首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
北京地区秋季雾霾天PM2.5污染与气溶胶光学特征分析   总被引:15,自引:9,他引:6  
利用北京城区和郊区2011年9月1日~12月7日PM2.5质量浓度、气溶胶散射系数(σsca)和黑碳浓度观测资料,研究了雾霾天气条件下北京地区PM2.5污染与气溶胶光学参数的变化特征,并讨论了气象条件的作用.结果表明,北京地区PM2.5污染和气溶胶光学特性受雾霾天气的影响非常明显.PM2.5浓度、σsca和气溶胶吸收系数(σabs)在雾霾期均明显高于非雾霾期,雾霾期日均PM2.5浓度在城区和郊区分别达到97.6μg·m-3和64.4μg·m-3,为非雾霾期日均浓度的3.3和4.8倍.城区高PM2.5浓度造成雾霾类天气出现频率明显高于郊区.轻雾天城区PM2.5浓度、σsca和σabs明显高于郊区,区域输送的影响相对较弱,轻雾和霾天城郊差异较小,区域性特征明显,而雾天σsca城郊非常接近且在各雾霾类天气中相对最高,气溶胶散射能力最强,区域性特征较为明显.气象条件的不同造成各雾霾过程PM2.5浓度、σsca和σabs的空间分布、PM2.5污染及气溶胶消光强度上呈现不同的特点.边界层以上偏南风将南部地区污染物向北京输送,在整层下沉气流作用下使得边界层内污染物浓度增加,加之边界层高度持续稳定在600 m左右,边界层内风速很低,污染物水平、垂直扩散均很弱,造成局地污染物的累积,形成了PM2.5污染和气溶胶消光强度最强的一次雾霾过程.  相似文献   

2.
春节期间西安城区碳气溶胶污染特征研究   总被引:15,自引:4,他引:11  
采用美国R&P公司TEOM-1400a大气颗粒物监测仪器及其8通道采样系统(ACCU),在2011年春节期间实时监测和分8个时段采集了西安城区的PM2.5样品.研究了春节期间西安城区大气中PM2.5的碳气溶胶污染特征.目的是阐明2011年春节期间燃放烟花爆竹时,西安城区大气中细颗粒PM2.5的质量浓度、元素碳(EC)、有机碳(OC)及水溶性有机碳(WSOC)的浓度分布特征,探讨了其污染来源.结果表明,除夕00:00~02:59为污染浓度最大时段,PM2.530 min平均浓度在01:00时刻达到最大值1 514.8μg·m-3,其碳组分OC、EC、WSOC、非水溶性有机碳(WIOC)分别为123.3、18.6、66.7和56.6μg·m-3,高于春节期间的其他正常时段1.7倍、1.2倍、1.4倍和2.2倍.碳气溶胶组分WSOC与OC、EC相关性分析表明春节烟火期间含碳物质更多的来自于烟花爆竹燃放,但其对烟火时段的气溶胶的贡献较小,仅为9.4%.  相似文献   

3.
上海市浦东城区二次气溶胶生成的估算   总被引:6,自引:5,他引:1  
利用2010年5~10月不同日最高O3小时浓度(O3,max)下PM10浓度变化评估不同O3浓度水平下二次气溶胶生成量.CO作为一次颗粒物的标志物,O3作为光化学反应水平的指示物种.结果表明不同光化学水平条件下,PM10中一次与二次气溶胶浓度及比例存在较大差异.随着光化学水平的增加,PM10中一次气溶胶排放浓度增长不大(0.036~0.044 mg.m-3),二次气溶胶的生成量却呈数倍增长(0.018~0.055 mg.m-3);二次与一次气溶胶浓度的比例也从49.8%增加到124.5%.O3,max出现的时间也随着光化学水平的增强由13:00推迟到14:00,二次气溶胶生成的主要时段也从11:00~20:00增加到09:00~20:00;此外,PM2.5中主要组分SO24-、NO3-、OC等比例随着光化学水平(即O3,max浓度)的不同而存在一定差异,当O3,max<0.10 mg.m-3时,PM2.5主要由12.0%有机碳(OC)、18.7%硫酸盐、13.1%硝酸盐和4.5%元素碳(EC)组成,而O3,max>0.20mg.m-3时,PM2.5主要由20.0%有机碳(OC)、22.9%硫酸盐、23.1%硝酸盐和4.7%元素碳(EC)组成.说明SO24-、NO3-、OC受光化学水平影响较大.  相似文献   

4.
2009年4月末,发生了一次罕见的粗粒子气溶胶远距离输送造成华南地区出现严重的空气污染事件,其特征主要是气溶胶质量浓度超标,而能见度没有明显恶化,对这次空气污染事件进行分析的结果表明.在过程中,粗细粒子质量比(PM2.5/PM10)有明显的3次下降,最低达到0.3,即PM2.5仅占PM10的30%,这与珠江三角洲地区通常以细粒子为主的污染特征有很大不同,反映了外来粗粒子的侵入特征.长江流域浮尘天气的沙尘粒子变性后,长距离输送污染物叠加本地污染物,造成这次严重空气污染事件.  相似文献   

5.
北京地区不同天气条件下气溶胶数浓度粒径分布特征研究   总被引:9,自引:5,他引:4  
苏捷  赵普生  陈一娜 《环境科学》2016,37(4):1208-1218
2012~2014年,在北京城区利用宽范围粒径谱仪(WPS-1000XP)对气溶胶数粒径分布特征进行观测,进而分析了不同季节与不同天气条件下气溶胶粒径分布的变化特征.结果表明,春季爱根核模态气溶胶日均数浓度值最高,秋季最低;春季和冬季积聚模态下日均数浓度较高,夏季最低;粗模态气溶胶日均浓度在冬季最高.爱根核模态粒子数浓度日变化特征最为显著,受交通源及夏季中午前后的光化学作用影响明显.春、秋、冬季积聚模态状态气溶胶数浓度夜晚高于白天,粗模态粒子没有明显的日变化特征.重污染过程中,积聚模态气溶胶对于PM_(2.5)质量浓度起到决定作用,通常需通过北风的清除才能有效降低PM_(2.5)浓度;降雨及降雪对粗模态粒子的清除效果较为明显,而小风和静风状态下,降水对积聚模态的气溶胶没有明显的清除作用;沙尘过程中,粗模态粒子浓度显著增加,而积聚模态气溶胶却被明显清除.  相似文献   

6.
利用2009年北京市大气颗粒物质量浓度和气溶胶光学特性的同步观测研究发现,北京市城区颗粒物污染严重.PM2.5、PM10年平均浓度分别为(65±14)、(117±31)μg·m-3,均超出国家2016年拟执行环境空气质量二级标准,PM2.5、PM10日均值超标率分别为35%、26%.细粒子PM2.5污染与可吸入颗粒物PM10污染呈显著性相关,相关系数R约为0.90(P<0.001),二者相关性伴随PM2.5在PM10中所占比重自春季到冬季逐渐增大而增强,年均PM2.5占PM10比重为61%.气溶胶光学厚度AOD(500 nm)与气溶胶波长指数(α)年均值分别为(0.55±0.10)、(1.12±0.08).PM2.5、PM10与AOD间全年及各季节均呈显著线性相关,相关系数R≥0.50;但其相关系数与相关函数存在着显著的季节差异,夏秋季节相关性显著高于春冬季节,且全年相关会掩盖较大的季节性系统差异.对PM2.5、PM10数据进行湿度订正,对AOD进行混合层高度订正,PM2.5、PM10与AOD之间的相关性得到一定提升,且更适合指数相关.  相似文献   

7.
北京2012~2013年的冬春多次出现雾霾天气,可吸入颗粒物(PM10)污染严重.而PM2.5作为PM10中粒径较小的部分,在PM10中所占比重越高,污染越严重.因此,本研究选取了能够覆盖北京所有区县的30个PM2.5和PM10的质量浓度监测点,对该地区的PM2.5和PM10污染特征进行分析,确定其空间差异特征和时间性变化特征.普通克里格插值(Original Kriging)法得到的北京地区冬、春季颗粒物浓度分布图显示,颗粒物浓度从北部山区到南部地区逐渐递增,在中心城区处,西部高于东部,且局部地区存在一定的城乡差异.颗粒物浓度月变化曲线呈单峰单谷型,1月最高,4月最低;逐日变化反映了PM2.5和PM10浓度具有较好的相关性,且受气象条件影响显著;日变化呈双峰趋势.本文选取日平均气温(℃)、相对湿度(%)、风速(风级)、降水量(mm)等气象因子,利用Spearman秩相关分析研究各个气象因子对大气PM2.5和PM10浓度的影响.北京冬季PM2.5和PM10的质量浓度分别与气温、相对湿度正相关,与风速负相关,风速和相对湿度是影响污染物质量浓度分布的主要因素.  相似文献   

8.
北京城郊冬季一次大气重污染过程颗粒物的污染特征   总被引:17,自引:4,他引:13  
本研究分析了北京冬季一次大气重污染过程的颗粒物污染特征,通过数学统计方法分析了其形成的可能原因.观测于2013年1月24—31日进行,在西三环城区和大兴郊区使用中流量大气颗粒物采样器采集可吸入颗粒物(PM10)和细颗粒物(PM2.5),并采用离子色谱和元素碳/有机碳分析仪分析了PM2.5上的水溶性离子、元素碳和有机碳浓度.结果表明,本次重污染天气的大气日均能见度低于3.0 km.PM10和PM2.5质量浓度日均最大值分别为675.5和453.4μg·m-3,平均质量浓度为349.2和260.8μg·m-3,超过环境空气质量标准(GB3095—2012)所规定的二级浓度限值.通过比较PM2.5上化学成分的浓度发现,在城区和郊区,此次天气形成的共同污染源为冬季燃煤燃烧、汽车尾气排放和二次有机气溶胶污染;而土壤/沙尘对郊区污染天气的形成有部分贡献.大气中PM2.5质量浓度与能见度呈对数负相关关系.  相似文献   

9.
利用重庆市大气污染物监测站2013年冬季(2013年11月—2014年1月)的实测数据,分析PM2.5及相关气态污染物(SO2、NO2、O3)的时空特征,并采用轨迹聚类与PSCF(潜在源贡献因子)分析污染物来源.结果表明:除ρ(O3)以外,其他3种污染物质量浓度的月际变化趋势基本一致,均呈12月升高、1月降低的特征;污染物空间分布不均,其中ρ(PM2.5)和ρ(NO2)在工业区和人口密集区较高,ρ(SO2)南高北低,ρ(O3)城区低于郊区.ρ(SO2)、ρ(NO2)与ρ(PM2.5)均呈显著正相关,其中ρ(SO2)与ρ(PM2.5)的R(相关系数)在城、郊区分别为0.71、0.65,ρ(NO2)与ρ(PM2.5)在城、效区的R分别为0.73、0.56;而ρ(O3)与ρ(PM2.5)未表现出显著相关.ρ(SO2)、ρ(NO2)与ρ(PM2.5)的相关性高低可在一定程度上说明二次气溶胶的污染程度,ρ(O3)与ρ(PM2.5)的相关性受到PM2.5来源和污染程度的影响.轨迹分析结果显示,重庆市2013年冬季主要受东北方向气流影响;聚类分析表明,重庆市11月没有表现出明显的PM2.5外来输送特征,但12月和1月的PM2.5外来输送特征明显,并且不同方向的气流污染物浓度差异也较大.PSCF分析发现,重庆市冬季PM2.5、SO2、NO2、O3主要来源于本地和周围城市局地传输,同时还受南宁、贵阳、遵义、达州等地的影响.  相似文献   

10.
泰安市大气臭氧污染特征及敏感性分析   总被引:1,自引:0,他引:1  
李凯  刘敏  梅如波 《环境科学》2020,41(8):3539-3546
2018年5~7月对泰安市城区站点的臭氧及前体物进行在线监测,并基于特征比值法和光化学模型分析了臭氧及前体物的污染特征及臭氧生成对前体物的敏感性.结果表明,观测期间泰安市正遭受较为严重的臭氧(O_3)污染,臭氧浓度的日变化呈典型的单峰型变化,15:00左右出现最高值,氮氧化物(NO_x)和VOCs的日变化趋势整体呈现夜间高白天低的变化特征.由O_3生成效率(OPE)、VOCs/NO_x和H_2O_2/NO_z特征比值法及基于EKMA曲线的方法均得出观测期间泰安市大气O_3光化学生成偏向于NO_x敏感区及过渡区,削减NO_x和VOCs均对O_3生成具有控制作用.同时基于EKMA曲线的方法还得出在O_3前体物浓度减排时按照丙烯等效浓度(PE)与NO_x浓度比值为8∶3进行VOCs(PE)和NO_x削减可以达到O_3浓度控制的最佳效果.  相似文献   

11.
广州亚运期间鹤山大气颗粒物及碳组分的分析   总被引:1,自引:0,他引:1  
2010年11月广州亚运会期间,在鹤山连续测量了PM10、PM2.5及PM2.5中有机碳(OC)、元素碳(EC)的质量浓度,结合气象数据综合分析了该地区上述各种污染物的污染特征。研究结果表明:鹤山大气颗粒物以PM2.5为主,PM10和PM2.5具有较好的相关性(R2=0.72),其中PM2.5污染较严重;与国内外其他城市相比,鹤山OC、EC质量浓度处于中等偏高水平;OC和EC质量浓度的相关性较差(相关系数R2=0.32),OC/EC质量浓度比值远大于2,说明鹤山大气OC、EC来源较复杂,同时存在严重的二次污染;估算的二次有机碳(SOC)占OC总质量的66.5%。各种气象因素中,风速对污染物的质量浓度影响最大,秸秆燃烧等人类活动对其也有显著影响。  相似文献   

12.
Ozone sensitivity analysis with the MM5-CMAQ modeling system for Shanghai   总被引:3,自引:0,他引:3  
Ozone has become one of the most important air pollution issues around the world. This article applied both O3/(NOy-NOx) and H2O2/HNO3 indicators to analyze the ozone sensitivity in urban and rural areas of Shanghai, with implementation of the MM5-CMAQ modeling system in July, 2007. The meteorological parameters were obtained by using the MM5 model. A regional emission inventory with spatial and temporal allocation based on the statistical data has been developed to provide input emission data to the MM5-CMAQ modeling system. Results showed that the ozone concentrations in Shanghai show clear regional differences. The ozone concentration in rural areas was much higher than that in the urban area. Two indicators showed that ozone was more sensitive to VOCs in urban areas, while it tended to be NOx sensitive in rural areas of Shanghai.  相似文献   

13.
利用MCCM(多尺度气象空气质量模式)对京津冀地区2008年6月严重光化学污染时段的近地面φ(NOx)和φ(O3)进行了模拟;同时,为了检验MCCM系统模拟φ(O3)时空分布的能力,将模拟的气象要素、φ(NOx)和φ(O3)与观测数据进行了比对,并利用验证后的模拟结果对该地区严重光化学污染时段O3时空分布特征进行研究. 结果表明:①MCCM模式可较好地反映气象场和污染物浓度场的时空分布特征. 气温、露点温度和气压的观测值与模拟值的相关系数分别为0.85、0.77和0.95;模拟的化学物种浓度的时空分布与观测结果基本相符. ②城市中心地区φ(NOx)较高,北京和天津城市地区的φ(NOx)甚至超过了30×10-9;京津冀平原大部分地区午后14:00φ(O3)的最大值超过了70×10-9;而太行山沿线φ(O3)的最大值超过了80×10-9. 结合气象要素的分析表明,午后φ(O3)在太行山沿线的高值与气压场和流场关系密切. ③利用判断O3生成敏感性指标——H2O2/HNO3(体积分数比)分析发现,φ(O3)日最大值和φ(总氧化剂)(总氧化剂=NO2+O3)平均值的高值区域与O3生成受NOx和VOCs协同控制的区域极为吻合. 因此,要达到降低区域的光化学污染,应以VOCs的消减为主,同时兼顾NOx的消减.   相似文献   

14.
为了解我国夏半年大气复合污染特征及其与气象条件的关系,基于2015—2020年夏半年(4—10月)空气质量监测、常规气象观测等资料,结合统计学方法与主观经验开展对比分析. 结果表明:分析时段内我国大气污染呈单污染比例升高、臭氧(O3)与PM2.5污染“双高”污染事件减少的特征,中东部大部分地区O3超标日数增加、PM2.5超标日数减少的“跷跷板”效应十分明显. 通过对污染过程的分析发现,区域O3污染持续性特征明显,其中京津冀及周边地区持续时间超过10 d的O3污染过程共有6次,最长持续时间为15 d. 与之相比,复合污染过程表现出离散性(区域污染过程少)、间歇性(持续性过程少)的特征. 区域O3污染过程发生时的气象条件一般为最高温度较高、风速较小、混合层高度较低,但东北地区在大气扩散条件较好的情况下仍会出现区域O3污染. 通过对地面天气分型的分析发现,均压场型和低压控制型为O3污染出现时最主要的两种地面天气形势,高压控制型下出现O3污染的概率相对较低,京津冀及周边地区在倒槽控制下也有一定概率的O3污染出现. 研究显示,我国中东部地区夏半年O3污染影响显著,关注不同地区O3污染与气象条件之间的相关性对于大气复合污染防控有一定积极意义.   相似文献   

15.
我国典型钢铁工业城市夏季臭氧污染来源解析研究   总被引:2,自引:0,他引:2  
邯郸与其周边城市相比,臭氧(O3)污染最为严重.基于观测数据分析夏季邯郸O3浓度的时空特征,结果显示:观测期间邯郸O3超标天数比率为86.7%,各区县O3浓度分布存在差异,高温、低湿和偏南贴地气团传输是此次O3连续污染的主要成因.继而,以CAMx-OSAT模型模拟方法进行O3来源解析,溯源分析显示:邯郸O3污染具有明显区域性特征,本地源对市域O3贡献为43.9%,对主城区贡献明显增加(46.5%),但对O3污染最严重郊县成安却有所下降(37.4%),来自河南地区的贡献占有重要比例;O3污染过程中,本地源对主城区贡献显著升高(54.0%).本地源排放中,移动源对月均O3贡献最高,而钢铁源是O3污染过程最大贡献源.邯郸主城区光化学O3生成主要受VOCs敏感区控制;O3污染过程在NOx敏感区内生成的O3占比相对月均情况有所升高.  相似文献   

16.
济南大气臭氧浓度变化规律   总被引:15,自引:3,他引:12  
殷永泉  单文坡  纪霞  由丽娜  苏元成 《环境科学》2006,27(11):2299-2302
利用近2a济南市区近地面大气O3浓度的观测数据,分析了O3浓度的分布特征及时间变化规律.结果表明,济南市区O3浓度以1a为周期呈明显的波动变化特征,城市光化学污染较重;1d当中O3浓度呈明显的单峰型变化,一般在午后达到最高值,而日出时分出现最低值;春季和夏季O3浓度高于秋季和冬季,而夏季和秋季O3浓度的日内变化幅度明显高于春季和冬季;受人们活动规律的影响,周末O3浓度的日内变化规律与平日有所不同.  相似文献   

17.
2009年8~9月成都市颗粒物污染及其与气象条件的关系   总被引:19,自引:0,他引:19       下载免费PDF全文
对成都市3个不同点位PM2.5和PM10进行了为期30d的连续观测,研究了大气颗粒物浓度的时空分布特征,及其与气象条件的关系.研究表明,观测期间成都市大气颗粒物PM2.5和PM10质量浓度日均值分别为66,94μg/m3,两者浓度变化范围较大,但变化趋势相同.从空间分布来看,大气颗粒物浓度均是熊猫基地>草堂寺>丽都花园,即下风向污染状况最严重,商业繁华地段次之,生活居住区最好;从时间分布来看,大气颗粒物污染最严重出现在9月17~19日,9月5~9日2个时间段,不利的气象因素和污染物的累积是造成该时间段大气颗粒物污染加重的主要原因.PM2.5与PM10质量浓度的相关性为0.93,PM2.5对PM10的贡献较大,两者质量浓度的比值达0.69.气温对大气颗粒物浓度变化没有显著影响;降水以及风速对颗粒物浓度影响较大,主要是对颗粒物的湿清除和促进扩散作用;在一定相对湿度范围内,高湿度条件容易造成大气颗粒物的较重污染.能见度与大气颗粒物浓度呈明显负相关性,且与PM2.5的相关系数大于与PM10的相关系数.  相似文献   

18.
采用广义相加模型评估臭氧和细颗粒物(PM2.5)暴露对2008~2017年上海浦东居民慢性阻塞性肺疾病(COPD)死亡的超额危险度(ER)和寿命损失年(YLL)的影响.结果表明:臭氧污染集中在4~6月,PM2.5污染集中在12月、1~2月,10a间臭氧浓度逐年增加,PM2.5有小幅下降;在最大滞后效应下,臭氧每增加10μg/m3,ER和YLL分别为1.34%(95% CI:0.57%~2.12%)和54.98(95% CI:16.36~106.41)人·a;PM2.5每增加10μg/m3,两者分别为2.66%(95% CI:1.54%~3.79%)和130.92(95% CI:42.47~274.28)人·a;臭氧对男性和<85岁人群影响显著,PM2.5对女性和385岁人群影响显著;暖季时臭氧暴露相关的COPD死亡风险更高,冷季时PM2.5暴露相关的COPD死亡风险更高.臭氧和PM2.5致COPD死亡的影响可能因气温水平而异.  相似文献   

19.
天津重污染期间大气污染物浓度垂直分布特征   总被引:14,自引:7,他引:7  
利用天津气象局255 m铁塔垂直4层观测平台(高度分别为3、40、120和220 m),对各层大气中的NOx、O3、SO2浓度(均以φ计)和PM2.5浓度(以ρ计)进行了连续观测,结合同步气象要素分析了2010年10月3—11日天津发生的一次重污染事件.结果表明:在此次重污染事件期间,一次及二次污染物浓度的垂直梯度变化差异显著,φ(NO)、φ(NO2)和ρ(PM2.5)随高度上升而降低,φ(NO)在3~120和120~220 m的递减率分别为58.0%和8.5%,ρ(PM2.5)在3~220 m递减率为13.0%;而φ(O3)和φ(SO2)平均值却随高度的上升而增加,其中φ(O3)在3~40、40~120和120~220 m的增长率分别为108.0%、19.1%和56.4%,φ(SO2)在3~220 m的增长率为25.0%. NOx主要来源于局地近地面污染源的排放;SO2主要来源于高架点源的排放,O3则来源于局地光化学过程积累;PM2.5受局地排放源和光化学过程的双重影响,垂直梯度变化最不显著. 不利于扩散的气象条件使以局地排放为主的污染物积累升高及其伴随的光化学反应造成了天津此次重污染事件.   相似文献   

20.
上海地区一次典型连续浮尘天气过程分析   总被引:6,自引:0,他引:6       下载免费PDF全文
研究分析了2011年5月1~4日上海地区一次典型的连续浮尘天气过程.利用微脉冲激光雷达数据资料反演得到的气溶胶消光系数和垂直廓线,结合地面气象数据和气溶胶观测资料以及卫星遥感资料,初步研究了此次连续浮尘过程的传输特征和形成的主要原因.结果表明,5月1日的浮尘过程以PM2.5的影响为主,而5月2~4日为回流浮尘过程,PM2.5比重较5月1日下降.外源性输入、垂直风场分布和大气层结变化为浮尘天气的发生和维持创造了有利条件.研究还发现,在此次浮尘的气溶胶大气消光作用中,其散射贡献大于吸收作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号