首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用δ15N-NO3-和δ18O-NO3-示踪北京城区河流硝酸盐来源   总被引:2,自引:2,他引:0  
为定量化识别北京城区河流硝酸盐来源,采用δ~(15)N-NO~-_3和δ~(18)O-NO~-_3双同位素示踪法对北京城区河流河水硝酸盐的氮氧稳定同位素组成进行分析,利用稳定同位素混合模型追溯北京城区河流硝酸盐来源,并评估各污染源的贡献率.结果表明:1北京河流无机氮污染以硝酸盐氮(NO~-_3-N)污染为主,且河流下游硝酸盐氮污染较为严重.2北京城区地表河流δ~(15)N-NO~-_3值范围为6.26‰~24.94‰,δ~(18)O-NO~-_3值范围为-0.41‰~11.74‰;下游δ~(15)N-NO~-_3值比上游大.3根据稳定同位素混合模型,北京河流中硝酸盐贡献率平均值分别为:粪肥及生活污水61.2%、土壤有机氮31.5%、大气沉降7.3%.  相似文献   

2.
岩溶流域不同水体硝酸盐的来源解析   总被引:6,自引:4,他引:2  
为解析岩溶流域不同水体中硝酸盐的来源和转化过程,运用δ~(15)N-NO~-_3、δ~(18)O-NO~-_3和δ~(18)O-H_2O多同位素示踪技术和水化学分析方法,对地表水和地下水的硝酸盐时空分布特征、来源及转化过程进行分析,并利用SIAR模型,计算不同端元对水体硝酸盐的贡献比例.结果表明,研究区水体溶解性无机氮以NO~-_3-N和NH~+_4-N两种形态为主,地下水样品中的NO~-_3-N浓度在平水期和枯水期的超标率分别为7.89%和16.67%.时间上,枯水期水体硝酸盐平均浓度高于平水期.空间上,旱地集中区(凯伦河至松柏山水库坝前区域)地下水硝酸盐浓度明显高于水田集中区(干河区域),旱地和建设用地集中区(凯伦河区域)地表水硝酸盐浓度普遍较高.水体硝酸盐转化过程以硝化作用为主,土壤有机氮、粪便污水和化肥为水体硝酸盐的主要来源,对地表水硝酸盐的贡献比例分别为36.7%、 34.7%和28.6%,对地下水硝酸盐的贡献比例分别为39.9%、 34.9%和25.2%.  相似文献   

3.
以重庆典型岩溶槽谷龙凤槽谷地下河系统为研究对象,于2017年5月~2018年4月收集大气干、湿沉降和两条地下河(凤凰河、龙车河)水样,利用水化学、δ15 N(NO3-)、δ18 O(NO3-)、δ18 O(H2O)和δ13C(DIC)同位素等数据来探讨岩溶地下河水NO3-来源及其环境效应.结果表明:①两条地下河水化学类型均属于HCO3-Ca型,NO3-浓度变化范围在17.58~32.58 mg·L-1之间,平均值为24.02 mg·L-1,雨季略高于旱季,存在明显污染迹象;②两条地下河水δ15 N(NO3-)、δ18 O(NO3-)值变化于-3.14‰~12.67‰和-0.77‰~12.05‰之间,均值分别为7.45‰和2.90‰,表现为旱季偏正、雨季偏负的特点,且两条地下河水NO3-来源无明显差异,动物排泄物和生活污水是全年稳定来源,降雨、化肥和土壤氮是雨季地下河水NO3-的主要来源,硝化过程是地下河系统氮的主要转化过程;③两条地下河水(Ca2++Mg2+)/HCO3-的量比介于0.65~0.82之间,凤凰河均值为0.75,龙车河均值为0.70,δ13C(DIC)在-12.46‰~-9.20‰之间,凤凰河均值为-10.72‰,龙车河均值为-11.10‰,说明各个来源的HNO3和NH4+硝化形成的HNO3参与了碳酸盐岩的风化过程;④地下河水中8%的DIC来源于HNO3溶蚀碳酸盐岩,凤凰河、龙车河分别为9%和7%.  相似文献   

4.
开展氮素迁移转化研究有助于深入了解农业小流域氮循环过程,也可为小流域氮素流失溯源提供典型案例.为深入了解和识别脱甲河水系N_2O关键产生过程和流域氮素主要来源,采用稳定同位素方法,于2016年11月至次年10月分析了脱甲河4级(S1~S4)河段水体硝态氮的氮氧双同位素(δ~(15)N-NO_3~-、δ~(18)O-NO_3~-)和沉积物有机质氮同位素(δ~(15)N_(org))、碳氮比值(C/N)特征;探讨了流域氮素的迁移转化过程及其来源.结果表明,水体δ~(15)N-NO_3~-、δ~(18)O-NO_3~-分别在-19.87‰~8.11‰和-3.03‰~5.81‰范围内变化,氮素来源具有多元化特征且各河段存在差异.S1~S4河段δ~(15)N-NO_3~-均值分别为1.72‰、2.62‰、4.10‰和-1.28‰,而δ~(18)O-NO_3~-均值依次为2.60‰、-0.06‰、0.85‰和-0.62‰.S1河段硝态氮来源于土壤流失氮,而S2和S3来源为土壤流失氮、铵态氮肥和人畜粪便,S4则来源于铵态氮肥的硝化反应;硝态氮来源受生产生活影响显著.沉积物有机质δ~(15)N(δ~(15)N_(org))和C/N值波动范围分别是-0.69‰~11.21‰和7.30~12.02,S1~S4河段δ~(15)N_(org)均值分别为1.91‰、2.96‰、4.72‰和3.23‰,C/N均值分别是10.62、8.63、9.05和9.22.S1河段沉积物氮素来源于土壤有机质,而S2~S4河段δ~(15)N_(org)虽存在差异,但其来源均主要为流域内的污水.而硝化过程中δ~(18)O-NO_3~-分别是-7.01‰、-0.17‰、-0.28‰和-0.60‰;δ~(15)N-NO_3~-与δ~(18)O-NO_3~-的比值分别为0.66、-41.01、-30.23和9.39;S1~S4河段NO_3~--N质量浓度为1.08、1.46、1.54和1.50 mg·L-1,δ~(15)N-NO_3~-与NO_3~--N浓度呈正相关.因此,脱甲河水系中氮素转化可能以硝化过程为主体,硝化过程对N_2O的贡献可能占据优势.  相似文献   

5.
为了揭示岩溶槽谷区土壤水氢氧同位素的时空分布特征,以重庆市北碚区中梁山为研究基地,于2017年5月和2017年9月收集降水及3种不同土地利用方式(耕地、草地和林地)不同深度的土壤水,利用稳定同位素技术研究不同土地利用方式下0~15 cm、15~45 cm土壤剖面的土壤水氢氧同位素时空变化特征.结果表明:(1)土壤水δD和δ~(18)O的平均值分别为-50.0‰±33.6‰和-7.9‰±4.3‰,其值均在大气降水线(LMWL)周围,说明降水是该区土壤水的主要补给来源;(2)土壤水δD和δ~(18)O具有明显的季节变化,5月(土壤水δD和δ~(18)O的平均值-19.4‰±6.8‰和-4.1‰±1.0‰)9月(土壤水δD和δ~(18)O的平均值-82.2‰±14.0‰和-11.9‰±2.2‰);(3)土壤水δD和δ~(18)O在不同土地利用方式下没有表现出明显差异;(4)土壤水δD和δ~(18)O随土壤深度呈梯度变化,5月耕地、草地和林地土壤水稳定同位素以垂直递减趋势为主,9月耕地和林地以递增趋势为主,草地以递减的趋势为主.  相似文献   

6.
典型岩溶地下河流域水体中硝酸盐源解析   总被引:7,自引:4,他引:3  
赵然  韩志伟  申春华  张水  涂汉  郭永丽 《环境科学》2020,41(6):2664-2670
地下河是岩溶地区地下水赋存运动的主要场所和重要水源,近年来,硝酸盐污染严重.为解析典型岩溶地下河流域水体中硝酸盐的来源,利用δ~(15)N-NO~-_3、δ~(18)O-NO~-_3和δ~(18)O-H_2O稳定同位素示踪技术开展研究,并通过SIAR稳定同位素模型,对不同污染源的贡献率进行了定量识别,同时阐明了土地利用类型对流域水体硝酸盐分布及来源的影响.结果表明:①降雨/化肥中的氨盐、土壤有机氮和粪肥污水是流域内水体硝酸盐的主要来源;②流域内水体硝酸盐的转化过程主要以硝化作用为主导,水体硝酸盐氮氧同位素初始值未受分馏影响;③基于SIAR模型,不同端元对流域内水体硝酸盐的贡献比例呈季节性差异,化肥、土壤有机氮和粪便污水对丰水期流域内水体硝酸盐的贡献比例分别为57.07%、 34.06%和8.87%;对流域内枯水期水体硝酸盐的贡献比例分别为34.14%、 33.02%和32.84%.  相似文献   

7.
岩溶泉水化学性质及δ13CDIC影响因素   总被引:2,自引:1,他引:1  
为了深入研究岩溶泉水水化学性质与溶解无机碳同位素(δ13CDIC)的变化特征及其影响因素,在雨季(2014年6月~2014年10月)对柏树湾泉、兰花沟泉、后沟泉进行监测,并与旱季进行对比分析.结果表明,3个岩溶泉在雨季的碳酸盐岩溶蚀量大于旱季,但消耗的CO2量却小于旱季,其中兰花沟泉和后沟泉的CO2消耗量为负值.相对于雨季其它月份,7月与旱季一样,岩溶作用减弱但消耗的CO2量增加.因为受到水动力条件影响,7月H2CO3对碳酸盐岩溶蚀的贡献增加,而HNO3与H2SO4对碳酸盐岩溶蚀的贡献则降低.另外,HNO3与H2SO4溶蚀碳酸盐岩及其对HCO-3产生的脱水作用都会导致δ13CDIC偏正,因此δ13CDIC与NO-3+SO2-4浓度呈现出正相关性,而与HCO-3浓度呈现出负相关性.这说明水动力条件以及HNO3与H2SO4的参与对岩溶泉水化学性质及δ13CDIC的变化具有重要影响.  相似文献   

8.
李丽  蒲俊兵  李建鸿  张陶 《环境科学》2017,38(2):527-534
岩溶水体中溶解无机碳(DIC)主要以HCO_3~-形式存在,其同位素(δ~(13)CDIC)被广泛用于示踪DIC的不同来源及其影响因素.为了解亚热带典型岩溶溪流溶解无机碳及其稳定同位素的分布规律,本文以广西柳州官村地下河补给的地表溪流为研究对象,对其水化学特征和δ~(13)CDIC进行分析.结果表明,溪流上游和下游的DIC与δ~(13)CDIC都表现出明显的时空变化特征,地下河出口(G1点)HCO_3~-旱季浓度变化范围为(4.73±0.14)mmol·L~(-1),而雨季为(4.23±0.68)mmol·L~(-1).溪流下游(G2点)HCO_3~-旱季浓度变化范围为(4.56±0.23)mmol·L~(-1),而雨季为(4.20±0.59)mmol·L~(-1).溪流上游的旱季δ~(13)CDIC变化范围为-12.22‰±0.49‰,雨季的变化范围为-12.28‰±0.82‰;溪流下游的旱季变化范围为-10.73±0.71‰,雨季的变化范围为-11.10‰±0.90‰.两个点水体DIC含量旱季均高于雨季,且G1点要高于下游G2点.两个点水体δ~(13)CDIC值旱季较雨季偏重,且G2点水体δ~(13)CDIC值显著高于G1点δ~(13)CDIC值.地下河水和溪流DIC主要来源于土壤CO2和碳酸盐岩溶蚀,但是溪流上游与下游DIC和δ~(13)CDIC值差异表明水体的CO2脱气作用,水生植物的光合作用显著影响了水体DIC和δ~(13)CDIC值.  相似文献   

9.
沙颍河流域典型癌病高发区水体硝态氮污染及健康风险   总被引:1,自引:0,他引:1  
分别在雨季和旱季对癌病高发区地表水和地下水进行采样分析,探讨该区域地表水和地下水NO~-_3-N和NO~-_2-N污染状况、季节变化和空间分布特点,以及相应的健康风险.结果表明,雨季地表水和地下水NO~-_3-N含量明显高于旱季.受污染沙颍河水的影响,沿岸癌病高发村庄饮水井雨季NO~-_3-N污染严重,平均含量达到38.32 mg·L~(-1),超标近3倍,而旱季则存在NO~-_2-N污染,平均含量达到0.69 mg·L~(-1).研究区癌病高发村庄居民存在饮水NO~-_3-N暴露的健康风险,其年平均健康总风险达到1.02×10~(-8) a~(-1),为其他村庄居民的6倍以上,饮水NO~-_3-N污染是癌病高发村庄居民的健康危害因素.  相似文献   

10.
滇池流域地下水、河水硝酸盐污染及来源   总被引:2,自引:0,他引:2  
为了揭示滇池NO3-的污染来源和污染途径,本次研究在滇池流域不同地区收集了14个地下水和35个河水样品,进行了水化学及氮同位素分析。结果显示,滇池流域河水NO3-浓度在0.01~45.92mg/L之间,地下水NO3-浓度在0.05~99.52mg/L之间。NO3-浓度较高的区域,集中在流域城镇居民区(41.41±39.32mg/L)和昆明市主城区(19.91±15.02mg/L)。林地泉水、盘龙江上游以及流域东、南部河水NO3-浓度较低,污染较轻。δ15 N-NO3-值显示,流域居民区地下水(+9.9‰~+27.8‰)与主城区河水(+3.2‰~+32.1‰)中NO3-的主要来源是生活污水,流域东、南面河水(+4.4‰~+7.2‰)NO3-污染源以化肥为主。林地泉水与盘龙江上游河水δ15 N-NO3-值均小于+10‰,大气沉降是人为N的主要来源。耕地地下水δ15 N-NO3-值变化范围较宽(+5.5‰~+23.7‰),NO3-浓度高(45.77±40.91mg/L),受农业生产的影响强烈,人畜粪便、化肥肥料、大气沉降都是氮的输入源。  相似文献   

11.
为确定桂林东区岩溶含水层氮污染特征及其迁移转化过程,选择桂林东区地下水与地表水共27个采样点,分别在雨季和旱季进行取样分析.结果显示:桂林东区地下水NO3--N污染较严重,是最主要的无机氮形态.雨季地下水采样点的NO3--N平均浓度为12.5mg/L,超过了世界卫生组织的地下水饮用标准界限(10mg/L);旱季地下水采样点的NO3--N平均含量为8.8mg/L,虽有明显的降低,但也濒临超标.而少数地表水采样点由于受到直接排污影响,NH4+和NO2-浓度较高,其余离子浓度均较低.该区地下水中硝酸盐的δ15N值范围在5‰~25‰,δ18O值范围在5‰~10‰,表明该区地下水硝酸盐来源为家畜粪便和生活污水,也可能有土壤有机氮和化肥的混合,并发生微生物的硝化作用产生同位素分馏.其中一部分采样点NO3-的N、O同位素比值在1.3~2.1的变化范围内,而另有一部分采样点NO3-的N、O同位素比值不在这个范围之内,表明该区地下水中反硝化作用并不明显,存在空间差异性.  相似文献   

12.
中国水体硝酸盐氮氧双稳定同位素溯源研究进展   总被引:30,自引:16,他引:14  
由于人类活动影响,水体硝酸盐(NO-3)污染已经成为世界范围内的环境问题.结合NO-3中δ15N、δ18O双稳定同位素技术、其他环境同位素以及化学分析技术,可以定量评价地表水、地下水、降水中NO-3不同来源贡献率、硝化/反硝化过程,为水体NO-3污染治理提供了有利依据.本文综述了国内外NO-3中δ15N、δ18O分析测试技术、NO-3污染源δ15N、δ18O特征值、应用δ15N、δ18O进行地表水、地下水溯源研究进展.目前,国内已经成功应用离子交换-AgNO3法和细菌反硝化法开展水体NO-3污染来源的同位素示踪研究.综合分析NO-3污染源中δ15N表明,我国粪肥及污水NO-3的δ15N为3‰~17‰,土壤中NO-3的δ15N为3‰~8‰、大气降水中NO-3的δ15N为-9‰~9‰、化肥中NO-3的δ15N为-2‰~4‰,化肥中NH+4的δ15N为-4‰~2‰.对地表水、地下水中的NO-3溯源研究表明,污水、粪肥已经成为我国水体NO-3污染的重要来源,中国的城市污水、农业水产养殖对地表水水体NO-3污染带来了严重的影响.未来应结合长期监测、δ15N和δ18O双同位素技术和水化学分析技术,提高NO-3不同来源的比例、季节动态定量评价水平,为我国水环境管理提供有效依据.  相似文献   

13.
西南喀斯特流域风化作用季节性变化研究   总被引:3,自引:1,他引:2  
肖琼  沈立成  杨雷  伍坤宇  陈展图 《环境科学》2012,33(4):1122-1128
以西南地区典型喀斯特流域,长江上游一级支流嘉陵江温塘峡段为例,连续2 a按月取样,并通过水化学分析、同位素分析等方法,研究得出嘉陵江温塘峡段水化学类型受地层控制,为HCO3--Ca型.在稀释作用的影响下,除HNO3-的浓度因受人类活动的影响雨季偏大外,其余大部分离子浓度雨季较旱季偏小.所有样品的(Ca2++Mg2+)/HCO3-(浓度比)在0.5~1之间,(Ca2++Mg2+)/(HCO3-+SO24-)(浓度比)大部分处于0.5~1之间,由此表明嘉陵江风化作用主要以碳酸的风化和硫酸风化碳酸岩盐为主,硫酸岩盐的风化为辅.根据同位素分析结果表明嘉陵江水中δ13CHCO-3值为-8.74‰~-7.36‰,δ34SSO2-4值旱季为14.43‰,雨季为12.21‰,表明硫酸对碳酸盐岩的风化作用和硫酸盐岩自身的风化作用在雨季均表现更强,其中,硫酸岩盐自身的风化作用在雨季强度更大,而旱季碳酸对碳酸盐岩的风化作用比较强.  相似文献   

14.
为提升流域地表水硝酸盐溯源方法的可靠性,于2013~2015年在釜溪河流域,对流域水文和水质过程进行了连续监测,同步测定了流域内主要污染源和干支流河道硝酸盐δ~(15)N和δ~(18)O.基于SWAT(soil and water assessment tool)模型模拟了陆面水文和河道水文过程中的氨氮(NH_4~+)和硝酸盐(NO_3~-)迁移转化过程,在此基础上,耦合河道中硝酸盐~(15)N和~(18)O掺混、转化和分馏机制,发展了流域河道硝酸盐δ~(15)N和δ~(18)O模拟方法.结果表明,河道中硝酸盐δ~(15)N和δ~(18)O主要受流域内污染源以及不同水文期径流条件变化的影响,不同污染源同位素掺混过程对于同位素丰度变化的贡献率为82.74%,氮素转化过程中同位素分馏的贡献率为16.26%,SWAT模拟NH_4~+和NO_3~-浓度偏差对δ~(15)N和δ~(18)O模拟误差的影响为10.44%.由于降雨中硝酸盐δ~(18)O的变化范围显著地超过δ~(15)N的变化范围,以及河道硝酸盐18O来源复杂性,δ~(18)O模拟误差平均较δ~(15)N偏大18.72%.所提出的方法模拟河道硝酸盐的δ~(15)N和δ~(18)O结果的系统误差和偏差小于10%和15%.所提出的流域河道硝酸盐δ~(15)N和δ~(18)O模拟方法具有明确的物理意义,为河道氮素正向溯源提供了方法支撑.  相似文献   

15.
为精准识别张家口市宣化区地下水硝酸盐污染的空间分布情况及其来源,根据张家口市宣化区洋河两岸地下水水质监测数据,采用水化学分析方法分析硝酸盐污染现状,利用氮氧稳定同位素方法定性分析污染物来源,并利用ArcGIS软件对地下水硝酸盐浓度、氮氧同位素特征值进行可视化表征,更加直观地表现地下水环境质量时空差异.根据SIAR模型(同位素混合模型)定量计算各污染源的贡献率.结果表明:①张家口市宣化区地下水“三氮”污染主要为硝酸盐氮,浓度平均值为27.23 mg/L,污染浓度高值区域出现在建设用地.②研究区典型特征污染物的氮同位素特征值(δ15N-NO3-)在土壤中的分布范围为1.46‰~7.71‰,在粪便及污水中的分布范围为9.49‰~17.57‰,可充实当地δ15N-NO3-分布数据库.③硝酸盐污染主要来源于土壤氮、粪便及污水,水化学及同位素特征表明氮的迁移转化以硝化作用为主.④SIAR模型计算结果表明,土壤氮、粪便及污水、无机化肥及工业废水贡献率分别为44.36%、43.35%、9.24%.研究显示,硝酸盐污染主要受生活污水、工业生产活动和该地区农业灌溉的影响,污染物主要来源于土壤氮、粪便及污水,且建设用地污染情况较耕地更为严重.   相似文献   

16.
太湖西苕溪流域地表水、地下水硝酸盐污染特征及来源   总被引:3,自引:1,他引:2  
为探寻西苕溪流域地下水中NO3--N的污染来源,对西苕溪流域地表水、地下水体的NO3--N污染状况进行了调查,并结合水化学与NO3--N同位素对其来源进行解析. 结果显示,西苕溪流域地表水的ρ(NO3--N)为1.07~3.45 mg/L,ρ(NO2--N)为0.15~0.35 mg/L;地下水中ρ(NO3--N)为3.24~15.31 mg/L,平均值达9.26 mg/L. 下游地区地下水的ρ(NO2--N)较高(0.26~4.25 mg/L),平均值达3.00 mg/L. ρ(NO3-)与ρ(Cl-)的关系显示,西苕溪地表水、地下水存在比较稳定的NO3--N输入来源. NO3--N同位素分析结果显示,地表水的δ15N为7.0‰~16.7‰,说明上游NO3--N主要来源于土壤有机氮的矿化,中下游则主要受到农业施用化肥与人类生活污水二者的共同影响;地下水的δ15N为14.3‰~27.1‰,说明调查区域内的地下水受人畜粪便和生活污水的影响可能更为强烈,另外,地下水中存在的反硝化作用也是造成地下水δ15N增高的原因.   相似文献   

17.
孔晓乐  王仕琴  丁飞  梁慧雅 《环境科学》2018,39(6):2624-2631
为探究白洋淀流域生活污水河附近地表水和地下水硝酸盐来源,于2014年7月沿着生活污水纳污河——府河采集地表水和地下水.通过分析水化学和氢氧同位素(δ~2H、δ~(18)O)明确地表水和地下水转化关系,并通过硝酸盐氮(δ~(15)N)同位素确定硝酸盐来源.结果表明,河水来源于城市和农村生活污水,同时受蒸发作用影响.浅层地下水受府河、白洋淀和太行山山区地下水侧向补给.浅层地下水硝酸盐超标(世界卫生组织)率为16.7%.受水体自净能力的影响,府河上游硝酸盐浓度大于下游.受区域水流方向的影响,南岸浅层地下水硝酸盐浓度大于北岸.近河和近淀区域浅层地下水硝酸盐主要来自于地表水.此外,土壤、化肥及其点源污染也是地下水硝酸盐的主要来源.城市和乡村居民生活及农业生产活动影响区域地表水和地下水硝酸盐.  相似文献   

18.
为确定南昌市秋冬季降水中硝酸盐来源及贡献,于2016年9月1日至2017年2月28日对南昌地区雨水进行采集,分析了其化学组成及NO3-同位素组成并利用贝叶斯混合模型对NO3-四种潜在来源贡献进行计算.结果显示NO3-浓度范围为7.3~99.5μmol/L,平均值为36.1μmol/L;δ15N-NO3-变化范围为-6.0‰~+8.3‰,平均值为-0.8‰,两者均呈现冬季高秋季低的变化趋势.NO3-浓度季节性变化可能是受到降雨量等因素的影响,而δ15N-NO3-变化可能是冬季降水中机动车尾气排放偏高和秋季降水中煤燃烧来源偏高双重因素作用的结果.同位素及贝叶斯混合模型源解析结果表明,南昌市降水中NO3-主要来源于生物质燃烧(32.5%)、机动车尾气排放(30.8%)和煤燃烧(23.1%),三者贡献超过86%;而机动车尾气排放和生物质燃烧释放均超过30%,这可能与近年来机动车快速增加和秋冬季野外生物质大量燃烧有关.煤燃烧虽然也是重要来源,但相对生物质燃烧和机动车尾气排放较小,这可能与近年我国减排措施有关.  相似文献   

19.
汾河下游流域水体硝酸盐污染过程同位素示踪   总被引:1,自引:0,他引:1  
应用多同位素示踪、IsoSource计算等方法,甄别汾河下游流域硝酸盐污染来源,揭示各来源贡献率.结果表明,汾河下游流域地表水、地下水中含氮物质的主要存在形式为NO_3~--N,含量变化范围为4.21~16.29mg/L,且硝酸盐污染分布具有较大的空间差异,77.8%的样品中NO_3~--N含量超过国家饮用水标准,其次为NH_4~+-N,含量变化范围为0.31~9.47mg/L.所有地表水样品中均有NO_2~--N检出,郭庄村地下水中有NO_2~--N检出,说明受到了上游李雅庄煤矿开采活动的影响.δ15N-NO_3~-含量变化范围为+2.28‰~+13.88‰,δ~(18)O-NO_3~-含量变化范围为-0.28‰~+10.14‰.硝酸盐主要来源与沿岸土地利用类型有关,硝化作用是硝酸盐的主要形成方式,在广胜寺、龙子祠地下水封闭环境和庙前村水流缓慢河段有反硝化作用发生.粪便和污水是临汾段和河津段主要硝酸盐来源,其贡献率分别为69%和62%.襄汾段主要硝酸盐来源为农业化肥,约占总硝酸盐污染源的57%.土壤有机氮是地下水的主要硝酸盐来源,约占总硝酸盐来源的48%.  相似文献   

20.
于2010年蓄水前(7月)和蓄水后(12月)应用稳定碳、氮同位素方法对汉丰湖食物网中初级生产者和消费者δ13C、δ15N值变化规律进行了调查分析.结果显示:汉丰湖初级生产者颗粒有机物(POM)、固着藻类和水生植物δ13C、δ15N值分别为-28.45‰~-24.78‰、3.72‰~5.76‰,-25.81‰~-21.22‰、3.23‰~4.81‰,-27.99‰~-23.74‰、8.06‰~12.48‰.从蓄水前到蓄水后初级生产者(POM、固着藻类、水生植物)δ13C、δ15N(除水生植物)值均呈现贫乏趋势;消费者δ15N值变化规律与初级生产者一致,但其δ13C值无明显变化;汉丰湖鱼类食物网营养级长度均为3级,消费者中杂食性鱼类居多其碳源主要来源于固着藻类.新形成的汉丰湖水生生态系统已经形成了相对稳定的食物网结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号