首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用A(厌氧水解)A(缺氧反硝化)/O(好氧硝化)组合工艺进行土霉素废水处理试验研究,在进水浓度COD为3 500~4 000 mg/L、氨氮550~750 mg/L、系统总水力停留时间16~20 h条件下,控制工艺参数:厌氧水解6~8 h,缺氧反硝化水力停留时间不小于4 h,硝化液回流比不小于2,好氧硝化pH在7.5~8.0、溶解氧大于2 mg/L、水力停留时间为6~8 h,COD去除率稳定在90%~92%,氨氮去除率稳定在98%~100%,TN去除率稳定在60%~70%。  相似文献   

2.
多级A/OVTBR组合工艺处理焦化废水   总被引:2,自引:0,他引:2  
采用水解酸化、多级A/O垂直折流生物膜反应器(vertical tubulant biological reactor,VTBR)、混凝和Fenton氧化组合技术对实际焦化废水进行处理。其中水解酸化预处理阶段提高了废水可生化性,混凝降低了生化处理的有机负荷,一级A/O VTBR以脱碳为主,二级A/O VTBR主要脱碳和脱氮,三级好氧VTBR强化对氨氮的去除,Fenton氧化则对生化出水进行深度处理。试验结果表明:在进水ρ(COD)为3 000~3 500 mg/L,ρ(BOD5)为1 212 mg/L,ρ(NH3-N)为109 mg/L条件下,保持好氧段ρ(DO)为3~7 mg/L,缺氧段ρ(DO)<1 mg/L,总停留时间HRT 56 h,该工艺对COD、BOD5、NH3-N的去除率分别为98%、99%、95%,出水达GB8978-1996《污水综合排放标准》中的一级排放标准。  相似文献   

3.
采用预处理(H2O2热解+电催化)+生化(高负荷好氧+水解)处理制药厂高浓度蒸发浓缩废水。经过预处理原水COD可由810 000 mg/L降至650 000 mg/L,去除率为19.75%。稀释后的高浓度废水经过高负荷好氧+水解处理,在进水COD由500 mg/L逐步提高到超过8 000 mg/L,COD容积负荷4~5 kg/(m3·d)的条件下,生化整体COD去除率80%,进水COD为8 200 mg/L左右时,水解出水COD可以降至1 500 mg/L,处理效果良好。  相似文献   

4.
官厅水库入库水生物接触A/O工艺试验   总被引:1,自引:0,他引:1  
试验表明,生物接触A/O工艺对官厅水库入库水中COD、氨氮等污染物有明显的去除效果,可以有效地改善官厅水库入库水的水质.在单位供气量(空气/氨氮)≥0.1L/mg,进水氨氮负荷≤0.08kg/(m3·d)的条件下,处理后出水COD稳定在30mg/L左右,氨氮去除率>60%,TN的去除率为1.0%~31.3%.进水氨氮负荷是主要的控制参数,应控制在≤0.08kg/(m3·d).  相似文献   

5.
根据好氧-缺氧生物脱氮的工艺原理,设计了一体化A/O反应器,并就DO对其脱碳、脱氮处理效果的影响进行研究。结果表明,在水力停留时间HRT=12h,进水COD为300mg/L左右时,COD的平均去除率为93%。当好氧区DO在5mg/L左右时,脱氮效率最高,TN去除率达到70%。当好氧区DO为3 ̄4mg/L时,氨氮和总氮的去除可达到动态一致,它们的去除率均在50%~60%之间。  相似文献   

6.
采用上流式厌氧污泥床(UASB)-序批式活性污泥法反应器(SBR)组合工艺处理生物柴油制环氧脂肪酸甲酯废水,考察了反应器各个阶段废水的处理效果。试验结果表明:当调整废水的氧化还原电位(ORP)降至-50~+50mV,UASB稳定运行阶段进水COD约为6 000mg/L时,出水COD在1 300mg/L以下,COD去除率约为80%,VFA浓度为180mg/L(以乙酸计)左右,最佳容积负荷为6.0kg/(m3·d);采用SBR处理UASB出水,当容积负荷为1.27kg/(m3·d)时,出水COD在250mg/L以下,COD去除率在80%以上,氨氮浓度在25mg/L以下,TP浓度在4mg/L以下,且处理后废水的COD、氨氮浓度、TP浓度均达到《污水排入城市下水道水质标准》(CJ343—2010)的A级要求。  相似文献   

7.
低碳氮比实际生活污水A2O-BAF工艺低温脱氮除磷   总被引:6,自引:1,他引:5       下载免费PDF全文
在低温条件下,采用A2O-BAF工艺处理低碳氮比实际生活污水.结果表明,该双污泥工艺在平均温度为14.2℃、平均进水COD 369.5mg/L、TN 76.8mg/L即C/N为4.81的工况下可以实现深度脱氮除磷.平均出水TN与TP分别为13.21mg/L和0.23mg/L.其中COD、氨氮、TP和TN的去除率分别为86.2%、99.8%、96.6%、81.5%,达到国家污水处理一级A标准(GB18918-2002).低温下A2O工艺段活性污泥的平均SVI为85.4mL/g,污泥具有良好的沉降性能.此外试验过程中可以利用pH值和氧化还原电位值作为该系统A2O各反应阶段的控制参数,来间接的指示A2O各区的反应情况.  相似文献   

8.
试验采用催化氧化-A/O工艺-生物滤池组合工艺,以高浓度有机胺废水为研究对象,重点考察了该工艺对进水COD、氨氮和总氮的去除效果。结果表明:采用催化氧化预处理工艺,能有效降低废水中的抑制性物质,提高废水的B/C;A/O工艺能去除大量的有机物和总氮,但出水氨氮有所升高;末端采用生物滤池处理该废水,能有效降低废水中的氨氮和COD。当进水ρ(COD)为3 000~4 000 mg/L、ρ(NH3-N)为15~60 mg/L、ρ(TN)为350~450 mg/L时,出水水质可达当地环保要求的排放标准:ρ(COD)≤300 mg/L、ρ(NH3-N)≤35mg/L,表明该工艺可应用于高浓度有机胺废水的处理。  相似文献   

9.
UASB+A/O+BAF处理高浓度氨氮废水   总被引:1,自引:1,他引:0  
在丙烯酰胺生产过程中产生的高浓度氨氮有机废水,采用UASB+A/O+BAF组合工艺处理该废水。结果表明:系统稳定运行后,在进水COD浓度为3 800~4 600 mg/L,NH3-N浓度为390~520 mg/L时,COD、NH3-N去除率分别达到98.2%和96.4%,出水各项指标均达到GB 8978—1996《污水综合排放标准》二级标准。  相似文献   

10.
实验采用Fenton反应-中和-厌氧菌法处理某高盐度工业废水,考察了各因素对COD去除率的影响。实验结果表明,Fenton反应处理该工业废水的最佳条件是:n(H2O2):n(COD)=2:1,n(H2O2):n(Fe2+)=4:1,pH=3,反应时间采用120 min。Fenton处理后废水COD由24 230 mg/L下降到13 020 mg/L,去除率达到46.26%;所得反应液用Ca(OH)2中和沉淀后COD值降低到11 060 mg/L,去除率为15.05%;最后废水经稀释后进行厌氧菌降解处理,COD为1 625 mg/L的废水经厌氧菌6天处理后降为466 mg/L,去除率为71.32%,达到GB8978-1996中规定的COD三级排放标准。  相似文献   

11.
溶解氧对膜生物反应器处理高氨氮废水的影响   总被引:4,自引:0,他引:4  
采用膜生物反应器(MBR)处理高氨氮有机废水,探讨了溶解氧(DO)对有机物、氨氮、总氮等去除效果的影响。当进水COD1500mg/L,NH4+-N150mg/L,TP为15mg/L,pH7.5~8.0,MLSS控制在6000~7000mg/L,DO在0.5~4mg/L时对COD的去除效果没有明显影响,都可高达95%;在DO为4.0和2.0mg/L时对NH4+-N的去除率都很高,最高可达99.17%,在DO为0.5mg/L时明显降低,最低降至48.30%。在DO2.0mg/L时,取得了较好的同步硝化反硝化效果,COD、NH4+-N、TN去除率分别高达97%、97%、68%。MBR中硝化反应的比氨氮消耗速率与氨氮浓度成零级反应动力学,比氨氮硝化速率为0.0979/d,比常规处理系统中的污泥硝化活性高。  相似文献   

12.
采用水解酸化与Fenton试剂分别处理高浓度抗生素化学合成废水的厌氧出水,并采用MBR验证其生化性的改善。试验表明:在废水ρ(COD)平均为4 084 mg/L时,水解酸化COD去除率平均为26.2%,ρ(BOD5)/ρ(COD)从0.23提高到0.31,但无法保证MBR出水ρ(COD)<120 mg/L。Fenton试剂反应条件为:ρ(H2O2)=5 000 mg/L,ρ(Fe2+)=4 000 mg/L,pH=7,反应时间1 h,COD去除率达50%。混合废水经MBR处理后,出水ρ(COD)平均为98.4 mg/L,可稳定达《制药工业水污染物排放标准》。  相似文献   

13.
纳米Fe_3O_4强化混凝-Fenton氧化预处理垃圾渗滤液   总被引:1,自引:1,他引:0       下载免费PDF全文
采用纳米Fe_3O_4与Fe Cl3制备复合混凝剂,利用混凝沉淀-Fenton氧化工艺预处理垃圾渗滤液原水,研究其处理效果。结果表明:在纳米Fe_3O_4投加量为2 g/L,Fe Cl3投加量为1.4 g/L时制备的复合混凝剂,在p H值为6.5,转速为300 r/min下快速搅拌1 min,转速为100 r/min下慢速搅拌30 min,沉淀时间为30 min的条件下,COD去除率为56.8%,ρ(COD)可由5 240 mg/L降低到2 264 mg/L;利用Fenton氧化处理混凝处理出水,在H_2O_2的投加量为5.5 g/L,n(H_2O_2)∶n(Fe2+)=4,p H值为6,反应时间为80 min,反应温度为25℃的最佳条件下,COD和氨氮的去除率分别为55.7%和40.1%,最终出水ρ(COD)和ρ(氨氮)分别为1 003 mg/L和670 mg/L;该组合工艺对垃圾渗滤液有较好的处理效果,COD、色度和氨氮的去除率分别为80.8%、59.5%和76.2%。  相似文献   

14.
利用两级钢渣基复合滤料生物滤池(SSMBF)构建厌氧/好氧(A/O)交替运行工艺系统.在单池HRT=2h,A/O交替周期48h,厌氧DO=0.2~0.5mg/L,好氧DO=3~5mg/L,T=23~27℃的运行条件下,考察了SSMBF系统对模拟生活污水(pH=6.8~7.5,COD=260~330mg/L,NH4+-N=35~40mg/L,PO43--P=9~11mg/L)的处理效果,分析了其氨氮和磷去除特性.结果表明,两级A/O交替SSMBF系统具有良好的生活污水处理能力,对氨氮、磷和COD的去除率分别为95%、40%~60%和83.3%,出水氨氮、磷和COD浓度分别为0.5mg/L?3~6mg/L和50mg/L.在厌氧/好氧交替周期为48h的工况下,SSMBF系统的氨氧化菌和聚磷菌分别可在10h和8h恢复最佳活性.SEM?EDS表征和污染物去除特性分析结果显示,A/O交替运行SSMBF系统充分发挥了钢渣基复合滤料的离子和碱度释放特性,通过聚磷菌的厌氧释磷效应,在厌氧SSMBF中诱导促进了生物-结晶协同除磷,结晶产物为以羟基磷灰石为主的磷酸盐化合物.  相似文献   

15.
为了考察曝气生物活性炭滤池(BACF)深度处理垃圾渗滤液的效能,研究了填料填充度、曝气位置、气水比、水力停留时间和p H等影响因素对滤池去除有机物、氨氮和总氮的影响。结果表明,最佳的工艺运行条件为:填料填充度为80%,底部曝气,气水比为3:1,水力停留时间为8 h,p H为7~8。在最佳工艺条件下运行反应器,COD、氨氮和TN平均去除率分别达到85%、90%和57%,出水可达到实验设定水质要求。BACF具有较强的抗有机负荷能力,进水COD浓度在323至3 000 mg/L之间时,COD去除率稳定在80%。反应器受氨氮冲击负荷影响较大,氨氮进水浓度低于90mg/L时,出水可达到要求。  相似文献   

16.
处理医院污水常用的工艺有A2/O工艺和AB工艺,以上两种工艺存在磷酸盐及氨氮去除与水温等工艺条件相关因素有关,而造成处理效果不稳定,经试验采用生物酶改良剂+SBR反应器处理医院污水,加入生物酶原液为50 000 mg/L加入一定数量,按SBR工艺条件控制,经处理后,COD去除率达90%以上,出水中磷酸盐及氨氮浓度达到综合废水一级排放标准。在SBR反应器中,当生物酶与医院污水比例为0.1/10 000-1/10000时,对COD的去除率显著提高,在处理医院污水时,曝气时间4 h,此时COD去除率小于90%。能加速聚磷菌对磷的释放和吸收,可使出水达到或接近一级排放标准,同时在好氧段生物酶能显著提高NH3-N的硝化速度,能将硝化时间缩短2h,从而降低了医院污水的处理成本。  相似文献   

17.
针对印刷线路板综合废水p H低,Cu、Ni、氨氮含量高等特点,采用铁碳催化内电解结合A/O组合工艺进行废水处理。最佳条件下,一级催化内电解对总铜去除率可达99.6%,由179.7 mg/L降低至0.71 mg/L;对总镍去除率为62.7%,由0.83 mg/L降至0.31 mg/L。二级催化内电解对总铜去除率达96.3%,降低至0.026 mg/L;对总镍去除率达92.6%,降低至0.023 mg/L。两级铁碳内电解对COD和TP去除率为53.3%和91.2%。经过A/O系统处理后,最终出水ρ(COD)<44 mg/L、ρ(TP)<0.21 mg/L、ρ(TN)<14 mg/L、ρ(NH+4-N)<1.6 mg/L、ρ(总铜)<0.02 mg/L、ρ(总镍)<0.016 mg/L,可达到GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准。  相似文献   

18.
试验采用A1-A2-O 生物膜系统处理焦化废水,对好氧段的影响因素进行了研究.结果表明,当好氧段HRT为28.1h, 出水pH值为7.7~8.0,剩余碱度为150~200mg/L,池中部加碱,进水C OD负荷<0.22kg/m3·d,氨氮负荷<0.05kg/m3·d时,系统对 COD和氨氮的去除率分别可达87%和98%,出水COD浓度平均低于150mg/L ,氨氮浓度低于15mg/L.  相似文献   

19.
垃圾渗滤液膜过滤浓缩液含盐量高,色度和有机污染物浓度高,处理难度大。采用批式试验,以Ti/RuO2-IrO2为阳极、不锈钢为阴极对垃圾渗滤液膜过滤浓缩液进行电化学氧化处理,研究电解时间、电流密度和极板间距对浓缩液色度、COD、氨氮去除率和电导率的影响。结果表明:电流密度为6 A/dm2,电解3 h时,色度去除率达94%,出水色度为15倍;电解5 h,氨氮去除率为99.67%,出水氨氮为1.4 mg/L;电解6 h,COD去除率为60.43%,出水COD浓度为1156 mg/L。以Ti/RuO2-IrO2为阳极电化学氧化技术对垃圾浓缩液色度和氨氮的去除效果较好,适宜的电流密度和极板间距分别为6 A/dm2和4 cm。  相似文献   

20.
在进水流速为300 mL/h、回流比为200%;反应器内溶解氧在0.8~1.5 mg/L,pH在7.8~8.5,温度在32~35℃的条件下。采用分别往曝气生物滤池(BAF)反应器1#中通入不含COD的人工合成废水,往BAF反应器2#中通入含有不同浓度COD的人工合成废水的方式,研究在自营养条件下和异营养条件下曝气生物滤池对氨氮的去除效果。研究表明:异营养条件下当进水COD浓度为52.51 mg/L时,氨氮的去除率为93.07%,达到最大值;当COD<50 mg/L时,氨氮的去除率随COD浓度的增加而升高;当COD>50 mg/L时,氨氮的去除率随COD浓度的增加而下降。自营养条件下氨氮的去除率基本稳定在93.47%,大于异营养条件下氨氮的去除率。在进水不含有机物的条件下,填料区域各部分的氨氮去除率差别不大,填料层中下部的氨氮去除率略高于上部。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号