首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
十溴联苯醚(BDE-209)与得克隆(DP)是两种常见的添加型卤代阻燃剂,被广泛应用于各种电子产品中.由于其普遍存在于多种环境介质中,现已成为一种广泛存在的污染物,可能会对人体及生态系统产生潜在的危害.本研究测定了青海省西宁市与海西蒙古族藏族自治州天峻县夏、冬两季大气中BDE-209与DP的水平.结果表明,青海省西宁市夏、冬两季大气中BDE-209的平均水平分别为370 pg·m-3、470 pg·m-3,天峻县为220 pg·m-3、390 pg·m-3,与其他城市和地区相比,属于水平较高的地区.而西宁市大气中DP的平均水平为0.85 pg·m-3、0.25 pg·m-3,天峻县为0.24 pg·m-3、0.16 pg·m-3,西宁市水平高于天峻县,夏季水平高于冬季,与其他地区相比,青海省DP整体水平较低.西宁市与天峻县DP的同分异构体中,anti-DP所占比例分别是0.66±0.04与0.68±0.06,在时间与时空上的变化均不明显.青海省BDE-209与DP呈现弱的负相关性,说明两种污染物在青海省可能没有相同的本地源.  相似文献   

2.
2010年冬、夏两季,利用大流量采样器采集了福州市大气样品,并用气相色谱-电子捕获检测器(GC-mECD)分析其中六六六(HCHs)和滴滴涕(DDTs)残留水平、分布特征及来源.结果表明,大气ΣHCHs浓度范围为28.04~413.0 pg/m3,总体而言,城区高于郊区,夏季高于冬季,气相高于颗粒相;气相中HCHs浓度夏季高于冬季,颗粒相中则相反;夏季气相中HCHs浓度显著高于颗粒相,而冬季气相与颗粒相中HCHs浓度基本相当.4种HCHs异构体中,气相与颗粒相中均是δ-HCH相对含量最高.大气ΣDDTs浓度范围为146.5~897.8 pg/m3,总体而言,郊区高于城区,冬季高于夏季,颗粒相高于气相;气相中DDTs浓度夏季高于冬季,颗粒相中则相反;冬季颗粒相中DDTs浓度显著高于气相,而夏季颗粒相与气相中DDTs浓度无显著差异.4种DDTs异构体/同系物中,气相中o,p′-DDT的相对含量最高,颗粒相中o,p′-DDT和p,p′-DDT相对含量较高.来源解析表明,福州城郊大气中HCHs非历史污染,存在林丹的使用或输入;大气中可能存在DDTs输入,并可能有大量三氯杀螨醇的输入.  相似文献   

3.
马子龙  毛潇萱  丁中原  高宏  黄韬  田慧  郭强 《环境科学》2013,34(3):1120-1128
应用大气被动采样技术对新疆哈密地区城市、农村及林场点位大气和土壤中主要有机氯农药:HCHs和DDTs进行了1a的观测分析,对其大气、土壤残留现状和气-土交换进行了分析研究,并对其潜在生态风险进行了初步评估,结果表明,哈密地区大气中HCHs和DDTs在1a观测期的平均浓度分别为107.1 pg·m-3和43.9 pg·m-3;大气中HCHs和DDTs浓度呈现季节性变化:夏、秋两季HCHs和DDTs的浓度普遍高于冬、春两季,推测为夏、秋季较高的温度造成更多的HCHs和DDTs挥发到空气中;大气中两类OCPs污染以HCHs为主,HCHs各类异构体残留以α-HCH为主,DDTs残留以p,p’-DDE为主.研究区大气中α-HCH/γ-HCH的值普遍在3~7之间,推测工业HCHs的使用或HCHs的大气长距离传输对该地区大气中HCHs含量有较为明显的影响;大气中(DDD+DDE)/DDTs的值在0.4~0.9之间,有71.4%的比值大于0.5,表明大气中DDTs主要来自于环境中的残留,近期没有新源输入.土壤中HCHs和DDTs含量范围分别为0.344~6.954 ng·g-1和0.104~26.397ng·g-1,均未超过国家土壤环境质量标准规定的一级自然背景值;土壤中两类OCPs污染以DDTs为主,HCHs各异构体残留以β-HCH为主,DDTs残留以o,p’-DDT为主,根据(DDD+DDE)/DDTs<0.5,近期土壤中有新的HCHs和DDTs输入.土壤和大气中HCHs和DDTs的来源不一致,主要是由土壤和大气本身的不同特性以及哈密地区复杂的地理和气候条件导致的.气-土交换研究表明:哈密地区HCHs各异构体和p,p’-DDE的气-土交换主要以土壤向大气挥发为主;而o,p’-DDE、o,p’-DDD、p,p’-DDD、o,p’-DDT、p,p’-DDT的气-土交换则主要是由大气向土壤沉降.大部分DDTs的汇是土壤,源是大气;而HCHs和p,p’-DDE的汇则是大气,源是土壤.哈密地区土壤中HCHs的生态风险较低,哈密城市和林场土壤中DDTs可能对该地区鸟类和土壤生物具有一定的潜在生态风险.  相似文献   

4.
通过采集台湾海峡西岸厦门岛秋、冬两季的近海大气颗粒物样品,分析20种有机氯农药(OCPs)的污染特征及可能来源,并估算OCPs干沉降入海通量。结果显示,厦门岛大气颗粒物中OCPs主要为DDTs、HCHs和Methoxychlor。季节变化上,受中国北方陆地污染气团来源的影响,冬季OCPs各化合物的浓度高于秋季。2006至2008年,OCPs浓度呈上升趋势,可能受到该时期内厦门灰霾日数明显增加导致大气总悬浮颗粒物含量增长的影响。与国内主要城市区域相比,OCPs浓度处于较低水平,与背景区域的浓度水平相当。通过分子标志物示踪污染物来源显示,DDTs、氯丹和硫丹主要为历史残留,而HCHs主要受到工业HCHs污染的影响。秋季和冬季,OCPs的大气干沉降通量分别为3.49 ng/(m2·d)和9.25 ng/(m2·d),按照台湾海峡海域覆盖面积(63000 km2)估算,秋季和冬季大气颗粒物中OCPs通过干沉降入海通量分别为20.03 kg和52.45 kg。  相似文献   

5.
为研究固城湖环境中有机氯农药(organochlorine pesticides,OCPs)时空分布、来源与生态风险,采用GC-μECD定性定量分析了固城湖及其出入湖河道12个监测点夏、冬两季水体、沉积物和鱼类体内19种OCPs的含量.结果表明,固城湖表层水、沉积物和鱼类中(以干重计)有机氯农药总量范围分别是26.74~48.12 ng·L~(-1)、 9.01~35.34 ng·g~(-1)和13.39~124.29 ng·g~(-1).水中有机氯农药污染特征表现为夏季含量高于冬季,出入湖河道高于养殖塘和湖区;沉积物中季节性污染特征不明显.从组成特征上看,夏、冬两季水体、沉积物和生物体内19种OCPs均有不同程度地检出,均呈现以HCHs和DDTs为主的污染特征,其中,夏冬两季各监测点表层水和沉积物中HCHs以α-HCH为主,占HCHs总含量的21%~42%;表层水中DDTs以p,p′-DDD为主,占DDTs总含量的30%~76%,沉积物中以p,p′-DDT为主,占DDTs总含量的68%~93%.分析固城湖环境中OCPs来源,根据异构体比值,可以推断环境中HCHs和DDTs主要来源于近期新的农药输入,且主要发生厌氧分解.生态风险评价显示,固城湖水体中OCPs的健康风险不大,沉积物中的有机氯农药残留量有一定的生态风险.固城湖各监测点所采生物样均在可接受的潜在致癌风险范围内.  相似文献   

6.
丁中原  毛潇萱  马子龙  田慧  郭强  黄韬  高宏  李军  张干 《环境科学》2013,34(4):1258-1263
利用PUF大气被动采样器对河西走廊及兰州地区进行了为期1 a,分4个季度的大气样品采集,应用HP6890ⅡGC-ECD对大气中典型有机氯农药六六六(HCHs)和滴滴涕(DDTs)的含量进行了分析.研究结果表明,河西走廊和兰州地区大气中ΣHCHs(α-HCH+β-HCH+γ-HCH+δ-HCH)和ΣDDTs(p,p’-DDT+o,p’-DDT+p,p’-DDE+p,p’-DDD)的平均浓度分别为86.22 pg.m-3和34.06 pg.m-3,研究区ΣHCHs和ΣDDTs的背景浓度平均为54.41 pg.m-3和21.56 pg.m-3,同国内外其它地区相比,污染处于相对较低的水平.总体而言,ΣHCHs和ΣDDTs均表现出秋季浓度相对较高(均值分别为127.4pg.m-3和47.06 pg.m-3)的季节特征,酒泉、安西、张掖三地的HCHs和DDTs污染水平较高,推测与这3个地区的耕地面积和历史使用量较大有关.源解析表明,研究区内的HCHs主要来源于禁用前的历史残留以及林丹的使用,DDTs来源于工业DDTs的近期使用,部分地区如酒泉和安西可能存在三氯杀螨醇的使用.河西走廊和兰州地区人群通过呼吸途径对HCHs和DDTs的暴露水平较低.  相似文献   

7.
北京石景山区夏季大气中有机氯农药的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
利用气相色谱对北京石景山区大气中气态和总悬浮颗粒物中有机氯农药(OCPs)含量进行了分析测定.结果表明,北京石景山区大气中气态和颗粒物中HCHs、p,p¢- DDT、p,p¢-DDE、p,p¢-DDD、o,p¢-DDT、七氯、氯丹的平均含量分别为:4344.4, 1000.2, 778.0, 213.4, 1319.3, 645.7, 376.6 pg/m3和37.3, 5.3, 0, 0.7, 15.8, 1.6, 0.6 pg/m3,有机氯农药主要以气态存在于大气中.HCHs和DDTs是有机氯农药类污染物的主要成分,两者之和在气态和颗粒物中所占总OCPs的比例分别为87.2%和90.9%.α-HCH/γ-HCH 和p,p’-DDE/p,p’-DDT的浓度比值分别<1.5和<1.0,表明新近该区大气中有γ-HCH和DDT的输入.三氯杀螨醇的使用是环境中DDTs的一个重要来源.  相似文献   

8.
深圳市冬、夏两季大气中有机氯农药的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用大流量主动采样器,选择深圳市13个有代表性采样点,于2009年12月~2010年1月和2010年6月,分2个采样时期对深圳市大气中有机氯农药(OCPs)进行监测.结果显示,深圳市冬、夏大气中,13个点位总有机氯农药浓度变化范围分别为742~3522 pg/m3(平均值1769pg/m3)和507~2197pg/m3(平均值1163pg/m3).冬季大气中有机氯农药主要是DDTs、林丹、七氯、氯丹、六氯苯,占有机氯农药总量的87%;夏季大气中有机氯农药主要为DDTs、氯丹、林丹,三者总量占有机氯农药的89%.研究表明,深圳市大气中存在“新”DDT的输入,认为工业DDT是其主要来源,而γ-HCH以及氯丹的高检出与林丹和用于杀灭白蚁的氯丹的继续使用有关.  相似文献   

9.
白洋淀多环芳烃与有机氯农药季节性污染特征及来源分析   总被引:1,自引:0,他引:1  
为研究白洋淀表层水体中多环芳烃(polycyclic aromatic hydrocarbons,PAHs)和有机氯农药(organochlorine pesticides,OCPs)的季节性污染特征及来源,分析了白洋淀12个监测断面春、夏两季表层水体中17种PAHs和15种OCPs的浓度.结果表明,白洋淀春季表层水体中PAHs总浓度范围是35.38~88.06 ng·L~(-1),平均值为46.57 ng·L~(-1),夏季表层水体中PAHs总浓度范围是25.64~301.41 ng·L~(-1),平均值为76.23 ng·L~(-1);白洋淀春季表层水体中OCPs总浓度范围是0.69~4.50 ng·L~(-1),平均值为1.77 ng·L~(-1);夏季表层水体中OCPs总浓度范围是0.11~3.20 ng·L~(-1),平均值为0.90 ng·L~(-1).白洋淀春、夏两季表层水体中PAHs季节性污染特征表现为前塘、关城和安新桥等3个断面夏季PAHs总浓度要远高于春季,而其他9个断面则均表现为春季略高于夏季;OCPs季节性污染特征表现为关城断面夏季OCPs总浓度高于春季,而其他11个监测断面均表现为春季高于夏季.从白洋淀春、夏两季表层水体PAHs和OCPs组成特征来看,春季各监测断面PAHs主要以三环芳烃为主,占PAHs总浓度的比例为45.92%~61.36%(平均为52.60%);夏季安新桥、前塘和关城等3个监测断面主要以二环芳烃萘(Naphthalene,Nap)为主,其浓度分别占PAHs总浓度的比例高达84.91%、91.04%和78.10%,其他9个监测断面主要以三环芳烃为主,占PAHs总浓度的比例为37.14%~53.90%(平均为48.94%);白洋淀表层水体中只有HCHs和DDTs有不同程度检出,且呈现出以HCHs为主的污染特征,其中,春季各监测断面表层水体中HCHs均以β-HCH为主,占HCHs总浓度的29.94%~100%,平均比例为59.87%,而夏季大张庄、郭里口等5个监测断面表层水体中HCHs以β-HCH为主,占HCHs总浓度的57.55%~80.23%,平均比例为61.98%,其他断面以α-HCHs和δ-HCH为主.分析白洋淀春、夏两季表层水体中PAHs和OCPs的来源,PAHs同分异构体比值显示其PAHs主要来源于燃烧源,部分监测断面还存在石油源;而OCPs同分异构体比值显示其OCPs主要来源于环境残留和大气的长距离传输.白洋淀表层水体中PAHs和OCPs浓度不超过不同国家和组织制定的相关水质标准,但安新桥和圈头两个监测断面表层水体中α-HCH、p,p'-DDD浓度超过了美国环保署制定的人体健康水质基准,表明α-HCH和p,p'-DDD可能会对白洋淀淀区居民产生潜在有害影响.  相似文献   

10.
广州某工业区大气中PCDD/Fs含量水平及其季节性变化特征   总被引:2,自引:1,他引:1  
青宪  苏原  苏青  张素坤  任明忠 《环境科学》2014,35(2):464-469
通过对广州某工业区大气中2,3,7,8-PCDD/Fs的季节性监测,并对大气中PCDD/Fs的浓度与季节性变化进行了分析.结果表明,该工业区大气中PCDD/Fs的浓度范围为2.33~75.4 pg·m-3,平均值为23.2 pg·m-3,毒性当量浓度I-TEQ范围为0.229~10.7 pg·m-3,平均值为2.00 pg·m-3,高于日本环境空气质量标准推荐年均值0.6 pg·m-3.该工业区PCDD/Fs浓度季节性变化明显,最高的季节为春季(37.8 pg·m-3),浓度最低的季节为夏季(13.5 pg·m-3),其次为秋季(22.3 pg·m-3)和冬季(19.1 pg·m-3);毒性当量浓度变化高低顺序为:春季(5.58 pg·m-3)>夏季(1.06 pg·m-3)>秋季(0.839 pg·m-3)>冬季(0.525 pg·m-3).降雨、季风的季节性变化可能是引起大气中PCDD/Fs浓度季节性变化的原因.  相似文献   

11.
舟山青浜岛水体及海产品中有机氯农药的分布和富集特征   总被引:4,自引:2,他引:2  
在舟山青浜岛采集了14个生物样品及对应点位的3个海水样品,利用气相色谱(GC-ECD)测定六六六(HCHs)和滴滴涕(DDTs)的浓度,分析不同点位水体及水产品中有机氯农药的分布与富集特征.结果表明,舟山青浜岛HCHs和DDTs检出率高达100%.海产品中HCHs含量范围0.09~11.51 ng·g-1,平均值为2.02 ng·g-1,DDTs含量范围0.02~56.15 ng·g-1,平均值为12.36 ng·g-1;海水样品中HCHs含量范围0.07~0.20 ng·L-1,平均值为0.13 ng·L-1,DDTs含量范围0.23~0.41ng·L-1,平均值为0.34 ng·L-1.整体而言,研究区样品中DDTs残留高于HCHs残留.与国内外其他研究区域相比,青浜岛水生物中有机氯农药残留处于较低水平.对照相应标准可以看出,所有样品均未超过国家相应标准(食品安全国家标准GB2763-2012、海水水质标准GB 3097-1997).通过比值法来源分析得知,青浜岛海域HCHs和DDTs主要为外源输入.OCPs的空间分布特征分析显示,海洋上升流及其锋面的变化是影响OCPs分布的主要因素.水体中OCPs分布与青浜岛的特殊地形有关,且人类活动对当地环境的影响是水体OCPs的贡献方式之一.健康风险评价表明,该区域居民通过食用海产品OCPs平均日摄入量远低于FAO/WHO限定的每日可摄入量(ADI),说明该地区居民食用海产品对人体健康影响较小.  相似文献   

12.
为评估办公楼密集区大气中PBDEs污染程度、同类物分布特征及其健康风险,采集了典型科研园区室外空气样品(颗粒物+气态),利用GC-MS对PBDEs质量浓度进行测定.结果表明,PBDEs在气态、PM_(2. 5)和PM_(10)中质量浓度分别为2. 3~78. 6、14. 4~335. 3和11. 6~431. 7 pg·m~(-3),平均值为21. 7、96. 9和149. 3 pg·m~(-3),BDE-209是颗粒态PBDEs中质量浓度最高的同系物,占PBDEs总量的50%.颗粒物中PBDEs质量浓度均表现为秋季冬季夏季春季,冬季变化显著,夏季相对稳定.三溴联苯醚主要存在于气态中,随溴原子的增加,颗粒态PBDEs单体的含量比重增大.来源分析说明BDE-209的降解是空气中其他PBDEs组分的重要来源.暴露风险分析显示儿童和成人对PBDEs的呼吸摄入量分别为18. 6 pg·(kg·d)~(-1)和7. 1 pg·(kg·d)~(-1),远小于相关研究中推荐的最低观察不良反应水平1 mg·(kg·d)~(-1); BDE-209对成人和儿童的致癌风险值分别为3. 7×10-9和2. 3×10-9,远小于致癌风险限值10-6,表明该区域大气中PBDEs无健康危害.  相似文献   

13.
基于后向轨迹对城市大气中二噁英长距离迁移来源的探讨   总被引:4,自引:0,他引:4  
通过对广州某商住区大气中二噁英的季节性监测,结合后向轨迹的计算,对大气中PCDD/Fs的浓度及其长距离迁移来源进行分析.结果表明:大气中二噁英浓度有季节性变化特点,其趋势为冬季(14.4 pg·m-3)>秋季(10.0 pg·m-3)>春季(5.54 pg·m-3)>夏季(3.88 pg·m-3).同时,大气中PCDD/Fs单体特征也具有季节性特点,秋冬季节七氯代、八氯代PCDD/Fs百分比高于春秋两季,春夏两季低氯代单体百分比含量高于秋冬两季.追溯采样期间该城市大气的后向轨迹,发现秋冬两季到达广州的气团主要经过湖南、湖北和江西等北方或东北方的内陆省份,而春夏两季到达广州的气团主要经过我国东海和南海海域上空.而这种变化很可能是造成广州大气中二噁英浓度季节性变化的主要原因.  相似文献   

14.
岩溶地下河流域表层土壤有机氯农药分布特征及来源分析   总被引:1,自引:0,他引:1  
谢正兰  孙玉川  张媚  余琴  徐昕 《环境科学》2016,37(3):900-909
为研究有机氯农药(OCPs)在重庆南山老龙洞地下河流域表土中的分布趋势、组成特征、来源及污染水平,采用气相色谱-微池电子捕获检测器(GC-μECD)分析了6个代表性表层土样中20种OCPs.结果表明,研究区表层土壤中20种OCPs均有不同程度检出,其中(除DDE、顺式氯丹、反式氯丹、狄氏剂)16种检出率高达100%,氯丹类和DDTs是主要污染物,不同采样点有机氯农药含量差异较大.OCPs总量变化范围在5.57~2 618.57 ng·g~(-1)之间,平均值为467.28 ng·g~(-1),与国内外其它区域相比,研究区表层土壤中HCHs和DDTs含量处于中上水平.有机氯农药总量和HCHs、DDTs、氯丹类农药总量分布具有相似的空间变化趋势,均为:上游中游下游,并且上游与中、下游的差距尤为显著.来源分析表明,HCHs主要来源于林丹的使用,DDTs既来源于历史农药残留,也来源于近期工业DDT的非法使用和三氯杀螨醇的输入,氯丹主要来自历史残留和大气沉降.结合中外土壤质量标准,新力村土壤属于有机氯农药严重污染土壤,下龙井湾、夏家咀和赵家院子土壤受到有机氯农药轻度污染,龙井旁和高中寺土壤属于无污染土壤.  相似文献   

15.
使用气相色谱-质谱联用仪分析了长江支流沱江流域48个表层沉积物中有机氯农药(organochlorine pesticides,OCPs)的残留水平,探讨了其分布和组成特征及其与总有机碳(total organic carbon,TOC)、藻类有机质之间的关系,以及评估其生态风险.结果表明沱江流域表层沉积物中OCPs的总含量为3.17~127 ng·g-1,其中六六六(hexachlorocyclohexane,HCHs)类农药的含量为2.83~86.0 ng·g-1,滴滴涕(dichlorodiphenyltrichloroethane,DDTs)类农药的含量为0.340~40.9 ng·g-1.OCPs空间分布特点为:上游 < 中游 < 下游 < 支流.HCHs和DDTs的组成成分分析表明,沱江流域存在林丹输入的现象,主要来自于历史残留,这与绝大多数流域的DDTs的输入状况相似.OCPs含量与TOC、藻类有机质含量之间存在着极显著的正相关性关系,表明藻类有机质在TOC对沉积物中的OCPs分配中起更为重要的作用.生态风险评估表明,沱江流域表层沉积物的有机氯农药存在较大的生态风险,可能对河流的底栖生物及生态环境造成明显的影响.  相似文献   

16.
硝基多环芳烃是大气细颗粒物中具有致癌效应的一类重要污染物,为探明硝基多环芳烃污染特征与来源,采集南京市14个大气细颗粒样品,利用气相色谱-质谱联用仪(GC-MS)测定硝基多环芳烃浓度,进行分布特征分析,来源识别和健康风险评估.结果表明,南京市大气细颗粒物中2,8-二硝基二苯并噻吩(743 pg·m-3)、2,7-二硝基芴(331 pg·m-3)、9-硝基蒽(326 pg·m-3)、3-硝基荧蒽(217 pg·m-3)和1,8-二硝基芘(193 pg·m-3)为主要的硝基多环芳烃;硝基多环芳烃检出浓度具有明显的季节变化,冬季最高(3082 pg·m-3),秋季其次(1553 pg·m-3),春季最低(1218 pg·m-3).南京市大气细颗粒物中硝基多环芳烃主要来自多环芳烃大气光氧化反应与生物质燃烧,二次生成是硝基多环芳烃的重要来源.当前南京PM2.5中硝基多环芳烃的致癌风险可控,二硝基多环芳烃是致癌风险的主要来源.  相似文献   

17.
选取典型表层岩溶泉域内的土壤剖面和表层岩溶泉水为研究对象,采用气相色谱(GC-μECD)对土壤和地下水中的有机氯农药(organochlorine pesticides,OCPs)进行定量分析,研究了有机氯农药在岩溶区上覆土壤中的垂直迁移以及对地下水的影响.结果表明,研究区所有土壤剖面中,HCHs和DDTs均有检出.HCHs和DDTs的含量范围分别为:0.77~18.3 ng·g-1(平均5.16 ng·g-1)和0.34~226 ng·g-1(平均16 ng·g-1).研究区土壤中的HCHs和DDTs峰值主要出现在土壤亚表层.在一年的观测期间,4个表层岩溶泉中均有HCHs和DDTs检出.泉水中HCHs和DDTs的含量范围分别为:2.09~60.1 ng·L-1(平均12 ng·L-1)和N.D~79.8 ng·L-1(平均9.16 ng·L-1).后沟泉、柏树湾泉、兰花沟泉的HCHs和DDTs含量以及水房泉中的HCHs含量均呈现出雨季高于旱季的特点.泉水中的HCHs、DDTs含量与泉域内土壤中的HCHs、DDTs含量并没有很好的对应关系.研究表明,TOC、土壤含水量、黏粒含量、p H均对后沟泉域土壤中有机氯农药垂直迁移产生抑制作用,致使后沟泉域土壤中有机氯农药含量虽然在4个泉域中最高,但泉水中的含量却最低.而在水房泉泉域,这4个因素对有机氯农药的垂直迁移均没有抑制作用,因此水房泉泉域土壤中有机氯农药含量虽然最低,但泉水中有机氯农药的含量却较高.  相似文献   

18.
叶凯  孙玉川  贾亚男  朱琳跃  徐昕 《环境科学》2020,41(12):5448-5457
采用气相色谱-微池电子捕获检测器(GC-μECD)测定南山老龙洞岩溶地下水水体中有机氯农药(OCPs)和多氯联苯(PCBs)残留量,并探究了OCPs和PCBs的浓度、分布和来源等残留特征.结果表明,OCPs总浓度范围为34.8~623.2 ng·L-1,均值为215.6 ng·L-1,其中,HCHs、DDTs和其它类OCPs总浓度范围分别为8.2~23.6、4.5~363.7和22.2~235.9 ng·L-1,均值分别为15.9、104.5和95.3 ng·L-1;PCBs总浓度范围为6.0~40.7 ng·L-1,均值为16.8 ng·L-1.总体而言,OCPs和PCBs污染处于中上水平;多重比较结果显示部分OCPs和PCBs平均浓度具有统计学意义上的显著差异.研究区各采样点水体中污染水平差异较大,但OCPs和PCBs的季节分布相对均匀.源解析表明,HCHs源于周围环境中林丹的输入;DDTs源于近期工业DDT的非法使用;其它类OCPs源于大气沉降和农业活动输入;PCBs来源既有历史残留,又有企业排污活动;Pearson相关分析表明部分有机卤素污染物具有同源性,或有类似的来源和分解机制.结合健康风险评价模型,研究区饮用水不会对人体健康产生明显危害,但儿童对污染物的敏感性高于成人.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号