烃为主要组分,共占总体积分数的57.2%。秋冬季体积分数约为夏季的2倍,日变化上烷烃、烯烃、芳香烃体积分数在中午达到谷值,较早晚平均值偏低46.7%~48.3%,但OVOCs日变化曲线较为平缓。观测期间VOCs的OFP平均为121.2×10~(-9),OVOCs、烯烃和芳香烃是主要贡献来源,分别占42.0%、33.0%和15.3%,1,3-丁二烯、丙醛、乙醛、甲苯是对OFP贡献最大的前4个物种,共占55.8%。工业排放对臭氧生成影响显著,工业区点位OFP较高(182.2×10~(-9)),城区次之(98.6×10~(-9)),郊区最低(68.9×10~(-9)),同时工业区甲苯/苯(T/B)比值较高(10.7),表明受溶剂使用源的影响较大。加强控制溶剂使用源、工业源和机动车的VOCs排放将有利于降低深圳市大气OFP,从而减少臭氧生成。  相似文献   

5.
郑州市春季大气挥发性有机物污染特征及源解析   总被引:2,自引:10,他引:2  
对2018年春季郑州市5点位进行环境大气挥发性有机物(VOCs)罐采样及组分分析,开展其污染特征、臭氧生成潜势(OFP)、气溶胶生成潜势(AFP)和来源解析研究.结果表明,郑州市春季VOCs体积分数为(30. 66±13. 60)×10-9,烷烃占比最高(35. 3%),其次为OVOCs(25. 3%)、卤代烃(24. 1%)、芳香烃(10. 0%)和烯烃(5. 2%);总OFP为195. 53μg·m-3,烷烃、烯烃、芳香烃、卤代烃和OVOCs贡献率分别为25. 6%、17. 8%、38. 9%、5. 8%和11. 9%;总AFP为0. 95μg·m-3,芳香烃贡献率最高(87. 6%),其次为烷烃(12. 4%);秦岭路和经开区点位正戊烷、异戊烷、苯和甲苯受机动车影响较大,郑州大学点位主要受燃烧源影响;源解析显示机动车尾气及LPG挥发、溶剂使用源、工业过程源、区域老化气团和植物源对采样期间VOCs浓度贡献依次是30. 5%、27. 3%、22. 1%、14. 4%和5. 7%.  相似文献   

6.
为研究煤化工产业园区挥发性有机物(VOCs)污染特征及其对大气细颗粒物(PM2.5)和臭氧(O3)的贡献,本研究于2021年夏季利用气相色谱/质谱联用仪在某大型煤化工产业园区开展了环境空气115种VOCs的在线监测研究,分析了VOCs的浓度水平、组成特征、日变化特征、潜在来源及其对O3和PM2.5中二次有机气溶胶(SOA)的生成贡献. 结果表明:①观测期间,园区站点VOCs的平均体积分数为89.32×10?9±50.57×10?9,显著高于该园区所在城市的城区站点VOCs浓度水平. ②含氧VOCs (OVOCs)是该园区VOCs的主要特征污染物,占总VOCs体积分数的48.2%,乙醇、丙醛和甲醛是体积分数排名前三的物种. ③VOCs的臭氧生成潜势(OFP)为595.64 μg/m3,各组分对O3贡献潜势的大小表现为OVOCs>烯烃>芳香烃>烷烃>卤代烃>含硫VOC>炔烃. OFP排名前十的物种均为OVOCs、烯烃和芳香烃,其中丙醛对OFP的贡献占比最高,占总OFP的22.2%. ④间/对-二甲苯、邻二甲苯和乙苯等苯系物对二次有机气溶胶生成潜势(SOAFP)的贡献突出,其中间/对-二甲苯的SOAFP最大,占总SOAFP的29.6%,主导了SOA生成. 研究显示,煤化工产业园区中丙醛和甲醛等OVOCs、顺-2-丁烯等烯烃以及间/对-二甲苯与邻二甲苯等芳香烃对大气复合污染贡献较大,是开展PM2.5和O3污染协同控制重点关注的物种.   相似文献   

7.
2016年7月在广州城区开展了27d的大气VOCs在线监测,共得到73种VOCs,总浓度均值为40.07×10-9.其中烷烃占比55.17%,芳香烃占比15.42%,烯烃占比12.14%,氯代烃占比8.79%,乙炔占比3.97%,OVOC占比3.72%,乙腈占比0.79%.采用臭氧生成潜势(OFP)和OH自由基消耗速率估算了广州城区夏季VOC大气化学反应活性,结果表明芳香烃和烯烃是最主要的活性物种;VOCs的关键活性组分是甲苯、反-2-戊烯、间/对二甲苯、1,3-丁二烯、异戊二烯等.采用气溶胶生成系数法(FAC)估算了VOCs对二次有机气溶胶(SOA)的贡献,结果显示芳香烃、烷烃、烯烃分别占总SOA生成潜势量的95.54%、2.5%、1.95%,甲苯、间/对二甲苯、乙苯、邻二甲苯、1,2,4-三甲基苯是对SOA生成贡献最大的前5个物种.  相似文献   

8.
2011年9月1日~11月21日在上海市城区对大气中颗粒物质量浓度和挥发性有机物体积分数进行了在线连续观测.期间共出现4次大气污染过程:PD1(9月20~23日)、PD2(10月5~9日)、PD3(10月13~18日)、PD4(11月10~14日).本测点大气PM2.5的平均浓度分别为(45±16)、(76±46)、(57±36)和(122±92)μg·m-3,VOCs的体积分数分别为(30.87±30.77)×10-9、(32.09±30.69)×10-9、(34.04±28.13)×10-9和(44.27±31.58)×10-9;烷烃、烯烃、芳香烃的体积分数分别占TVOC的53.58%、27.89%、10.96%;用OH消耗速率(LOH)和臭氧生成潜势(OFP)评估了VOCs大气化学反应活性.结果表明,烯烃和芳香烃是本测点秋季大气VOCs中对LOH和OFP贡献最大的关键活性组分.利用气溶胶生成系数FAC和OC/EC比值法估算上海市SOA的生成潜势,两种方法得出的SOA浓度值分别为1.43μg·m-3和4.54μg·m-3,比值法明显较高,这主要是本研究测得的SOA前体物偏少所致.其中芳香烃不仅是OFP的关键活性组分,而且也是SOA的重要前体物.应用PMF模型对VOCs进行源解析,确定了秋季上海市大气中VOCs的6个主要的污染来源,分别为汽车尾气(24.30%)、不完全燃烧(17.39%)、燃料挥发(16.01%)、LPG/NG泄露(15.21%)、石油化工(14.00%)、涂料/溶剂的使用(13.09%).汽车尾气和涂料/溶剂等源排放的VOCs中富含OFP关键活性组分和SOA重要前体物,它们对VOCs浓度的贡献占TVOC的37.39%,这些排放源应列入未来上海市大气复合污染控制的优先范围.  相似文献   

9.
挥发性有机物(VOCs)是对流层臭氧和二次有机气溶胶等二次污染生成过程的关键前体物.研究VOCs的浓度水平、组成特征和反应活性对揭示复合型大气污染的形成机制具有重要意义.本研究利用在线气相-氢离子火焰法测量了2009年春节和"五一"节期间上海市城区大气中56种VOCs.结果表明,上海市城区大气受机动车尾气排放源影响明显,VOCs浓度日变化特征呈双峰状,与上下班交通高峰基本吻合.大气中VOCs平均体积分数为(28.39±18.35)×10-9;各组分百分含量依次为:烷烃46.6%,芳香烃27.0%,烯烃15.1%,乙炔11.2%.用OH消耗速率和臭氧生成潜势(OFP)评估了VOCs大气化学反应活性,结果表明,上海市城区大气VOCs化学反应活性与VOCs体积浓度相关性良好;VOCs活性与乙烯相当,平均化学反应活性较强;OH消耗速率贡献最大的物种是烯烃51.2%和芳香烃31.8%;OFP贡献最大的物种是芳香烃53.4%和烯烃30.2%;对臭氧生成贡献最大的关键活性物种为丙烯、乙烯、甲苯、二甲苯以及丁烯类物质.  相似文献   

10.
利用2021年1~12月杭州市城区大气VOCs的观测数据,分析了VOCs化学组成及其污染特征,运用正交矩阵因子分解法(PMF)进行VOCs来源解析,并利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)估算VOCs的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(AFP),量化评估其二次污染生成贡献.结果显示,观测期间杭州市大气VOCs体积分数均值为30.65×10-9,烷烃和卤代烃是其主要组分,分别占49.23%和24.47%,浓度排名前10的VOCs物种主要为C2~C4的烷烃、C7~C8的芳香烃和乙烯.源解析结果显示杭州市VOCs主要来源为燃烧源、溶剂使用源、工业排放源、油气挥发源和机动车尾气排放源.杭州市大气VOCs的总OFP为50.56×10-9,其中乙烯、1-乙基-3-甲基苯和甲苯是其主要贡献组分.芳香烃对AFP的贡献达到91.52%,是最重要的SOA前体物.因此,控制机动车尾气排放和溶剂使用过程中产生的VOCs对防控O3  相似文献   

11.
2017年10月、12月在宝鸡市城区开展了共29d的挥发性有机物(VOCs)浓度在线监测,共测出102种VOCs,分别采用最大增量反应活性(MIR)系数法和气溶胶生成系数(FAC)法估算了宝鸡市各VOCs组分的臭氧生成潜势(OFPs)和二次有机气溶胶生成潜势(SOAFPs),筛选出生成O3与SOA活性最大的VOCs成分.结果表明:宝鸡市秋季和冬季TVOC的浓度分别为(68.62±21.85)×10-9和(42.44±16.62)×10-9,总OFPs分别为185.49×10-9和126.00×10-9,总SOAFPs分别为3.26,0.65μg/m3.秋季VOCs中含量最多的2种组分为烷烃(21.83×10-9)和芳香烃(13.37×10-9),分别占TVOC的31.82%和19.49%,乙烯、反-2-戊烯和甲苯是OFPs最大的3个成分,甲苯、间/对二甲苯和乙苯是SOAFPs最大的3个成分.而在冬季,烷烃(17.34×10-9)和炔烃(8.81×10-9)是VOCs中含量最多的2种组分,分别占TVOC的40.85%和20.75%,乙烯、丙烯、乙炔是OFPs最大的3个成分,甲苯、间/对二甲苯、乙苯是SOAFPs最大的3个成分.优先减少烯烃和芳香烃的排放是宝鸡市秋冬季抑制O3和SOA的形成的有效途径.  相似文献   

12.
基于2019年10月广东省鹤山大气超级监测站的观测数据分析了臭氧浓度特征与单颗粒气溶胶中的有机物组分.结果表明,PM2.5中OC的含量显著大于EC,OC/EC比值为0.7~10.4,其中,OC/EC>2的比例占91%,表明有机碳主要来自二次生成.高臭氧浓度下二次组分(Sec)单颗粒和老化有机无机碳(ECOC-aged)单颗粒的数浓度显著增加,Sec和ECOC-aged单颗粒中含乙酸根(59CH3CO2-)和乙醛酸(73C2HO3-)的单颗粒数浓度呈单峰分布,两种有机单颗粒的增加都发生在下午臭氧浓度升高光化学反应较强的时段,表明大气氧化性增强有利于含氧有机物的生成.此外,Sec单颗粒中两种有机单颗粒的峰值出现在16:00,而ECOC-aged单颗粒中两种有机单颗粒的峰值出现在18:00之后,这种差异产生的原因可能与含氧有机物氧化形成的过程有关,ECOC-aged粒子中的含氧有机物主要来自...  相似文献   

13.
植物源挥发性有机化合物排放清单的研究进展   总被引:4,自引:1,他引:3  
谢军飞  李延明 《环境科学》2013,34(12):4779-4786
根据近期国内外相关文献,从植物VOC排放清单的角度,对不同空间尺度下植物VOC排放模型的建立与排放清单量值的估算进行了归纳,其中,中国植被VOC年排放总量的估算值(以C计)在12.4~28.4 Tg·a-1之间,2000年北京市园林绿地植物VOC年总排放量约为3.85万t.另外,以北京城市为例,为确定城市大气污染物的总体减排对策,还进一步对园林植物VOC排放清单量值对大气中O3与SOA形成的贡献进行了介绍,在同一时期内,相比园林植物,人为源排放的活性芳香烃类化合物和烯烃类对大气中O3的产生贡献最大,人为源排放的芳香烃还是北京SOA生成潜势的主要贡献源.最后建议重点控制城市人为源的VOC排放,这将对降低北京城市臭氧与二次有机气溶胶污染起到关键作用.  相似文献   

14.
以北京地区森林植被为研究对象,基于森林资源清查蓄积资料和逐小时气象数据,采用光温影响模型对2000~2020年北京森林BVOCs排放量进行估算,并分析其对空气质量的影响.结果显示,2020年北京森林BVOCs排放量为39.57×109g C,异戊二烯、单萜烯和OVOCs分别占72.19%、17.48%和10.32%,杨树、栎树等阔叶树是主要的异戊二烯排放源,油松等针叶树是主要的单萜烯排放源.2000~2020年森林BVOCs排放量从20.30×109g C/a增加到39.57×109g C/a,年平均增长率4.75%;BVOCs排放量的变化表现出明显阶段性特征,2000~2010年增长缓慢,2010~2020年出现大幅上升.20年间异戊二烯所占比重呈下降趋势,单萜烯和OVOCs所占比重则呈上升趋势;杨树对BVOCs排放量的贡献逐渐降低,栎树和其他阔叶树的贡献明显增加,北京新增森林更加注重物种多样化.2000~2020年,BVOCs的O3生成潜势从181.76×109g增加到331.07×109g,异戊二烯占92.70%,是主要的贡献者;SOA生成潜势从1.11×109g增加到2.65×109g,单萜烯和异戊二烯分别占75.40%和24.60%.O3生成潜势最大的树种是杨树,SOA生成潜势最大的树种是油松.森林BVOCs排放在夏季对O3污染的贡献最大,未来绿化中应考虑优化树种组成.  相似文献   

15.
于2020年8月18~27日在长沙、株洲和湘潭这3市,使用罐采样方法开展了大气挥发性有机物(VOCs)连续采集,并使用GC/FID/MSD分析了106种VOCs物种浓度,开展区域VOCs污染特征、生成潜势和来源解析研究.结果表明,长株潭区域φ(VOCs)平均值为(20.5±10.5)×10-9,其中OVOCs(33.5%)和烷烃(28.2%)所占质量分数较高;VOCs的臭氧生成潜势(OFP)平均值为118.5μg·m-3,芳香烃、烯烃和OVOCs对OFP的贡献率分别为37.4%、 24.2%和23.6%; VOCs的二次有机气溶胶生成潜势(SOAp)平均值为0.5μg·m-3,芳香烃对SOAp的贡献率达97.0%,其中C8类芳香烃贡献率为41.7%,甲苯、间/对-二甲苯和邻-二甲苯是对OFP和SOAp有显著贡献的共同优势物种.特征比值结果表明长沙VOCs受工业过程和溶剂使用影响相对较大,而株洲和湘潭受煤和生物质燃烧影响相对较多;PMF解析结果显示,VOCs...  相似文献   

16.
为深入了解挥发性有机物(VOCs)的大气化学作用,基于贵阳市2022年5月VOCs离线观测数据,系统性分析VOCs的浓度水平、化学组成、OH活性、NO3活性、O3活性、臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAP)。结果表明,观测期间,VOCs的浓度、OH活性、NO3活性、O3活性、OFP和SOAP平均值分别为71.86±12.86μg/m3、3.52±1.28s-1、1.65×10-3±1.57×10-3s-1、3.87×10-7±4.31×10-7s-1、36.08±35.44μg/m3和369.41±231.42μg/m3,均呈现晚上高白天低的日变化。烷烃是VOCs浓度的主要贡献组分,占比为38.66%,需重点关注丙酮、二氯甲烷、正丁醛、一溴二氯甲烷和氯仿等高浓度物种;OVOCs是OH活性贡献最大的组分,占比为46.50%,烯烃是NO3活性和O3活性主要贡献种类,贡献占比分别为68.07%和97.85%,需重点关注乙烯、丙烯、正丁醛、异戊二烯、丁烯、反-2-丁烯和顺-2-丁烯等活性物种;OVOCs和芳香烃分别是OFP和SOAP主要贡献种类,占比分别为48.18%和78.92%,需重点关注正丁醛、乙烯、乙醛和丁烯等主要的OFP贡献组分,和芳香烃类物种、苯甲醛和正十二烷等主要的SOAP贡献组分。后向轨迹研究发现,为进一步削减贵阳市O3和颗粒物污染,VOCs控制政策应该重点关注贵阳市东部和北部地区。  相似文献   

17.
于2016年在中国广东大气超级监测站,开展4个季节的VOCs长时间观测,共获得2142组有效数据,并利用HYSPLIT模型分析珠三角地区VOCs时空分布特征.结果表明,各类VOCs混合比和化学反应活性具有明显的季节变化特点.观测期间,VOCs平均浓度为(18.523±20.978)×10-9,其中,低碳烯烃和苯系物二者混合比之和仅占46%,但贡献了85%的·OH消耗速率(LOH)、82%的臭氧生成潜势(OFP)和97%的二次气溶胶生成潜势(SOAFP).观测站点主要受来自北部内陆地区气团(1#)、西部内陆地区气团(2#)、台湾海峡南端气团(3#)以及南部海洋地区气团(4#)的影响.1#气团中炔烃和苯系物的混合比占比最高,分别达到10%、37%,而3#气团中低碳烷烃的浓度水平最高,达到(8.437±5.561)×10-9.通过估算气团中VOCs的化学反应活性,可以发现,1#气团的VOCs化学反应活性最强,其对O3和SOA的生成贡献最高.1#、2#、3#和4#气团中VOCs的化学反应活性主要由苯系物和低碳烯烃贡献.  相似文献   

18.
于2016年在中国广东大气超级监测站,开展4个季节的VOCs长时间观测,共获得2142组有效数据,并利用HYSPLIT模型分析珠三角地区VOCs时空分布特征.结果表明,各类VOCs混合比和化学反应活性具有明显的季节变化特点.观测期间,VOCs平均浓度为(18.523±20.978)×10-9,其中,低碳烯烃和苯系物二者混合比之和仅占46%,但贡献了85%的·OH消耗速率(LOH)、82%的臭氧生成潜势(OFP)和97%的二次气溶胶生成潜势(SOAFP).观测站点主要受来自北部内陆地区气团(1#)、西部内陆地区气团(2#)、台湾海峡南端气团(3#)以及南部海洋地区气团(4#)的影响.1#气团中炔烃和苯系物的混合比占比最高,分别达到10%、37%,而3#气团中低碳烷烃的浓度水平最高,达到(8.437±5.561)×10-9.通过估算气团中VOCs的化学反应活性,可以发现,1#气团的VOCs化学反应活性最强,其对O3和SOA的生成贡献最高.1#、2#、3#和4#气团中VOCs的化学反应活性主要由苯系物和低碳烯烃贡献.  相似文献   

19.
上海地区光化学污染中气溶胶特征研究   总被引:7,自引:0,他引:7  
利用上海地区2011~2013年9个大气成分及气象观测站点臭氧(O3)、颗粒物(PM1、PM2.5、PM10)、气溶胶粒子谱观测资料以及气象数据,分析了上海不同功能区臭氧超标时的频率分布及各类污染物浓度特征.结果表明,上海地区夏季光化学污染严重,周边城区臭氧污染要明显高于中心城区,不同功能区污染情况差异较大,金山化工区和崇明生态岛光化学污染较为严重.通过分析光化学污染前后气溶胶变化特征可知,当出现光化学污染时,各站气溶胶浓度明显升高,特别是PM1浓度增加显著,且PM1/PM2.5比未出现臭氧污染时的比例明显升高.表明随着光化学反应的增强,二次气溶胶生成明显增多.因此可将PM1作为光化学污染的判定指标之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号