首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
春节期间西安城区碳气溶胶污染特征研究   总被引:15,自引:4,他引:11  
采用美国R&P公司TEOM-1400a大气颗粒物监测仪器及其8通道采样系统(ACCU),在2011年春节期间实时监测和分8个时段采集了西安城区的PM2.5样品.研究了春节期间西安城区大气中PM2.5的碳气溶胶污染特征.目的是阐明2011年春节期间燃放烟花爆竹时,西安城区大气中细颗粒PM2.5的质量浓度、元素碳(EC)、有机碳(OC)及水溶性有机碳(WSOC)的浓度分布特征,探讨了其污染来源.结果表明,除夕00:00~02:59为污染浓度最大时段,PM2.530 min平均浓度在01:00时刻达到最大值1 514.8μg·m-3,其碳组分OC、EC、WSOC、非水溶性有机碳(WIOC)分别为123.3、18.6、66.7和56.6μg·m-3,高于春节期间的其他正常时段1.7倍、1.2倍、1.4倍和2.2倍.碳气溶胶组分WSOC与OC、EC相关性分析表明春节烟火期间含碳物质更多的来自于烟花爆竹燃放,但其对烟火时段的气溶胶的贡献较小,仅为9.4%.  相似文献   

2.
太原市PM2.5中有机碳和元素碳的污染特征   总被引:4,自引:3,他引:1  
采集了太原市4个点位冬季和夏季PM2.5样品,利用元素分析仪测定了PM2.5中有机碳(OC)和元素碳(EC)的质量浓度,并对碳气溶胶污染水平、时空分布、二次有机碳(SOC)以及OC和EC相关性等特征进行了分析.结果表明,太原市冬季有机碳(OC)、元素碳(EC)平均质量浓度为22.3μg·m-3和18.3μg·m-3,夏季OC、EC平均质量浓度为13.1μg·m-3和9.8μg·m-3,冬季和夏季总碳气溶胶(TCA)占PM2.5的比例分别为56.6%和36.5%;各点位OC和EC质量浓度均呈现冬季夏季的季节特征,冬季OC、EC浓度呈现出较好的均一性,夏季OC、EC质量浓度存在较明显的空间分布差异;太原市SOC污染较轻;冬季OC、EC相关性较强,夏季OC、EC相关性差.  相似文献   

3.
冬夏季广州城区碳气溶胶特征及其与O_3和气象条件的关联   总被引:18,自引:4,他引:14  
2008年1月1日~31日和7月1日~31日在广州城区每天采集1个PM2.5样品,对样品进行碳成分分析,得到有机碳(OC)、元素碳(EC)浓度.同步观测了气象因子以及SO2、NO2、O3气态污染物浓度.结果发现,冬季和夏季PM2.5日均值质量浓度分别为(81.2±61.4)μg.m-3和(53.7±23.2)μg.m-3,OC质量浓度分别为(24.6±19.3)μg.m-3和(14.0±5.6)μg.m-3,EC质量浓度分别为(7.9±5.4)μg.m-3和(4.7±2.2)μg.m-3,OC/EC比值分别为2.9±0.6和3.2±1.0.冬夏季非降雨的稳定天气条件下二次有机碳气溶胶(SOC)浓度分别为(6.1±6.6)μg.m-3和(5.8±5.2)μg.m-3.冬夏季SOC和O3浓度显著相关(p0.01).东南风和西南风条件下,OC、EC浓度普遍较高,表明东莞、江门和佛山地区的工业污染源对广州地区污染物累积和霾天气的形成有一定的贡献.  相似文献   

4.
天津2009年3月气溶胶化学组成及其消光特性研究   总被引:5,自引:0,他引:5       下载免费PDF全文
2009年3月,采集天津城区PM10和PM2.5样品,分析其中的水溶性无机离子、有机碳(OC)和元素碳(EC),并估算其二次有机碳(SOC)浓度及消光系数.结果表明,天津城区PM10和PM2.5污染严重,水溶性无机离子和含碳物质在PM10中的比例为24.8%和10.0%,在PM2.5中的比例为26.6%和13.9%;SO42-、NO3-和Ca2+是主要的无机离子,霾日天气有利于SO2和NO2向硫酸盐和硝酸盐的二次转化;通过OC/EC最小比值法估算SOC的浓度,表明SOC与OC的比值分别为38%(PM10)和24%(PM2.5),霾日天气有利于SOC生成;二次离子(SO42-,NO3-和NH4+)、粗粒子、OC和EC是大气消光的主要贡献者,其消光贡献比例分别为33.1%, 22.6%,22.0%和15.6% 采用化学组分和相对湿度可以较好的拟合大气消光系数及大气能见度.  相似文献   

5.
福建省三大城市冬季PM2.5中有机碳和元素碳的污染特征   总被引:15,自引:9,他引:6  
以福建省福州、厦门和泉州这3个主要城市为研究对象,采集了冬季PM2.5样品,采用热光透射法(thermal opticaltransmission,TOT)分析得到PM2.5、OC和EC的浓度水平和空间分布、OC与EC的相关性、OC/EC值以及二次有机碳分布特征.结果表明,福州、厦门和泉州冬季PM2.5的浓度范围为(79.94±18.08)~(114.78±26.10)μg.m-3,均超过《环境空气质量标准》(GB 3095-2012)规定的PM2.5日均值75μg.m-3.OC和EC的浓度范围(以C计)分别为(14.77±2.65)~(19.27±1.96)μg.m-3和(1.99±0.50)~(3.36±0.41)μg.m-3,分别是背景点福州平潭的1.2~1.6倍和1.2~2.0倍.福州平潭(R2=0.70)和晋安(R2=0.66)冬季PM2.5中OC与EC的相关性显著,说明OC和EC有相近的一次污染来源.OC/EC值为5.64~7.71,且值均大于2.0,说明各采样点存在二次有机碳(secondary organic carbon,SOC)的生成.SOC的浓度为2.47~7.17μg.m-3,占OC的比例为13.08%~45.67%,占PM2.5的2.20%~7.78%.  相似文献   

6.
上海地区光化学污染中气溶胶特征研究   总被引:7,自引:0,他引:7  
利用上海地区2011~2013年9个大气成分及气象观测站点臭氧(O3)、颗粒物(PM1、PM2.5、PM10)、气溶胶粒子谱观测资料以及气象数据,分析了上海不同功能区臭氧超标时的频率分布及各类污染物浓度特征.结果表明,上海地区夏季光化学污染严重,周边城区臭氧污染要明显高于中心城区,不同功能区污染情况差异较大,金山化工区和崇明生态岛光化学污染较为严重.通过分析光化学污染前后气溶胶变化特征可知,当出现光化学污染时,各站气溶胶浓度明显升高,特别是PM1浓度增加显著,且PM1/PM2.5比未出现臭氧污染时的比例明显升高.表明随着光化学反应的增强,二次气溶胶生成明显增多.因此可将PM1作为光化学污染的判定指标之一.  相似文献   

7.
上海城区PM2.5中有机碳和元素碳变化特征及来源分析   总被引:7,自引:6,他引:1  
2010年6月~2011年5月间在上海城区点位采集了181组PM2.5样品,采用热光反射法(thermal optical reflectance,TOR)测定了样品中的有机碳(organic carbon,OC)和元素碳(elemental carbon,EC)含量.结果表明,上海城区环境空气PM2.5中OC和EC年平均浓度分别为8.6μg·m-3±6.2μg·m-3和2.4μg·m-3±1.3μg·m-3,两者之和占PM2.5质量浓度的20%.OC和EC的季节平均浓度值冬季最高,夏季最低,秋季OC和EC在PM2.5中的比例最高.全年OC/EC比值为3.54±1.14.采用最小OC/EC比值法估算二次有机碳(secondary organic carbon,SOC)含量得到SOC年均浓度为3.9μg·m-3±4.2μg·m-3,占OC含量的38.9%.夏季SOC浓度低且与O3最大小时浓度值相关性好,表明光化学反应是夏季SOC的重要生成途径,主导西风向的秋冬季SOC浓度高于静风条件下的浓度水平,存在输送作用.进一步对OC1、OC2、OC3、OC4、EC1、EC2、EC3和OPC进行主成分分析,结果显示上海城区PM2.5中OC和EC主要来自机动车尾气、燃煤排放、生物质燃烧和道路尘,这4个来源对含碳组分的贡献率达69.8%~81.4%,其中机动车尾气在4个季节中的贡献率均较高,生物质燃烧贡献约15%~20%,春季和秋季道路尘影响明显,冬季燃煤的贡献高于其他季节.  相似文献   

8.
中国北部湾地区夏季大气碳气溶胶的空间分布特征   总被引:3,自引:3,他引:0  
杨毅红  陶俊  高健  李雄  施展  韩保新  谢文彰  曹军骥 《环境科学》2013,34(11):4152-4158
于2009年8月在北部湾地区的南宁、钦州、防城港、北海、湛江、茂名、海口、洋浦、东方等9个城市的城区和郊区同步采集PM2.5样品,采用热光反射碳分析仪分析得到有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)的质量浓度,对OC、EC浓度水平、空间分布及其可能的来源进行分析.结果表明,观测期间北部湾9个城市PM2.5、OC和EC的浓度均值分别为(38.4±17.7)、(9.2±2.6)和(1.9±1.1)μg·m-3,总碳气溶胶(total carbonaceous aerosol,TCA)占PM2.5质量的56.8%.北部湾地区夏季OC主要来源于生物质燃烧和二次生成的有机碳(secondary organic carbon,SOC),EC主要来源于机动车和工业排放.  相似文献   

9.
朔州市市区PM2.5中元素碳、有机碳的分布特征   总被引:3,自引:2,他引:1  
采集朔州市市区4个点位采暖季和非采暖季环境空气PM2.5样品,利用Elementar Analysensysteme Gmb H vario EL cube型元素分析仪测定其中元素碳(elemental carbon,EC)和有机碳(organic carbon,OC)含量,并对碳组分的浓度水平、时空分布特征和主要来源进行分析.结果表明,朔州市市区非采暖季PM2.5中OC和EC的平均浓度为(14.3±2.7)μg·m-3和(10.3±3.1)μg·m-3,采暖季OC、EC平均浓度分别为(23.3±5.9)μg·m-3和(20.0±5.7)μg·m-3;4个点位OC和EC的浓度均表现为采暖季大于非采暖季,其中在采暖季,点位SW中OC和EC浓度分别为28.5μg·m-3和28.1μg·m-3,高于其它采样点,在非采暖季,点位PS中OC和EC的浓度分别为17.7μg·m-3和14.1μg·m-3高于其它采样点;采暖季和非采暖季PM2.5中OC/EC值均小于2,但OC和EC相关性不好(在采暖季和非采暖季的相关系数分别为0.66和0.52),说明PM2.5中碳气溶胶来源复杂.控制碳组分一次排放来源,如燃煤烟尘、生物质燃烧及机动车尾气排放,同时关注二次污染是控制朔州市PM2.5的关键.朔州市市区采暖季和非采暖季PM2.5中二次有机碳(secondary organic carbon,SOC)浓度分别为(6.44±2.77)μg·m-3和(4.11±1.92)μg·m-3.  相似文献   

10.
无锡市冬季典型天气PM2.5中碳组分的污染特征   总被引:2,自引:1,他引:1  
于2013-12-03~2014-01-03在无锡市对大气细粒子(PM2.5)进行了连续采集,并用热/光透射法(TOT)分析了其中有机碳(OC)和元素碳(EC)的浓度,结合气象参数,分析了冬季霾产生过程及霾天气下碳组分的污染特征.结果表明,采样期间共有3次霾产生过程,冷空气、风和降水成为改善空气质量最有效的途径.PM2.5、OC及EC的日均质量浓度分别为(132.38±87.17)、(22.80±9.77)和(2.08±1.63)μg·m-3,总碳(TC,TC=OC+EC)占PM2.5的23.57%,同时TC与PM2.5之间存在较好的相关性,相关系数为(R2)0.730;采样期间,TC在PM2.5中所占的比例与PM2.5的浓度之间存在相反的变化趋势,并且在霾天气下TC所占的比例要比非霾天气小,二次无机气溶胶粒子(SO2-4、NO-3、NH+4)的快速增长可能是造成霾天气下细粒子浓度较高的原因之一;OC/EC值为12.83,并且相关性较差,可能与二次污染有关,对二次有机气溶胶(SOC)进行估算:得到SOC平均质量浓度为9.04μg·m-3,占OC的40.96%.  相似文献   

11.
奥运前期与奥运期间北京市大气细颗粒物特征比较分析   总被引:5,自引:4,他引:1  
利用城市生态系统研究站对北京市奥运前后(2008年6~9月)大气中细颗粒物(PM2.5)进行连续监测,获得不同阶段PM2.5日平均浓度的动态特征,分析气象因素、人为控制管理措施对颗粒物浓度的影响.结果表明,近北五环的生态中心站点(RCEES)颗粒物日均浓度平均值为0.067 mg.m-3,奥运期间的颗粒物浓度(0.060 mg.m-3)比奥运前期(0.081 mg.m-3)减少了约26%.而位于南二环市中心的教学植物园站点(JX)颗粒物浓度平均含量为0.078 mg.m-3.JX站点奥运期间的颗粒物浓度(0.069 mg.m-3)比奥运前期(0.095 mg.m-3)减少了约27%.各个阶段PM2.5的日变化都基本呈现双峰态势.第一个峰值出现在08:00~10:00左右,RCEES站点颗粒物浓度为0.068 mg.m-3,JX站点浓度值为0.089 mg.m-3;另一个峰值出现在晚20:00~22:00左右,RCEES和JX站点颗粒物浓度为0.079 mg.m-3和0.083 mg.m-3,这主要与上班交通高峰导致的尾气排放污染和道路扬尘污染等有关.研究气象参数发现奥运期间与奥运前期气象条件无显著差异,属于高温高湿风力不大的典型北京夏季天气条件.奥运期间颗粒物浓度与温度呈显著正相关(P<0.01),而与风速、相对湿度及降水相关性不显著(P>0.05).而连续多年大气污染综合治理措施和奥运空气质量保障措施的实施,产生了显著环境效益.在自然因素相差不大的条件下,人为控制因素对奥运期间颗粒物的下降起到主导作用.  相似文献   

12.
PM2.5和O3浓度超标是我国大气污染的主要特征,研究两种典型污染时段的细颗粒化学组成、混合状态和来源对治理大气污染具有重要意义.2016年11月10—20日广东省鹤山市先后出现了PM2.5和O3超标的污染事件.污染期间,采用SPAMS(单颗粒气溶胶质谱仪)对细颗粒进行实时采样分析,共采集到有正负化学组成信息的颗粒422 944个,占总颗粒数的19.2%.基于单颗粒质谱数据特征,使用自适应共振神经元网络算法(ART-2a),对单颗粒数据进行自适应分类.颗粒物划分为OC(有机碳)、EC(元素碳)、ECOC(元素-有机碳混合)、HOC(高分子有机碳)、Pb-rich(富铅)、Si-rich(富硅)、LEV(左旋葡聚糖)、K-Secondary(钾二次)、Na-rich(海盐)和HM(重金属)颗粒共10类.结果表明:两个PM2.5污染时段EC颗粒和K-Secondary颗粒的占比高,EC颗粒分别占46.5%和61.1%,K-Secondary颗粒分别占14.3%和10.3%;O3污染时段EC颗粒占比(39.4%)最高,其次是OC颗粒占比17.0%;两种污染时段OC组分与HSO4-和NO3-的混合程度都有明显的上升,说明污染有利于有机气溶胶的老化.由源解析结果可知,PM2.5污染时段,细颗粒主要来源于燃煤、机动车尾气和扬尘,而O3污染时段细颗粒主要来源于燃煤、生物质燃烧和扬尘;此外,两种污染时段燃煤源对细颗粒的贡献都有较大提升.研究显示,控制燃煤源的排放对污染物的降低有着重要影响.   相似文献   

13.
During November-December 2010 aerosol scattering coefficients were monitored using a single-waved (525 nm) Nephelometer at a regional monitoring station in the central Pearl River Delta region and 24-hr fine particle (PM2.5) samples were also collected during the period using quartz filters for the analysis of major chemical components including organic carbon (OC), elemental carbon (EC), sulfate, nitrate and ammonium. In average, these five components accounted for about 85% of PM2.5 mass and contributed 42% (OC), 19% (SO42-), 12% (NO3-), 8.4% (NH4+) and 3.7% (EC), to PM2.5 mass. A relatively higher mass scattering efficiency of 5.3 m2/g was obtained for fine particles based on the linear regression between scattering coefficients and PM2.5 mass concentrations. Chemical extinction budget based on IMPROVE approach revealed that ammonium sulfate, particulate organic matter, ammonium nitrate and EC in average contributed about 32%, 28%, 20% and 6% to the light extinction coefficients, respectively.  相似文献   

14.
During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan Province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of “OC/EC minimum ratio” was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter, respectively, and the annual average SOC concentration was 7.07 μg/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.  相似文献   

15.
运用自主设计的生物质燃烧系统,对水稻、小麦、大豆、玉米、花生和油菜6种农作物秸秆采用不同燃烧状态(阴燃和明燃)进行实验室模拟燃烧,分析PM_(2.5)的排放因子及其碳质组分和水溶性离子之间的差异.研究结果表明,不同燃烧状态对秸秆PM_(2.5)的排放因子、碳质组分和水溶性离子的排放均具有显著影响.不同农作物秸秆PM_(2.5)排放因子范围在阴燃和明燃时分别是11.45~23.84 g·kg~(-1)和4.51~12.15 g·kg~(-1).有机碳(OC)、元素碳(EC)的排放因子范围阴燃时分别是5.03~11.04 g·kg~(-1)和0.94~2.70 g·kg~(-1),明燃时分别是1.55~6.02 g·kg~(-1)·kg~(-1)和1.04~2.11 g·kg~(-1),阴明燃具有显著差异且阴燃高于明燃.此外,OC/EC、OC/PM_(2.5)和EC/PM_(2.5)在不同燃烧状态均具有显著差别,可作为区分阴明燃的指标.PM_(2.5)中水溶性离子的主要组分阴燃时为K+(1.011 g·kg~(-1))、Cl~-(0.712 g·kg~(-1))、F~-(0.182 g·kg~(-1)g)和SO_4~(2-)(0.166 g·kg~(-1)),明燃时为K+(0.457 g·kg~(-1))、Cl~-(0.271 g·kg~(-1))、SO_4~(2-)(0.086 g·kg~(-1))和F~-(0.048 g·kg~(-1)),且阴燃条件更有利于离子的排放.此外,水溶性离子的相关性也因燃烧状态的不同而有较大的差异.  相似文献   

16.
Concentrations of atmospheric PM10 and chemical components (including twenty-one elements, nine ions, organic carbon (OC) and elemental carbon (EC)) were measured at five sites in a heavily industrial region of Shenzhen, China in 2005. Results showed that PM10 concentrations exhibited the highest values at 264 μg/m3 at the site near a harbor with the influence of harbor activities. Sulfur exhibited the highest concentrations (from 2419 to 3995 ng/m3) of all the studied elements, which may be related to the influence of coal used as fuel in this area for industrial plants. This was verified by the high mass percentages of SO42-, which accounted for 34.3%-39.7% of the total ions. NO3-/SO42- ratios varied from 0.64-0.71, which implies coal combustion was predominant compared with vehicle emission. The anion/cation ratios range was close to 0.95, indicating anion deficiency in this region. The harbor site showed the highest OC and EC concentrations, with the influence of emission from vessels. Secondary organic carbon accounted for about 22.6%-38.7% of OC, with the highest percentage occurring at the site adjacent to a coal-fired power plant and wood plant. The mass closure model performed well in this heavily industrial region, with significant correlation obtained between chemically determined and gravimetrically measured PM10 mass. The main constituents of PM10 were found to be organic materials (30.9%-69.5%), followed by secondary inorganic aerosol (7.9%-25.0%), crustal materials (6.7%-13.8%), elemental carbon (3.5%-10.8%), sea salt (2.4%-6.2%) and trace elements (2.0%-4.9%) in this heavily industrialized region. Principal component analysis indicated that the main sources for particulate matter in this industrial region were crustal materials and coal/wood combustion, oil combustion, secondary aerosols, industrial processes and vehicle emission.  相似文献   

17.
为探究四川盆地典型城市PM2.5污染特征和来源,利用成都市、绵阳市、自贡市超站数据分析2020年冬季典型污染过程PM2.5组分特征,并采用CMB模型模拟获得研究期间PM2.5来源及演变特征.结果表明,不同城市PM2.5组分变化特征不尽相同,成都市污染过程整体呈现NO3-主导特征,但重度污染由OC主导.绵阳市污染期间呈现OC主导特征,是污染加重时增长最快的组分.EC是自贡市轻度污染增长最快的组分,NO3-、SO42-、NH4+是中度污染增长较快的组分,OC、EC是重度污染增长较快的组分.3个城市均是二次硝酸盐对PM2.5贡献率最高.比较而言,成都市机动车、扬尘源贡献率均最高;绵阳市二次有机碳贡献率最高,是成都市的2倍;自贡市燃煤源和二次硫酸盐贡献率分别比成都市和绵阳市高出4%~6%和7%~9%.成都市由优良天气到中度污染,二次硝酸盐贡献率随着污染程度的加重而增加,轻度污染较优良天气上升6%,中度污染较轻度污染天气上升3%.中度到重度污染,二次有机碳、机动车贡献率分别上升2%和1%.绵阳市由轻度到重度污染,二次有机碳对PM2.5的贡献率上升3%,机动车贡献率上升2%,是其污染加重的主要原因.自贡市由轻度到重度污染,各污染源贡献率变化幅度较小.  相似文献   

18.
大气颗粒物中包含多种组分的气溶胶,其中碳质气溶胶由于对人体健康、能见度有较大影响,已受到越来越多的关注.为研究碳质气溶胶的长期变化规律,采集了成都市2009—2013年的PM10样品,对其中所含的无机元素、水溶性离子及碳组分分别进行测定,并使用“PMF(正定矩阵因子分解法)-比值”模型分别对PM10和所含的碳质气溶胶的来源进行分析.结果表明,1月、2月、5月和12月的碳质气溶胶浓度较高,其中1月、2月和12月的OC/EC(有机碳与元素碳质量浓度之比)较高,并且PMF-比值模型计算结果也显示冬季SOC增多,表明冬季可能有更多的二次有机碳(SOC)生成;5月的char-EC/soot-EC(二者质量浓度之比,其中char-EC=EC1-OP,soot-EC=EC2+EC3,它们可更好地区分源类)较高,K含量也较高,表明可能有更多的生物质燃烧排放.PM10解析共发现6类源,依次为地壳扬尘(26.5%)、二次硫酸盐(25.1%)、燃煤&生物质燃烧混合源(17.3%)、二次硝酸盐&二次有机碳混合源(12.3%)、机动车源(11.8%)和水泥尘源(7.0%);碳质气溶胶解析发现,OC主要来源依次为机动车源(38.2%)、燃煤&生物质燃烧混合源(33.1%)和二次有机碳(25.3%),char-EC的主要来源是燃煤&生物质燃烧混合源和机动车源,分别占50.5%和45.4%,soot-EC则主要受机动车影响(达73.2%).研究显示,成都市PM10主要来自于地壳扬尘、二次生成和燃煤&生物质燃烧,而碳质气溶胶主要来自于机动车、燃煤&生物质燃烧.   相似文献   

19.
为探讨生物质在明火和阴燃两种不同条件下PM_(2.5)及主要成分的排放差异,选取了7种具有代表性的生物质样品(小麦、水稻、马尾松叶、马尾松枝、杂草、玉米、棉花)进行了燃烧实验,并对PM_(2.5)样品中的7种主要水溶性离子(Na~+、NH_4~+、K~+、Ca~(2+)、Cl~-、NO_3~-、SO_4~(2-))及有机碳(OC)、元素碳(EC)、水溶性有机碳(WSOC)、有机酸和左旋葡聚糖(LG)等有机成分进行了分析.结果表明,明火和阴燃条件下PM_(2.5)的排放因子分别为2.82~7.74 mg·g~(-1)和3.24~22.56 mg·g~(-1),阴燃时的排放因子偏高,不同燃料类型也存在一定差异.燃烧排放PM_(2.5)中水溶性离子以Cl~-为最高,占总离子的比例为72%~94%,且与NH_4~+存在显著正相关关系,水溶性离子整体表现为明火条件下的浓度显著高于阴燃条件下的浓度.受阴燃条件下氧气不足的影响,PM_(2.5)中有机组分的浓度表现为阴燃高于明火,进而导致阴燃时PM_(2.5)的排放因子增加.水稻秸秆燃烧烟尘中3种来源特征比值(LG/PM_(2.5)、LG/OC和LG/WSOC)仅为小麦和玉米秸秆燃烧排放相应比值均值的0.34、0.24和0.27倍,表明在不同农作物的收获季节采用上述特征比值进行生物质燃烧来源估算时,应区别对待.  相似文献   

20.
为研究天津市春季道路降尘PM2.5和PM10中碳组分特征,丰富道路降尘的成分谱库,于2015年3月22日-5月23日在天津市主干道、次干道、支路、快速路和环线5种道路类型道路两侧采集道路降尘样品,通过再悬浮装置得到PM2.5和PM10的滤膜样品,并用热光碳分析仪测定PM2.5和PM10中OC(有机碳)和EC(元素碳)的百分含量,利用两相关样本非参数检验、OC/EC比值法以及相关分析法,定性分析天津市春季道路降尘PM2.5和PM10的碳组分的特征及其主要来源;利用因子分析法,进一步分析道路降尘PM2.5和PM10的主要来源.结果表明:道路降尘PM2.5中w(OC)为10.27%(主干道)~13.94%(快速路)、w(EC)为1.24%(支路)~1.77%(环线),PM10中w(OC)为8.48%(主干道)~12.56%(快速路)、w(EC)为1.01%(次干道)~1.59%(快速路),可见快速路中碳组分含量相对较高,这可能与其车流量较大,导致道路扬尘和机动车尾气排放量较大有关,也可能与其路面保养及保洁状况有关.对于大部分碳组分而言,其在PM2.5中的百分含量均高于PM10;除EC2,其他碳组分在PM2.5和PM10间均无显著性差异.不同道路类型PM2.5和PM10中OC/EC的大小顺序基本相同,与其车质量变化趋势相反.道路降尘中PM2.5中碳组分主要来源于道路扬尘、机动车尾气、生物质燃烧以及燃煤源的混合源,PM10主要受道路扬尘、燃煤和柴油车尾气等污染源的影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号