首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
近年来城市臭氧(O3)污染问题日益突出,影响O3污染的关键气象因子尚不明确,因此分析典型城市——苏州的O3污染特征,探究O3污染的高影响气象因子,对该区域大气污染防治具有重要意义.基于苏州环境监测中心2015~2020年4~9月逐小时O3浓度数据及同期气象观测资料,应用相关分析和机器学习方法对其开展相关分析研究.结果表明:(1) 6年间O3污染高发季,O3污染超标率均达20%以上,O3污染日数和以O3为首要污染物的污染日数占比均逐年上升,O3污染问题日益凸显;(2) O3浓度存在单峰日变化特点,谷值出现在07:00前后,峰值出现在15:00~16:00;其与气温和太阳辐射能的日内变化趋势较一致,但其浓度峰值出现时刻又滞后于二者. 2017年和2019年O3有典型的“周末效应”,周末较高的太阳辐照度对O3浓...  相似文献   

2.
采用天气学分析和GRAPES-CUACE气溶胶伴随模式相结合的方式,探讨了北京市2016年2月29日~3月6日一次PM2.5重污染过程的大气环流特征、污染形成和消散原因,并利用伴随模式追踪了造成此次重污染过程的关键排放源区及敏感排放时段.结果表明:此次重污染过程北京市PM2.5浓度存在明显日变化,在3月4日20:00达到污染峰值,观测数据显示海淀站PM2.5浓度达到506.4μg/m3.形成此次重污染过程的主要天气学原因是北京站地面处于低压中心,且无冷空气影响,风速较弱,逆温较强,大气层结稳定,混合层高度较低,500hPa西风急流较弱,污染物水平和垂直扩散条件差,大气污染物易堆积;此次过程中,500hPa短波槽过境、边界层偏南风急流和冷空气不完全渗透导致了本次严重污染PM2.5浓度的短暂下降.伴随模式模拟结果表明,此次污染过程目标时刻的污染浓度受到来自河北东北部和南部、天津、山西东部、以及山东西北部污染物的共同影响,目标时刻PM2.5峰值浓度对北京本地源响应最为迅速,山西响应速度最慢;北京、天津、河北及山西排放源对目标时刻前72h内的累积贡献比例分别为31.1%、11.7%、52.6%和4.7%.北京本地排放源占总累积贡献的1/3左右,河北排放源累积贡献占一半以上,天津和山西分别占1/10和1/20,河北源贡献占主导地位,天津和山西贡献较小;目标时刻前3h内,北京本地源贡献占主导地位,贡献比例为49.3%,目标时刻前4~50h内,河北源贡献占主导地位,贡献比例为48.6%,目标时刻前50~80h,山西源贡献占主导地位,贡献比例在50%以上.  相似文献   

3.
天津污染天气边界层温度层结变化特征及预报阈值确定   总被引:4,自引:0,他引:4  
针对天津市大气污染防治需求,基于2016年4月1日—2017年3月31日天津255 m气象塔观测资料及数值模拟,开展天津地区污染天气边界层温度层结变化特征及预报阈值研究.结果表明:(1)天津地区10~250 m高度的气温递减率为0.56℃/100 m,当日均气温递减率小于0.4℃/100 m时,垂直扩散条件不利于大气污染物扩散,出现中度以上污染概率为64%,重污染概率为47%.从温度廓线和逆温频率统计分析,贴地逆温占所有逆温的55%,除贴地逆温以外逆温底部最易出现在160 m的高度,大量脱地逆温的出现不利于高架源夜间的排放.(2)每年10月—次年2月天津逆温频率为20%,冬季需要关注逆温情况对大气污染物扩散的影响.如秋、冬季8:00逆温仍然存在,重污染天气出现概率高达56%,中度及以上污染出现概率为72%,是重污染天气辨识的重要指标.(3)7:00—10:00在逆温消散或者日均气温递减率由0.6℃/100 m向0.4℃/100 m变化时,任何细微变化对大气垂直扩散有显著影响.基于天津地区PM_(2.5)污染情况下,数值模拟显示10~250 m的气温递减率由于气溶胶的存在可减少0.06℃/100 m,在25个重污染过程中,日均气温递减率平均下降0.18℃/100 m,对大气垂直扩散条件产生显著影响.因此,在空气污染预报分析时使用不考虑气溶胶辐射效应的天气模式分析温度层结,需要适当调整阈值,尤其是在7:00—10:00逆温消散及垂直温度递减率由0.6℃/100 m向0.4℃/100 m变化时.  相似文献   

4.
2014年10月北京市4次典型空气重污染过程成因分析   总被引:12,自引:0,他引:12       下载免费PDF全文
采用数值模拟与观测资料相结合的方式,对2014年10月北京市4次典型空气重污染过程的大气环境背景、气象条件和形成原因进行了分析. 结果表明,京津冀区域稳定的气象条件是形成空气重污染的主要原因,4次重污染过程大气条件均不利于污染物扩散,表现为大气层结稳定,近地层逆温(平均逆温强度为2.26 ℃/100 m)明显,风速(平均值为1.52 m/s)小,相对湿度(平均值为80.75%)大. 在4次重污染过程中8—11日污染最重,ρ(PM2.5)日均值平均为264 μg/m3,并且区域输送对北京贡献率最大,平均值为63.75%;24—25日污染程度次之,逆温最强,逆温强度达5.94 ℃/100 m;18—20日重污染中北京ρ(PM2.5)高值(>200 μg/m3)区主要集中在该市西北部地区;30—31日污染相对较轻,ρ(PM2.5)日均值最高只有154 μg/m3. 数值模拟表明,在4次典型重污染过程中,来自南方(包括河北、河南和山西西部等地)的外来污染物输送对北京PM2.5贡献较大,外来贡献率分别在42.36%~69.12%之间,同时北京本地也存在较强的二次无机盐及有机物转化过程.   相似文献   

5.
利用气象铁塔资料分析了逆温频率和强度,采用温差-风速法计算了天津地区大气稳定度,探讨了其相互关系及对PM2.5浓度月均值和超标日的影响,并对一次重污染过程中大气稳定度和逆温分布特征进行了分析.结果表明,2015年9月~2017年8月A,B,C,D,E和F类大气稳定度发生频率依次为6.7%,11.4%,22.4%,46.1%,11.1%和2.2%,秋冬季节稳定类天气(E,F类)较多,全年白天各时段均以不稳定类大气为主,夜间大气稳定度以中性为主,秋冬季夜间稳定类高达30%~40%.观测期内冬季逆温频率最高,5:00~8:00和21:00~23:00超过90%,冬季逆温强度也最高.随着稳定类大气层结日数的增多,PM2.5月均值和污染日数均有所增大,同时逐月PM2.5均值、污染日发生频率均与逆温发生频率呈正相关关系.2016年12月16~21日的一次重污染天气过程显示,PM2.5受到大气稳定度和逆温发展的影响,霾形成、雾-霾交替和消散等阶段大气稳定度和逆温特征具有显著的不同.大气持续趋于稳定及逆温强度的逐渐增大,对污染生成和维持起了非常重要的作用,污染过程中大气稳定度和逆温特征的精细化分析有助于提升重污染天气预报预警水平.  相似文献   

6.
2022年9月18-20日福州市发生了一次臭氧(O3)污染事件,11:00-14:00 O3浓度基本维持在160μg/m3以上,且19日O3日最大8小时平均浓度达176μg/m3.这次污染事件可能与第14号台风“南玛都”的外围东北气流带来的海上O3污染传输有关.本文利用2022年9月15-21日常规大气污染物浓度、VOCs组分浓度及气象监测数据,结合拉格朗日粒子扩散模型(LPDM模型)、区域空气质量模型(WRF-CMAQ模型)和基于观测的化学盒子模型(OBM模型)等多种手段对此次污染过程进行了分析,定量评估了海上O3传输贡献和福州市O3前体物减排效果.结果表明:(1)基于△Ox(光化学氧化剂小时浓度变化量)的结果显示,19日受东北风影响,近海高浓度O3气团传输至福州内陆,传输贡献为5~17μg/m3,19日18:00-23:00海上O3<...  相似文献   

7.
我国自2013年起对重点区域逐步开展重污染天气应对工作,以削减大气重污染峰值、减缓重污染的发生和发展.为更客观地评估重污染天气应急减排措施的效果,基于环境监测数据对应急效果评估开展方法学研究,通过对洛伦兹曲线内涵的拓展,提出污染物高位累积浓度占比的概念,并以PM2.5、PM10、SO2、NO2四种污染物为研究对象,评估重污染天气应急措施减排效果,同时将评估结果与空气质量模型模拟结果进行相互辅证.结果表明:2016年和2017年秋冬季(当年10月1日-翌年3月31日)"2+26"城市PM2.5、PM10、SO2、NO2高位累积浓度占比较2015年同期均有所下降,降幅为0.43%~3.80%;PM2.5、PM10高位累积浓度占比降幅相对SO2、NO2大,其中,2016年和2017年秋冬季PM2.5高位累积浓度占比较2015年同期降幅均为2.23%,PM10高位累积浓度占比较2015年同期降幅分别为1.89%、3.80%.研究显示,应急措施在"2+26"城市范围内对PM2.5、PM10、SO2、NO2起到了较显著的重污染削峰作用,其中,应急措施对PM2.5、PM10等颗粒物重污染削峰效果优于SO2、NO2等气态污染物.   相似文献   

8.
为了评估2018年春节期间(2月15—16日)京津冀及周边地区“2+26”城市烟花禁限放措施的效果,采用浓度特征对比、ρ(PM2.5)/ρ(CO)等方法,对“2+26”城市的ρ(PM2.5)、ρ(PM10)、ρ(SO2)、ρ(NO2)进行分析,并定量估算了除夕夜烟花燃放对ρ(PM2.5)和ρ(SO2)的贡献率.结果表明:“2+26”城市烟花的集中燃放会导致ρ(PM2.5)、ρ(SO2)显著增长,出现以PM2.5为首要污染物的重污染时段,2018年12月16日03:00区域内14个城市ρ(PM2.5)达到重度及以上污染水平,呈区域性污染特征;与2017年同期(1月27—28日)相比,2018年春节期间(2月15—16日)14个城市烟花燃放对ρ(PM2.5)平均贡献量呈下降趋势,其中,淄博市、济南市、北京市降幅最大,分别下降了85.2%、74.6%和65.2%,表明烟花禁限放措施起到了显著的污染削峰作用;与城区相比,周边郊县ρ(PM2.5)显著高于城区,呈“农村包围城市”的现象,说明城区监测点位受到郊县等周边地区烟花燃放的传输影响.研究显示,虽然城区烟花禁限放措施起到了显著的削峰作用,但城区监测点位空气质量仍受到郊县等周边地区烟花燃放的传输影响,导致大气重污染的发生.   相似文献   

9.
我国典型钢铁工业城市夏季臭氧污染来源解析研究   总被引:2,自引:0,他引:2  
邯郸与其周边城市相比,臭氧(O3)污染最为严重.基于观测数据分析夏季邯郸O3浓度的时空特征,结果显示:观测期间邯郸O3超标天数比率为86.7%,各区县O3浓度分布存在差异,高温、低湿和偏南贴地气团传输是此次O3连续污染的主要成因.继而,以CAMx-OSAT模型模拟方法进行O3来源解析,溯源分析显示:邯郸O3污染具有明显区域性特征,本地源对市域O3贡献为43.9%,对主城区贡献明显增加(46.5%),但对O3污染最严重郊县成安却有所下降(37.4%),来自河南地区的贡献占有重要比例;O3污染过程中,本地源对主城区贡献显著升高(54.0%).本地源排放中,移动源对月均O3贡献最高,而钢铁源是O3污染过程最大贡献源.邯郸主城区光化学O3生成主要受VOCs敏感区控制;O3污染过程在NOx敏感区内生成的O3占比相对月均情况有所升高.  相似文献   

10.
为总结出霾天气发生时的相关影响因子、特征共性,选取长三角地区8个主要城市,2016~2019年秋冬季发生的7次典型霾天气过程,对比分析了3次霾天气过程中AQI、PM2.5浓度、气象要素、天气形势、边界层特征的变化以及污染物来源.结果表明:不利的气象条件及高低空配置的静稳天气型导致霾天气的形成.3次过程AQI指数峰值分别为247、306及272,与PM2.5浓度变化趋于一致.PM2.5浓度和能见度呈明显负相关关系,且污染过程发生时能见度普遍偏低,2、3次过程能见度谷值均低于50m.高相对湿度、稳定的气温及静风与霾过程的形成有着紧密的联系.总体上混合层高度与AQI呈现负相关关系,混合层高度较低抑制垂直对流,从而使污染物在低空区域性积聚,3次污染过程混合层高度最低值均小于100m.逆温层的出现利于霾污染过程中污染物的累积,近地层的贴地逆温将污染物集聚在地表,第1次过程贴地逆温强度高达8.2℃;脱地逆温导致污染物在边界层内堆积并抑制其扩散,均易导致高浓度污染发生,第2次过程脱地逆温为主,强度高达4.8℃.气溶胶类型多为沙尘、大陆型污染物、污染型沙尘及烟粒.污染发生通常受局地排放、区域输送及长距离输送的共同影响,气团携带的因人为产生的细粒子也是造成污染的主要原因之一.  相似文献   

11.
南京城区冬季大气污染特征   总被引:5,自引:2,他引:3       下载免费PDF全文
为探究南京城区冬季主要大气污染物浓度变化规律,运用南京市空气自动监测站的φ(CO)、φ(O3)、φ(NO2)、φ(SO2)、ρ(PM2.5)和ρ(PM10)逐时资料,结合同期气象数据,分析了2014年冬季(2014年12月—2015年2月)南京城区大气污染浓度水平和变化特征,探讨2015年春节期间在实施减排措施下气象条件对空气质量的影响.结果表明:① 观测期φ(CO)日均值和φ(O3)小时均值未超过GB 3095—2012《环境空气质量标准》二级标准限值;ρ(PM2.5)、ρ(PM10)、φ(NO2)、φ(SO2)日均值分别超标44%、38%、34%、2%;ρ(PM2.5)、ρ(PM10)最大日均值分别为231和283 μg/m3,分别是GB 3095—2012二级标准限值的3.1、1.9倍. ② 日变化分析显示,φ(CO)与φ(NO2)呈早晚双峰型变化,与早晚交通高峰源排放有关;φ(O3)呈明显的单峰型,在午后出现峰值;φ(SO2)呈单峰型且夜间浓度低于白天;ρ(PM2.5)和ρ(PM10)为双峰型变化,峰值出现在10:00和22:00左右. ③ 南京地区污染物周末浓度整体高于工作日,其中周末φ(CO)、φ(NO2)和ρ(PM2.5)显著高于工作日,“周末效应”显著. ④ 2015年春节期间,南京实施减排措施后,即使在不利的气象条件下,污染物浓度也未出现明显升高,说明减排措施有效削弱了污染源的排放,是保持南京地区良好空气质量的重要因素.   相似文献   

12.
大气环境管理平台是目前我国城市大气环境管理的重要手段.利用气象、空气质量、污染源等多源异构数据资料,以模型集成分析的方法,针对沧州市的消峰和污染减排问题,开发了大气环境管理平台(APP),并对沧州市大气污染过程进行综合分析和验证.以沧州市2019年1月27-30日两次大气污染过程为例进行分析,结果表明:①污染过程1(2019年1月27日14:00-1月28日02:00)中ρ(PM2.5)/ρ(PM10)平均值为0.59,ρ(SO2)、ρ(NO2)和ρ(CO)平均值分别为37.0 μg/m3、66.7 μg/m3和1.5 mg/m3;污染过程2(1月29日10:00-1月30日09:00)中ρ(PM2.5)/ρ(PM10)平均值为0.61,ρ(SO2)、ρ(NO2)和ρ(CO)平均值分别为38.5 μg/m3、67.7 μg/m3和1.8 mg/m3,说明加强对前体物的控制是削弱重污染时段ρ(PM2.5)的重要途径.②污染过程1的相对湿度在重度污染时段增长显著,污染过程2中相对湿度有10 h在70%以上;同时,在此期间风速较小,近地面逆温层较厚,从而加速了颗粒物吸湿增长和二次转化,说明高湿、低风速等气象条件是形成重污染天气的主要原因之一.③源解析结果表明,外来源的平均贡献率为44.73%,本地源的平均贡献率为55.27%,本地工业源、民用源、交通源和电力源贡献率分别为42.20%、11.97%、1.00%和0.10%,说明重污染期间沧州市受到周边区域传输具有一定的可能性,本地源的贡献主要来自工业源和民用源.   相似文献   

13.
利用中国环境监测总站发布的实时大气环境监测资料,选择北京国家奥林匹克体育中心(下称北京奥体中心)为研究对象,分析了2014年全年北京奥体中心空气质量演变特征. 结果表明:①2014年全年北京奥体中心首要污染污染物为PM2.5,其次是NO2,而PM2.5和PM10出现中度污染以上的污染事件主要集中在冬季和春末秋初;②PM2.5、PM10、SO2、NO2、O3和CO等主要污染物的年均质量浓度分别为89.75、141.12、21.83、64.26、48.60和1 210 μg/m3. 其中年均ρ(PM2.5)是GB 3095—2012《环境空气质量标准》二级标准限值(35 μg/m3)的2.6倍,年均ρ(PM10)也是其二级标准限值(70 μg/m3)的2.0倍,年均ρ(SO2)略高于其一级标准限值(20 μg/m3),而年均ρ(NO2)则高于其标准限值(40 μg/m3);③北京奥体中心全年逐月ρ(SO2)/ρ(NO2)都小于1.00,年均值为0.37,反映出北京目前硝酸型污染特征越来越明显;④针对不同污染等级下各类污染物质量浓度的分析结果显示,严重污染时ρ(PM2.5)和ρ(PM10)平均值分别高达324.75和494.98 μg/m3,分别是世界卫生组织(WHO)《空气质量准则》推荐24 h平均浓度准则值的13和10倍,其浓度如此之高会对人体健康造成严重危害;⑤ρ(PM2.5)年均24 h变化趋势表明,ρ(PM2.5)具有明显的日变化特征,出现2个峰值,高峰值出现在午夜时分(23:00—翌日01:00),次高峰值出现在上午(09:00—11:00),最低值出现在下午(15:00—17:00),次低谷值则出现在凌晨(05:00—07:00),说明ρ(PM2.5)除与混合层高度日变化特征密切相关外,还与人们的日常生活有一定联系.   相似文献   

14.
为探究云浮市颗粒物和臭氧(O3)污染特征,利用多元统计分析方法分析了云浮市2018—2020年6项环境空气污染物浓度、气象因子等监测数据,并对2020年12月25—29日冬季PM2.5和O3污染过程进行了研究. 结果表明:①PM2.5、PM10、NO2、CO月均浓度呈夏季低、冬季高的变化特征;O3-8 h第90百分位数呈夏秋季高、冬春季低的变化特征. ②PM10、PM2.5和CO小时浓度日变化呈波浪型变化特征,PM2.5、CO小时浓度最大值均出现在09:00,PM10小时浓度最大值出现在02:00. O3、SO2小时浓度日变化呈单峰型变化特征,O3、SO2小时浓度最大值分别出现在16:00、10:00. NO2小时浓度日变化呈单谷型变化特征,最小值出现在14:00. ③PM2.5-10、SO2、NO2、O3小时浓度与PM2.5小时浓度均呈正相关,说明PM2.5-10、SO2、NO2、O3与PM2.5具有一定程度的同源性. O3小时浓度与NO2、CO小时浓度呈负相关,且O3小时浓度与NO2小时浓度相关性更强. 夏秋季NO2、CO、O3、PM2.5小时浓度与气温的相关性比冬春季的更强. SO2、PM10、PM2.5、O3小时浓度均与湿度呈负相关,其中O3小时浓度与湿度的相关性最强,相关系数为?0.586. ④2020年12月25—29日云浮市城区PM2.5污染受到静稳天气影响,O3污染与28日午后太阳高温辐射以及来自珠三角地区O3污染气团的输入影响有关. 利用ART-2a对该时段采集的颗粒物进行成分分析,得到K、EC、OC、ECOC、HM、LEV、Na、SiO3这8种单颗粒物. 整个时段EC、OC、ECOC谱图中都存在明显的硫酸盐峰和硝酸盐峰. PM2.5小时浓度与硫酸盐离子、硝酸盐离子、硅酸盐离子、铵离子、氯离子的数量均呈显著正相关,二次反应和老化过程对PM2.5污染有显著影响. 研究显示,云浮市PM2.5和O3复合污染防控需要关注本地污染物变化特征和排放源影响,也需关注外来污染气团特别是来自珠三角地区污染气团输入的影响.   相似文献   

15.
为明晰春节期间烟花爆竹燃放对大气环境的影响,利用天津地区2016年和2017年春节期间(除夕至农历十五,公历2016年2月7-22日、2017年1月27日-2月11日)大气污染物质量浓度的监测数据和气象观测资料,对这一时期大气污染物质量浓度的变化规律进行分析.结果表明:天津春节期间大气颗粒物质量浓度峰值均出现在初一的00:00-01:00.烟花爆竹燃放对ρ(PM10)、ρ(PM2.5)和ρ(SO2)影响较大,尤其是对地面污染物质量浓度影响最大,并且对ρ(PM2.5)和ρ(PM10)的影响高度相对增高,但对ρ(NO2)的实时影响最小.初一00:00-00:01,ρ(PM10)、ρ(PM2.5)、ρ(SO2)和ρ(NO2)分别增加了305、178、80和7 μg/m3.烟花爆竹燃放使ρ(PM2.5)和ρ(PM10)的日变化曲线较非春节期间波动性增强,主峰值区(20:00-翌日01:00)污染物质量浓度升高和出现的时间延后;ρ(SO2)主峰值出现时段由09:00-10:00变为00:00左右,并且其峰值剧增.烟花爆竹燃放使夜间空气中ρ(PM2.5)上升,导致ρ(PM2.5)在ρ(PM10)的占比显著升高.2016年和2017年春节期间,PM2.5、PM10和SO2的最大小时质量浓度及其变化率均高于春节前后(除夕前15 d和农历十五后15 d),而NO2和CO的最大小时质量浓度及其变化率则低于春节前后.2016年和2017年除夕ρ(PM2.5)的半衰期分别为4.7和3.6 h.研究显示,即使在有利于扩散的气象条件下,烟花爆竹燃放仍可使天津地区ρ(PM10)、ρ(PM2.5)和ρ(SO2)短时迅速增大,污染物质量浓度主峰值均出现在夜间,ρ(PM2.5)的半衰期介于3~5 h.   相似文献   

16.
为了探究北方寒冷地区城市PM2.5化学组分特征,采用WRF-CMAQ模型对辽宁中部城市群2019年1月、4月、7月、10月及一次重污染过程(2019年1月11—14日)的PM2.5化学组分展开模拟分析.结果表明:WRF-CMAQ模型分析下SO2、NO2、PM10、PM2.5浓度模拟值与监测值的相关系数(R)在0.63~0.82之间,PM2.5组分中SO42-、NO3-、NH4+、EC、OC浓度的相关系数(R)在0.59~0.88之间,WRF-CMAQ模型对大气污染物及PM2.5主要化学组分的模拟效果较好,可以反映PM2.5及其组分的时空变化特征.通过对模拟结果的进一步分析发现,辽宁中部城市群PM2.5中SNA(SO42-、NO3-、NH4+三者的合称)的占比为37%,与成渝城市群、长三角地区、京津冀地区城市相比,PM2.5二次污染程度较低,一次污染仍是PM2.5的主要来源.1月、4月、7月、10月PM2.5中[NO3-]/[SO42-](质量浓度比)分别为0.62、0.44、0.15、0.50,表明该区域的燃煤污染对PM2.5的贡献大于机动车尾气的贡献,该现象在秋冬季尤为明显;硫氧化率(SOR)普遍处于较高水平,分别为0.34、0.54、0.61、0.58,表明该区域燃煤排放的SO2更易对PM2.5产生贡献.同时,全年OC/EC(质量浓度比)的平均值为3.6,说明碳气溶胶的贡献主要来自机动车尾气的排放与化石燃料燃烧.通过分析2019年1月11—14日重污染过程PM2.5组分浓度的逐小时变化发现,该时段中SOR与NOR分别是1月平均值的1.2与2.0倍,NOR的提升导致PM2.5中NO3-浓度占比上升了8%,超过SO42-的占比,这表明该重污染过程中机动车尾气对PM2.5的贡献超过平常时段.研究显示,辽宁中部城市群的大气污染呈燃煤与机动车尾气为主的复合型污染特征,尤其在重污染天气下,实施工业限产的同时,加强机动车限行尤为重要.   相似文献   

17.
为研究2014年APEC会议期间(11月1—11日)石家庄市大气污染特征并评估空气质量保障措施效果,对处理不同功能区的封龙山站(背景站)、人民会堂站(市区站)、高新区站(开发区站)的ρ(SO2)、ρ(NO2)、ρ(CO)、ρ(O3)、ρ(PM2.5)、ρ(PM10)进行分析,对比了各站点APEC会中与会后、APEC会议期间与2013年同期的空气质量等级状况及污染物质量浓度的变化. 结果表明:2014年APEC会议期间石家庄市整体空气质量好于2013年同期,除O3外,其余各大气污染物的质量浓度均有明显降低,其中封龙山站的ρ(SO2)、ρ(NO2)、ρ(CO)、ρ(PM2.5)、ρ(PM10)较2013年同期分别下降了55.1%、22.9%、16.7%、36.8%、31.0%,人民会堂站的降幅分别为35.5%、28.0%、32.6%、36.9%、56.2%,高新区站的降幅分别为49.4%、26.6%、16.5%、32.9%、53.5%. 应急减排措施也使各站点的首要污染物发生了明显变化,其中扬尘控制措施有效遏制了PM10对于市区站和高新区站的影响,而对于高架源的控制也有效降低了背景站的SO2污染水平. 结合后向气流轨迹和气象图分析发现,尽管2014年APEC会议期间石家庄市的气象条件较2013年同期更不利于污染物扩散(污染气象指数等级高、气团滞留时间长),但通过地方政府采取的一系列应急减排措施,其空气质量仍有明显改善.   相似文献   

18.
探究细颗粒物(PM2.5)和臭氧(O3)污染的时间变化特征,阐明PM2.5和O3复合污染过程中不同阶段环境空气污染物及气溶胶粒径分布的详细演变过程,对南京及长三角地区的大气污染防治具有重要指导意义.本文使用2015—2021年南京市环境空气污染物小时浓度数据,分析了该地区多年大气污染演变过程,并选取2015年10月12—17日时间段作为复合污染典型个例,对其生消过程和内在机理进行了详细分析.结果表明:(1)2015—2021年南京市各种大气污染物的变化特征具有明显差异. PM2.5、PM10和SO2浓度的年下降率分别为8.9%、6.2%和15.4%,O3浓度变化较小. CO浓度在2016年达峰后以每年7.6%的速率下降.NO2浓度在2015—2019年呈增加趋势.(2)2015—2021年污染特征发生较大变化,由PM2.5为主导变为由O3为主导的大...  相似文献   

19.
2008年1月广州大气污染特征及能见度观测研究   总被引:23,自引:13,他引:10       下载免费PDF全文
利用颗粒物在线观测仪、污染气体在线观测仪、现时天气现象传感器以及自动气象站,于2008年1月对广州大气污染物质量浓度、能见度和气象因子进行了连续观测. 结果发现:ρ(PM2.5)与ρ(NO2)日变化趋势基本相似且均呈双峰现象,分别出现在09:00—10:00和19:00—21:00时段;ρ(SO2)呈单峰现象,出现在08:00—13:00时段. ρ(PM2.5),ρ(SO2),ρ(NO2),ρ(NO)和ρ(O3)日均值分别为(82.8±66.0),(81.6±80.9),(106.5±67.2),(66.1±57.0)和(25.1±17.0) μg/m3,能见度日均值为(6.8±4.4) km. 能见度与ρ(PM2.5)和相对湿度呈负相关关系,相关系数均为-0.47. 研究还表明,低边界层高度、小风天气、高水平的污染物质量浓度和相对湿度是导致广州低能见度天气的主要因素.   相似文献   

20.
为了解化工园区大气污染情况,使用自主研制的微型大气检测仪结合无人机研究化工园区臭氧(O3)垂直廓线,在2020年8月~2021年1月于杭州湾上虞经济技术开发区开展了12d无人机外场观测实验.各观测日从08:00~18:00每隔1h进行一次飞行观测,每次观测分别获得了离地面0,50,100,200,300,400,500m的O3、总挥发性有机物(TVOCs)和二氧化氮(NO2)浓度.结果表明:受气象因素、地面工厂排放以及早晚出行高峰的影响,TVOCs和NO2浓度整体随高度增加而下降,其中NO2浓度随高度上升而下降的幅度较明显,在0m处浓度为19.7~59.1μg/m3,500m处为5.9~21.7μg/m3,下降率为40~70%,TVOCs和NO2浓度都呈现出早晚高、正午低的日变化趋势,此外可能受逆温层的影响导致个别天数NO2浓度在400~500m不降反升;O3受前体物光化学反应、太阳辐射强度及平流层输送的影响,其浓度随高度增加而下降,平均浓度在0m处为49.2μg/m3,500m处为98.4μg/m3,O3日变化浓度在15:00~17:00达到峰值.TVOCs和O3、NO2和O3在各高度浓度均呈负相关,受不同季节气象因素差异和冬季取暖排放增加的影响,O3浓度季节变化为夏>秋>冬,TVOCs和NO2浓度为冬季>秋季>夏季.后向轨迹聚类分析表明化工园区本地O3浓度会受区域输送影响升高,在冬季时由于气温低不利于前体物生成O3,本地O3浓度受区域输送影响较夏季小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号