首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 609 毫秒
1.
广东省秸秆燃烧大气污染物及VOCs物种排放清单   总被引:2,自引:2,他引:0  
基于广东省粮食产量的统计年鉴,建立了广东省2008~2016年秸秆燃烧污染物排放清单和2016年广东省秸秆燃烧VOCs物种清单,并对VOCs臭氧生成潜势进行评估.结果表明,2013~2016年广东省秸秆燃烧各大气污染物排放量较2008~2012年有所降低.这主要是由于禁止秸秆露天燃烧政策的出台及农村生活水平的提高降低了秸秆燃烧比例.2016年各类大气污染物SO_2、NO_x、NH_3、CH_4、EC、OC、NMVOC、CO和PM_(2.5)的排放量依次为2 443.7、16 187.9、6 943.8、29 174.4、3 625.5、14 830.7、65 612.6、591 613.9和49 463.0 t.稻谷秸秆燃烧是最主要的秸秆燃烧污染物来源,占据了污染物总排放量的约68.55%.污染物贡献最大的5个市分别为湛江、茂名、梅州、肇庆和韶关,约占总排放量的58.63%.2016年广东省秸秆燃烧VOCs物种排放清单中,排放量贡献前10的物种分别为:乙烯、乙醛、甲醛、苯、乙炔、丙烯、乙烷、甲苯、正丙烷和丙醛,占总VOCs量的67.91%.在VOCs物种清单的基础上估算了其臭氧生成潜势(OFP),OFP贡献前10 VOCs物种分别为:乙烯、甲醛、乙醛、丙烯、1-丁烯、丙醛、甲苯、丙烯醛、异戊二烯和丁烯醛,占总OFP量的80.83%.  相似文献   

2.
长江三角洲地区人为源氨排放清单及分布特征   总被引:38,自引:7,他引:31  
根据各类氨排放源的活动水平和排放因子,估算了2004年长江三角洲地区16个城市的氨排放量.结果表明,2004年长三角地区氨排放量为460.68kt,其中,氮肥使用和畜牧源是两个最大排放源,氨排放量分别为227.33kt和203.28kt,分别占长江三角洲地区氨排放总量的49.3%和44.1%,氨排放在长三角地区各城市间有较大差异,排放量超过40kt·a-1的城市为南通市、上海市、嘉兴市和泰州市,这4个城市的氨排放总量约占长三角地区氨排放量的42.5%.长江三角洲地区氨平均排放强度为4.20t·km-2·a-1,排放强度超过6t·km-2·a-1的城市为嘉兴市、南通市、泰州市和上海市,其中,嘉兴市的排放强度最大,为10.83 t·km-2·a-1.  相似文献   

3.
为了解河南省人为源挥发性有机物(VOCs)的排放特征,识别以臭氧(O3)污染治理为目的的关键VOCs物种及其排放源,以五大类人为源活动水平数据为基础,采用排放因子法建立了2019年河南省县级人为源VOCs组分化排放清单,并利用最大增量反应活性(MIR)估算其臭氧生成潜势(OFP),基于OFP识别O3污染治理的关键VOCs物种及其排放源.结果表明:(1)河南省2019年人为源VOCs排放总量为175.62×104 t,其中工艺过程源、移动源、生物质燃烧源、溶剂使用源和化石燃料燃烧源对VOCs排放总量的贡献率分别为28.6%、25.2%、20.8%、19.1%和6.3%.(2)空间分布显示,以郑州市为中心的豫北排放量远高于豫南,呈“一高三低”的空间分布特点,郑州市排放量最高,其排放量为27.7×104 t,漯河市、三门峡市和鹤壁市排放量最低,其排放量均小于5.0×104 t.(3)芳香烃是排放量最高的化学组分,其排放量为47.5×104 t,其次为烷烃(46.3×104<...  相似文献   

4.
农作物秸秆燃烧是大气中黑碳(black carbon,BC)气溶胶的主要来源之一。目前农作物秸秆燃烧排放黑碳的研究主要集中在通过离线样品分析获得的BC排放特征,缺少实时在线排放特征的研究。本研究收集了我国具有代表性的4种农作物秸秆(小麦秸秆、水稻秸秆、玉米秸秆和大豆秸秆),通过在实验室燃烧平台模拟农作物秸秆露天燃烧的过程,利用黑碳仪获得农作物秸秆燃烧过程中BC的实时浓度排放变化;利用质量重建,获得BC在线排放因子。结果表明:农作物秸秆在明燃过程中BC的排放因子较为稳定。通过平均排放因子的计算,获得小麦秸秆、水稻秸秆、玉米秸秆和大豆秸秆的BC排放因子分别为(0.32±0.05) g?kg~(-1)、(0.31±0.13) g?kg~(-1)、(0.31±0.09) g?kg~(-1)和(0.44±0.01) g?kg~(-1)。在排放因子的基础上,结合我国农作物秸秆露天燃烧量,最终建立了2015年我国省级(不含港澳台地区)典型农作物秸秆燃烧的BC排放清单。  相似文献   

5.
采用排放系数法与“自下而上”的活动水平数据收集方法,建立了鹤壁市化石燃料固定燃烧源、工艺过程源、溶剂使用源、储存运输源、废弃物处理源等固定源、移动源、餐饮油烟和生物质燃烧等面源的VOCs排放清单.结果表明:鹤壁市2017年VOCs排放总量为8829.7t.其中,工艺过程源排放量最大(3052.5t),占VOCs总排放量的32%;其次是移动源(2712.8t)和溶剂使用源(1447.1t),分别占总排放量的29%和15%;从空间分布看,浚县的VOCs排放量最大(3444.0t),其次为淇滨区(1519.4t)、山城区(1516.0t)、淇县(1103.8t)和鹤山区(1041.9t);其中,机动车(1932.0t)、建材冶金(903.6t)、化学制品制造(829.6t)、橡塑(646.8t)等VOCs排放量较大.对比河南省省会郑州市、同为煤炭资源型城市焦作市,鹤壁市的VOCs排放总量是郑州市的1/11,焦作市的1/3.但鹤壁市单位面积的VOCs排放量较大,是郑州市的1/3,焦作市的1/2,且鹤壁市单位GDP的VOCs排放量与郑州市和焦作市非常接近.说明鹤壁市VOCs排放总量低,但排放强度较高,仍需要加大减排力度.根据本清单的研究结果,建议鹤壁市可着重加强工艺过程源和移动源的减排,重点减排区域为浚县、鹤山区和淇滨区的交汇地带,重点减排机动车、建材冶金、化学制品制造等;此外,还应关注橡塑、餐饮油烟、工业生物质锅炉等行业的VOCs排放.  相似文献   

6.
北京城市副中心(通州区)加油站VOCs排放清单   总被引:6,自引:4,他引:2  
通州区作为北京城市副中心,面临着加油站VOCs排放量快速增长的巨大压力,本研究以通州区为例,建立了一套自下而上的加油站VOCs排放清单估算方法,利用北京市本地化加油站VOCs排放因子,结合每座加油站油品销售量,编制了通州区2015~2022年高时空分辨率加油站VOCs排放清单.结果表明:(1)北京市加油站在卸油、加油和罐压控制措施的基础上增加在线监控系统(OMS),汽油VOCs排放因子由190 mg·L~(-1)降至115 mg·L~(-1),再叠加50%车载油气回收系统,排放因子分别降至131 mg·L~(-1)和96 mg·L~(-1);加油站柴油VOCs排放因子(13 mg·L~(-1))是汽油未控制排放因子(1 552 mg·L~(-1))的0.8%;(2)通州区2015年加油站VOCs排放量为97.8 t·a-1,汽油和柴油VOCs排放量分别为96.2 t·a-1和1.6 t·a-1,分别占98.4%和1.6%,排放主要集中在北京市政府新址周边区域;(3)实施《北京市2013~2017年清洁空气行动计划》油气回收要求后,考虑油品销售量增长,通州区2017年和2022年加油站VOCs排放量相比2015年减排9%和6%,假设2022年底前在28座2 000~5 000 t·a-1的加油站也安装OMS,加油站VOCs排放量相比2015年减排13%;(4)2014年APEC期间单双号限行措施使加油站每日排放量减少了(22±12)%;(5)建议加强北京市政府新址周边区域加油站和夏季以及中午加油闲时的油气回收监管工作.  相似文献   

7.
浙江省人为源VOCs排放清单   总被引:1,自引:0,他引:1  
基于挥发性有机物(VOCs)活动水平数据和相关排放因子,建立了浙江省人为源VOCs排放清单。结果表明:2009年浙江省VOCs排放总量为1.47×10~6t,其中工业排放源1.34×10~6 t,生活排放源1.176×10~5t,生物质燃烧源1.18×10~4t,分别占排放总量的91.17%、8.03%和0.8%;VOCs排放量最大的行业为纺织印染业、金属制品制造业、化学药品原药制造业、石油炼制、石油化工业等9大行业,其VOCs排放量均在5×10~4t以上,占全省总排放量的比例高达90%,为浙江省主要排放源;VOCs排放量最高的城市分别为杭州、宁波、温州、绍兴、嘉兴和湖州。  相似文献   

8.
长江经济带湖北省人为源VOCs排放清单及变化特征   总被引:3,自引:1,他引:2  
以人为源挥发性有机物(VOCs)为研究对象,以5类源活动水平数据为基础,采用排放因子法建立了长江经济带湖北省2018年人为源VOCs排放清单,并进一步研究了2009~2018期间工艺过程源VOCs排放特征及变化趋势.结果表明,湖北省2018年人为源VOCs排放总量为6.52×105 t,约占全国总排放量的6.41%;化石燃料固定燃烧源、工艺过程源、溶剂使用源、移动源和废弃物处理源对湖北省的贡献分别为3.26%、76.39%、4.54%、14.72%和1.09%.涉及9个行业45个子类的工艺过程源在VOCs排放中占比突出,其中武汉市和宜昌市的VOCs排放量较高.从经济水平和区域面积分别分析了各市州工艺过程源VOCs排放强度,天门市和神农架林区单位GDP的VOCs排放量较高,而武汉市、鄂州市和天门市单位面积VOCs排放量较高.2009年VOCs排放量从2.45×105 t逐年递增,2015~2017年趋于稳定,最大排放量达7.01×105 t,2018年VOCs排放量降至4.98×105 t,与全国人为源VOCs排放趋势相同.化学原料及化学制品制造业、橡胶和塑料制造业是其变化的主要驱动力,10年间贡献分别为33.85%~51.55%和7.07%~38.13%.其中化学药品原药、化学农药原药生产在10年间对VOCs排放贡献占据重要优势,而泡沫塑料生产排放量变化大,在2015~2017年突增到2.00×104 t以上.湖北省在国家及地方相关政策引导下,重点行业VOCs减排效果显著.  相似文献   

9.
珠江三角洲天然源VOCs排放量估算及时空分布特征   总被引:20,自引:4,他引:16       下载免费PDF全文
利用实际观测的气象数据和基于遥感图像解译的土地利用现状和植被资料,运用GloBEIS模型,对珠江三角洲2006年度天然源VOCs排放总量进行了估算.结果表明,该区天然源VOCs的年度排放总量达29.6万t,其中异戊二烯7.30万t,占24.7%,单萜10.2万t,占34.4%.其排放量具有夏季高冬季低的典型特征,夏季占全年排放量的40.5%,冬季占11.1%.其空间特征与土地利用和植被分布密切相关,天然源VOCs排放主要集中在城镇化程度较低和林区较密集的区域.此外,对天然源VOCs排放估算过程中可能的不确定性来源进行了讨论.  相似文献   

10.
江苏省人为源挥发性有机物排放清单   总被引:1,自引:0,他引:1  
掌握VOCs排放特征是研究区域大气复合污染特征和控制策略的前提. 对江苏省VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究成果及江苏省行业调研结果,采用排放因子法建立了江苏省2010年分行业、分城市的人为源VOCs排放清单. 结果表明:江苏省人为源VOCs排放总量约为179.20×104t,其中化石燃料燃烧源、生物质燃烧源、工业过程源、溶剂使用源、移动源、油品储运源的排放量分别占排放总量的24.1%、3.3%、22.3%、25.3%、18.4%和6.6%,工业过程源中石油炼制、有机化工、医药制造是重点行业,溶剂使用源中机械装备制造、电子设备制造是重点行业. 南京、苏州、无锡、常州、南通5个苏南城市VOCs排放量明显高于苏北和苏中地区,占全省总排放量的60.0%,苏州、南京、无锡排放量居前3位. 各城市化石燃料燃烧源和移动源排放所占比例均超过10.0%,其他重点行业差异显著,其中南京市为石油炼制、有机化工,苏州市为有机化工、机械涂装,无锡市为有机化工、电子设备制造.   相似文献   

11.
西宁市生物质燃烧源大气污染物排放清单   总被引:2,自引:2,他引:0  
高玉宗  姬亚芹  林孜  林宇  杨益 《环境科学》2021,42(12):5585-5593
本研究根据调查的西宁市生物质燃烧源活动水平数据,采用排放因子方法,建立了 2018年西宁市生物质燃烧源9种大气污染物的排放清单,并分析了清单的时空分布特征和不确定性.结果表明,西宁市2018年生物质燃烧源CO、NOx、SO2、NH3、VOCs、PM2.5、PM10、BC 和OC 的排放量分别为 11 718.34、604.41、167.80、209.72、1 617.97、2 054.04、2 135.04、281.07和 1 224.78 t.秸秆露天焚烧 CO、NOx、VOCs、PM2.5、PM10、BC 和OC 的排放对生物质燃烧源的排放贡献率最高;其中,秸秆露天焚烧NOx、VOCs和CO的贡献率分别为72.35%、63.94%和53.18%.户用生物质炉NH3和SO2的排放对生物质燃烧源的贡献率最大,分别为41.49%和42.05%.生物质燃烧源大气污染物排放地区分布不均衡,主要集中于大通县和湟中区.生物质燃烧源9项污染物的排放量在1、2、3、10、11和12月较大,占比在5%~33%.蒙特卡罗模拟结果表明,在95%置信区间下,不确定度最高的是森林和草原火灾的PM2.5排放,不确定度为-26.71%~29.78%.  相似文献   

12.
基于入户调查的贵阳市生活燃煤排放清单   总被引:1,自引:0,他引:1  
为准确掌握贵阳市生活燃煤大气污染物的排放状况,为南方山地城市大气污染防治工作提供科学依据,本研究于2017年对贵阳市生活燃煤情况开展了入户调查.据统计分析,2016—2018年贵阳市常住人口和生活煤炭消费量变化小.同时,采用排放系数法结合GIS技术,建立了贵阳市2016年1 km×1 km生活燃煤大气污染物排放清单.结果表明:①全市生活燃煤量约为55.9×104 t,单位面积燃煤量为69.5 t·km-2,不同区(市、县)生活燃煤量存在明显差异;从燃煤总量来看,开阳县最大,云岩区最小;从单位面积燃煤量来看,云岩区最大,息烽县最小.②全市生活燃煤PM10、PM2.5、SO2、NOx、VOCs、CO、OC、BC排放量分别为1230.5、783.0、6963.5、615.3、1006.8、39096.4、55.9、3.9 t,单位面积排放量分别为153.0、97.4、865.7、76.5、125.2、4860.7、7.0、0.5 kg·km-2.③生活燃煤污染物排放量呈明显的季节性变化特征,冬季采暖季污染物的排放量远高于非采暖季.④在空间分布上,大气污染物排放主要集中在云岩区、南明区、白云区中南部,以及观山湖区东南部、乌当区西南部及花溪区东北部,这与居民生活区域基本呈一致性分布.⑤调查样本量覆盖了总家庭户数的1.5%,全市以煤炭为生活能源的住户占比约为38.1%,户均燃煤量为(1.158±0.010)t·a-1,排放清单不确定性总体范围为-82.6%~201.0%.  相似文献   

13.
为研究西安市人为源VOCs(挥发性有机物)对OFP(O3生成潜势)和SOAFP(二次有机气溶胶生成潜势)的影响,基于西安市环境统计数据和相关统计资料,结合排放因子法和已有的源成分谱,建立西安市人为源VOCs排放清单,并利用最大增量反应活性(MIR)和气溶胶生成系数(FAC)估算各类人为源排放VOCs对O3和SOA(二次有机气溶胶)的生成贡献.结果表明:①2016年西安市人为源VOCs排放总量为119.187×103 t,其中,溶剂使用源、移动源和工艺过程源是主要的排放源,排放量分别为50.676×103、29.414×103、24.430×103 t. ②2016年西安市各区县VOCs排放总量较大的依次为长安区、雁塔区、未央区和碑林区,排放量分别为15.28×103、12.34×103、11.81×103和10.14×103 t,莲湖区、新城区和灞桥区VOCs排放量大于5×103 t,而阎良区排放量最小. ③2016年西安市总OFP为222.087×103 t,间/对-二甲苯、甲苯、邻-二甲苯等对总OFP的贡献率为72.40%;溶剂使用源对总OFP的贡献率最大,其次是生物质燃烧源,并且生物质燃烧源单位质量VOCs的OFP最强. ④2016年西安市总SOAFP为318.347 t,间/对-二甲苯、甲苯、邻-二甲苯、乙苯等对总SOAFP的贡献率为88.65%;溶剂使用源对总SOAFP的贡献率最大,其次是生物质燃烧源,而且溶剂使用源单位质量VOCs的SOAFP强于其他排放源.研究显示,与其他地区VOCs单位面积排放清单相比,西安市VOCs单位面积排放强度处于中等水平.   相似文献   

14.
基于大数据分析的杭州市农业源高分辨率氨排放清单研究   总被引:1,自引:0,他引:1  
基于实地调查并辅以统计的方法获得大数据,采用排放因子法,估算了杭州市2015年农业源氨排放清单,并选取经纬度坐标、土地类型和人口等数据作为权重因子,建立1 km×1 km高精度网格化空间分布,研究了该地区农业排放源氨排放空间分布特征.结果表明:杭州市2015年农业源NH3排放总量为54787.9 t,其中畜禽养殖和农田种植是最主要的氨排放来源,分别占农业源总排放量的86.7%和12.8%.在畜禽养殖各主要环节的氨排放过程中,圈舍固态粪便的氨排放贡献量最大,占总氨排放量的52.8%;其次是存储固态,占总氨排放量的35.1%.氮肥施用主要集中在萧山区、建德市、临安市和余杭区.秸秆堆肥和秸秆焚烧与秸秆综合利用率高低密切相关,两者氨排放量占有率不高,占杭州市农业源氨排放总量的1%以下.  相似文献   

15.
西安市人为源挥发性有机物排放清单及研究   总被引:12,自引:1,他引:11       下载免费PDF全文
对西安市各类VOCs人为源进行系统分类,收集活动水平数据,应用国内外排放因子研究的最新成果,采用排放因子法建立了西安市2014年人为源VOCs排放清单.结果表明:2014年西安市人为源大气VOCs排放量为11.51×104t,其中,固定燃烧源、生物质燃烧源、工艺过程源、有机溶剂使用源、移动源、油品存储与销售源和废弃物处理源的排放量分别占VOCs排放总量的2.53%、3.32%、13.30%、51.50%、23.64%、4.82%和1.02%.油墨印刷、建筑涂料和汽车喷涂为有机溶剂使用源重点排放行业,VOCs排放量占到排放总量的48.89%;工艺过程源中化学药品、医药制造、原油加工和化学纤维为重点排放行业,VOCs排放量占到排放总量的10.19%.各区县中,长安区、雁塔区、未央区、碑林区VOCs排放量明显较高,其分担率分别为16.53%、14.88%、14.47%和12.99%.  相似文献   

16.
基于所搜集的兰州盆地各类人为污染源排放大气污染物的活动水平数据及其排放因子,采用"自下而上"的方法建立了2009年兰州盆地(石油化工城市)1 km×1 km的7种(类)大气污染物网格化排放清单,并对其来源和空间分布特征进行了分析研究.结果显示:2009年兰州盆地NOx、SO_2、VOCs、CO、PM_(10)、PM_(2.5)和NH3的排放总量分别为1.2×10~5、8.8×10~4、4.3×10~4、4.1×10~5、9.6×10~4、4.2×10~4和1.4×10~4t;工业燃烧排放是兰州盆地NO_x和SO_2的主要贡献源,分别占其总排放量的85.70%和52.55%;工业非燃烧过程排放是VOCs的最大贡献源,占总排放量的81.25%;工业点源和工业非燃烧过程排放是CO的两大贡献源,分别占其总排放量的33.97%和28.32%;PM_(10)和PM_(2.5)主要来源于工业非燃烧过程,贡献分别为51.09%和55.12%;氮肥使用和禽畜养殖是NH_3排放最大的贡献源,分别占其总排放量的39.20%和30.70%.空间分布特征表现为:以工业源为主要排放源的NO_x、SO_2、VOCs、CO、PM_(10)、PM_(2.5)主要分布在工业和人口最为集中的兰州盆地市区一带,NH_3的排放则主要集中在榆中县和皋兰县交界的农村地区.同时,还对2014年工业燃烧源和道路移动源的7种(类)大气污染物排放量进行了估算,并与2009年进行了排放比较研究.结果表明,2014年工业污染源的7种(类)污染物排放量与2009年相比平均增幅不高,最高不超过30%,但移动源污染物排放量却大幅增加,增幅将近1倍.此外,基于排放因子及活动水平的不确定性,本研究对排放清单的结果进行了不确定性分析,并通过蒙特卡罗模拟对各污染物的排放量进行了评估.本排放清单的建立,不仅填补了兰州盆地大气污染物网格化排放清单的空白,还可为兰州盆地大气污染物排放清单更新、区域环境过程、大气复合污染成因及大气污染预警技术等相关研究提供基本方法手段及基础数据.  相似文献   

17.
臭氧污染动态源贡献分析方法及应用初探   总被引:2,自引:1,他引:1  
论文创新提出了基于RSM/CMAQ臭氧污染动态源贡献分析方法,并以佛山市顺德区2014年10月为例,分析了不同区域的人为可控源NO_x和VOCs减排情景下(10%、70%和100%)对本地O_3浓度变化的量化贡献.研究结果表明顺德区O_3的人为可控比例约43%,且受区域排放影响非常明显,主导上风向广州排放源总贡献(14%)超过顺德本地贡献(7%).VOCs的减排可有效削减顺德区O_3浓度,当减排力度较小时(12%),若仅控制区域NO_x排放将导致顺德区O_3浓度上升,随着减排力度的加大,区域NO_x的削减贡献会反超VOCs.RSM/CMAQ动态源贡献分析方法可为空气质量管理提供科学决策依据.  相似文献   

18.
长沙市人为源大气污染物排放清单及特征研究   总被引:5,自引:1,他引:4  
根据收集的长沙市人为源活动水平数据,建立了该地区2014年1 km×1 km人为源大气污染物排放清单.结果显示,2014年长沙市SO_2、NO_x、CO、PM_(10)、PM_(2.5)、BC、OC、VOCs和NH_3排放总量分别为53.5×10~3、78.3×10~3、284.6×10~3、102.3×10~3、42.1×10~3、4.0×10~3、7.2×10~3、64.2×10~3、27.1×10~3t.化石燃料固定燃烧源为最大的SO_2排放贡献源,道路移动源是主要的NO_x贡献源,CO排放主要来自化石燃料固定燃烧源和道路移动源,长沙市VOCs的最大贡献源是溶剂使用源,PM_(10)、PM_(2.5)最主要的排放源是扬尘源,BC最大的排放贡献源为化石燃料固定燃烧源,生物质燃烧源是最大的OC贡献源,NH_3排放主要来源于畜禽养殖和农业施肥.空间分布结果显示,长沙市NH_3的排放在宁乡县、望城区、长沙县、浏阳市分布较多,主要呈现片状分布.其他污染物排放高值区则主要分布在中心城区、工业区及道路分布区域.  相似文献   

19.
海峡西岸地区人为源大气污染物排放特征研究   总被引:2,自引:3,他引:2  
黄成 《环境科学学报》2012,32(8):1923-1933
采用以"自下而上"为主的方法建立了2007年海峡西岸地区的人为源大气污染物排放清单.计算结果显示,海西地区人为源SO2、NOx、CO、PM10、PM2.5、VOCs和NH3排放总量分别为69.5×104、96.1×104、413.1×104、93.9×104、40.6×104、85.0×104和28.5×104t.电厂和工业燃烧设施分别占SO2排放的48%和39%,以及NOx排放的51%和25%.水泥、砖瓦等制造过程贡献了约51%的PM10排放和36%的PM2.5排放.秸秆燃烧、加油站和涂料等VOCs面源分别占到其排放总量的27%、15%和4%.NH3的主要排放源为畜禽养殖和氮肥施用等农业部门,占到总排放量的89%.海西地区的单位面积大气污染物排放量仅相当于长三角地区的25%左右,略高于全国平均水平.该地区人为源和天然源VOCs排放比重分别占56%和44%,人为源VOCs排放比重低于全国大部分地区.海西大气污染高排放地区主要集中在沿海一带,以泉州、潮汕、福州和温州等地区为主,建议"十二五"发展过程中,重点关注上述高排放地区,限制重点排放源的发展,开发低耗能、低污染的发展模式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号