首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 193 毫秒
1.
Vehicular emissions in China in 2006 and 2010 were calculated at a high spatial resolution based on the data released by the National Bureau of Statistics, by taking the emission standards into consideration. China's vehicular emissions of carbon monoxide(CO),nitrogen oxides(NO_x), volatile organic compounds(VOCs), ammonia(NH_3), fine particulate matters(PM_(2.5)), inhalable particulate matters(PM_(10)), black carbon(BC), and organic carbon(OC) were 30,113.9, 4593.7, 6838.0, 20.9, 400.2, 430.5, 285.6, and 105.1 Gg, respectively, in 2006 and 34,175.2, 5167.5, 7029.4, 74.0, 386.4, 417.1, 270.9, and 106.2 Gg, respectively, in 2010. CO,VOCs, and NH_3 emissions were mainly from motorcycles and light-duty gasoline vehicles,whereas NO_X, PM_(2.5), PM_(10), and BC emissions were mainly from rural vehicles and heavyduty diesel trucks. OC emissions were mainly from motorcycles and heavy-duty diesel trucks. Vehicles of pre-China Ⅰ(vehicular emission standard of China before phase Ⅰ) and China Ⅰ(vehicular emission standard of China in phase Ⅰ) were the primary contributors to all of the pollutant emissions except NH_3, which was mainly from China Ⅲ and China Ⅳ gasoline vehicles. The total emissions of all the pollutants except NH_3 changed little from2006 to 2010. This finding can be attributed to the implementation of strict emission standards and to improvements in oil quality.  相似文献   

2.
With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high spatial resolution of 0.25°× 0.25° and a temporal resolution of1 month was established based on the moderate resolution imaging spectroradiometer(MODIS) Thermal Anomalies/Fire Daily Level3 Global Product(MOD/MYD14A1). Agriculture mechanization ratios and regional crop-specific grain-to-straw ratios were introduced to improve the accuracy of related activity data. Locally observed emission factors were used to calculate the primary pollutant emissions. MODIS satellite data were modified by combining them with county-level agricultural statistical data, which reduced the influence of missing fire counts caused by their small size and cloud cover. The annual emissions of CO_2, CO, CH_4,nonmethane volatile organic compounds(NMVOCs), N_2O, NO_x, NH_3, SO_2, fine particles(PM2.5),organic carbon(OC), and black carbon(BC) were 150.40, 6.70, 0.51, 0.88, 0.01, 0.13, 0.07, 0.43,1.09, 0.34, and 0.06 Tg, respectively, in 2012. Crop residue open burning emissions displayed typical seasonal and spatial variation. The highest emission regions were the Yellow-Huai River and Yangtse-Huai River areas, and the monthly emissions were highest in June(37%).Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of within ±126% for N_2O to a high of within ± 169% for NH_3.  相似文献   

3.
Beijing Capital International Airport(ZBAA) is the world's second busiest airport. In this study, the emissions of air pollutants from aircraft and other sources at ZBAA in 2015 were estimated using an improved method, which considered the mixing layer height calculated based on aircraft meteorological data relay(AMDAR), instead of using the height(915 m)recommended by ICAO. The yearly emissions of NO_x, CO, VOCs, SO_2, and PM_(2.5) at the airport were 8.76 × 10~3, 4.43 × 10~3, 5.43 × 10~2, 4.80 × 10~2, and 1.49 × 10~2 ton/year, respectively. The spatial–temporal distribution of aircraft emissions was systematically analyzed to understand the emission characteristics of aircraft. The results indicated that NOxwas mainly emitted during the take-off and climb phases, accounting for 20.5% and 55.5% of the total emissions. CO and HC were mainly emitted during the taxi phase, accounting for 91.6%and 92.2% of the total emissions. Because the mixing layer height was high in summer, the emissions of aircraft were at the highest level throughout the year. Based on the detailed emissions inventory, four seasons simulation using WRF-CMAQ model was performed over the domain surrounding the airport. The results indicated that the contribution to PM_(2.5) was relatively high in winter; the average impact was about 1.15 μg/m~3 within a radius of1 km around the airport. Meanwhile, the near surroundings and southwest areas of the airport are the most sensitive to PM_(2.5).  相似文献   

4.
Air pollution is severe in China, and pollutants such as PM_(2.5) and surface O_3 may cause major damage to human health and crops, respectively. Few studies have considered the health effects of PM_(2.5) or the loss of crop yields due to surface O_3 using model-simulated air pollution data in China. We used gridded outputs from the WRF-Chem model, high resolution population data, and crop yield data to evaluate the effects on human health and crop yield in mainland China. Our results showed that outdoor PM_(2.5) pollution was responsible for 1.70–1.99 million cases of all-cause mortality in 2006. The economic costs of these health effects were estimated to be 151.1–176.9 billion USD, of which 90% were attributed to mortality. The estimated crop yield losses for wheat, rice, maize, and soybean were approximately 9, 4.6, 0.44, and 0.34 million tons, respectively, resulting in economic losses of 3.4 billion USD. The total economic losses due to ambient air pollution were estimated to be 154.5–180.3 billion USD, accounting for approximately 5.7%–6.6% of the total GDP of China in 2006. Our results show that both population health and staple crop yields in China have been significantly affected by exposure to air pollution. Measures should be taken to reduce emissions, improve air quality, and mitigate the economic loss.  相似文献   

5.
Controlled combustion experiments were conducted to investigate the influence of fuel charge size, moisture, air ventilation and feeding rate on the emission factors (EFs) of carbonaceous particulate matter, parent polycyclic aromatic hydrocarbons (pPAHs) and their derivatives from residential wood combustion in a typical brick cooking stove. Measured EFs were found to be independent of fuel charge size, but increased with increasing fuel moisture. Pollution emissions from the normal burning under an adequate air supply condition were the lowest for most pollutants, while more pollutants were emitted when an oxygen deficient atmosphere was formed in the stove chamber during fast burning. The impacts of these factors on the size distribution of emitted particles was also studied. Modified combustion efficiency and the four investigated factors explained 68%, 72%, and 64% of total variations in EFs of PM, organic carbon, and oxygenated PAHs, respectively, but only 36%, 38% and 42% of the total variations in EFs of elemental carbon, pPAHs and nitro-PAHs, respectively.  相似文献   

6.
Residential low efficient fuel burning is a major source of many air pollutants produced during incomplete combustions, and household air pollution has been identified as one of the top environmental risk factors. Here we compiled literature-reported emission factors of pollutants including carbon monoxide(CO), total suspended particles(TSPs), PM2.5, organic carbon(OC),elemental carbon(EC) and polycyclic aromatic hydrocarbons(PAHs) for different household energy sources, and quantified the potential for emission reduction by clean fuel adoption. The burning of crop straws, firewood and coal chunks in residential stoves had high emissions per unit fuel mass but lower thermal efficiencies, resulting in high levels of pollution emissions per unit of useful energy, whereas pelletized biofuels and coal briquettes had lower pollutant emissions and higher thermal efficiencies. Briquetting coal may lead to 82%–88% CO, 74%–99%TSP, 73%–76% PM2.5, 64%–98% OC, 92%–99% EC and 80%–83% PAH reductions compared to raw chunk coal. Biomass pelletizing technology would achieve 88%–97% CO, 73%–87% TSP, 79%–88%PM2.5, 94%–96% OC, 91%–99% EC and 63%–96% PAH reduction compared to biomass burning. The adoption of gas fuels(i.e., liquid petroleum gas, natural gas) would achieve significant pollutant reduction, nearly 96% for targeted pollutants. The reduction is related not only to fuel change, but also to the usage of high efficiency stoves.  相似文献   

7.
This study presents the mass concentrations of PM_(2.5),O_3,SO_2 and NOxat one urban,one suburban and two rural locations in the Changchun region from September 25 to October 272013. Major chemical components of PM_(2.5)at the four sites were daily sampled and analyzed. Most of daily concentrations of SO_2(7–82 μg/m~3),O_3(27–171 μg/m~3) and NOx(14–213 μg/m~3) were below the limits of the National Ambient Air Quality Standard(NAAQS)in China. However,PM_(2.5)concentrations(143–168 μg/m~3) were 2-fold higher than NAAQS.Higher PM_(2.5)concentrations(~ 150 μg/m~3) were measured during the pre-harvest and harvest at the urban site,while PM_(2.5)concentrations significantly increased from 250 to400 μg m~(-3) at suburban and rural sites with widespread biomass burning. At all sites,PM_(2.5)components were dominated by organic carbon(OC) and followed by soluble component sulfate(SO_4~(2-)),ammonium(NH_4~+) and nitrate(NO_3~-). Compared with rural sites,urban site had a higher mineral contribution and lower potassium(K~+and K) contribution to PM_(2.5).Severe atmospheric haze events that occurred from October 21 to 23 were attributed to strong source emissions(e.g.,biomass burning) and unfavorable air diffusion conditions.Furthermore,coal burning originating from winter heating supply beginning on October 18 increased the atmospheric pollutant emissions. For entire crop harvest period,the Positive Matrix Factorization(PMF) analysis indicated five important emission contributors in the Changchun region,as follows: secondary aerosol(39%),biomass burning(20%),supply heating(18%),soil/road dust(14%) and traffic(9%).  相似文献   

8.
Mineral particles or particulate matters(PMs) emitted during agricultural activities are major recurring sources of atmospheric aerosol loading.However,precise PM inventory from agricultural tillage and harvest in agricultural regions is challenged by infrequent local emission factor(EF) measurements.To understand PM emissions from these practices in northeastern China,we measured EFs of PM_(10) and PM_(2.5) from three field operations(i.e.,tilling,planting and harvesting) in major crop production(i.e.,corn and soybean),using portable real-time PM analyzers and weather station data.County-level PM_(10) and PM_(2.5) emissions from agricultural tillage and harvest were estimated,based on local EFs,crop areas and crop calendars.The EFs averaged(107 ± 27),(17 ± 5) and 26 mg/m~2 for field tilling,planting and harvesting under relatively dry conditions(i.e.,soil moisture 15%),respectively.The EFs of PM from field tillage and planting operations were negatively affected by topsoil moisture.The magnitude of PM_(10) and PM_(2.5) emissions from these three activities were estimated to be 35.1 and 9.8 kilotons/yr in northeastern China,respectively,of which Heilongjiang Province accounted for approximately45%.Spatiotemporal distribution showed that most PM_(10) emission occurred in April,May and October and were concentrated in the central regions of the northeastern plain,which is dominated by dryland crops.Further work is needed to estimate the contribution of agricultural dust emissions to regional air quality in northeastern China.  相似文献   

9.
To elucidate the air pollution characteristics of northern China, airborne PM_10(atmospheric dynamic equivalent diameter ≤ 10 μm) and PM_(2.5)(atmospheric dynamic equivalent diameter ≤ 2.5 μm) were sampled in three different functional areas(Yuzhong County,Xigu District and Chengguan District) of Lanzhou, and their chemical composition(elements, ions, carbonaceous species) was analyzed. The results demonstrated that the highest seasonal mean concentrations of PM_10(369.48 μg/m~3) and PM_(2.5)(295.42 μg/m~3) were detected in Xigu District in the winter, the lowest concentration of PM_(2.5)(53.15 μg/m~3) was observed in Yuzhong District in the fall and PM_10(89.60 μg/m~3) in Xigu District in the fall.The overall average OC/EC(organic carbon/elemental carbon) value was close to the representative OC/EC ratio for coal consumption, implying that the pollution of Lanzhou could be attributed to the burning of coal. The content of SNA(the sum of sulfate, nitrate,ammonium, SNA) in PM_(2.5)in Yuzhong County was generally lower than that at other sites in all seasons. The content of SNA in PM_(2.5)and PM_10 in Yuzhong County was generally lower than that at other sites in all seasons(0.24–0.38), indicating that the conversion ratios from precursors to secondary aerosols in the low concentration area was slower than in the area with high and intense pollutants. Six primary particulate matter sources were chosen based on positive matrix factorization(PMF) analysis, and emissions from dust, secondary aerosols, and coal burning were identified to be the primary sources responsible for the particle pollution in Lanzhou.  相似文献   

10.
As a main form of biomass burning in agricultural countries, crop residue burning is a significant source of atmospheric fine particles. In this study, the aging of particles emitted from the burning of four major crop residues in China was investigated in a smog chamber.The particle size distribution, chemical composition and cloud condensation nuclei(CCN)activity were simultaneously measured. The properties of crop residue burning particles varied substantially among different fuel types. During aging, the particle size and mass concentration increased substantially, suggesting condensational growth by formation of secondary aerosols. The particle composition was dominated by organics. Aging resulted in considerable enhancement of organics and inorganics, with enhancement ratios of 1.24–1.44 and 1.33–1.76 respectively, as well as a continuous increase in the oxidation level of organics. Elevated CCN activity was observed during aging, with the hygroscopicity parameter κ varying from 0.16 to 0.34 for fresh particles and 0.19 to 0.40 for aged particles.Based on the volume mixing rule, the hygroscopicity parameter of organic components(κorg) was derived. κorgexhibited an increasing tendency with aging, which was generally consistent with the tendency of the O:C ratio, indicating that the oxidation level was related to the hygroscopicity and CCN activity of organic aerosols from crop residue burning. Our results indicated that photochemical aging could significantly impact the CCN activation of crop burning aerosols, not only by the production of secondary aerosols, but also by enhancing the hygroscopicity of organic components, thereby contributing to the aerosol indirect climate forcing.  相似文献   

11.
The uncertainty in emission estimation is strongly associated with the variation in emission factor (EF),which could be influenced by a variety of factors such as fuel properties,stove type,fire management and even methods used in measurements.The impacts of these factors are complicated and often interact with each other.Controlled burning experiments were conducted to investigate the influences of fuel mass load,air supply and burning rate on the emissions and size distributions of carbonaceous particulate matter (PM) from indoor corn straw burning in a cooking stove.The results showed that the EFs of PM (EFPM),organic carbon (EFOC) and elemental carbon (EFEC) were independent of the fuel mass load.The differences among them under different burning rates or air supply amounts were also found to be insignificant (p > 0.05) in the tested circumstances.PM from the indoor corn straw burning was dominated by fine PM with diameter less than 2.1 μm,contributing 86.4%±3.9% of the total.The size distribution of PM was influenced by the burning rate and air supply conditions.On average,EF PM,EF OC and EF EC for corn straw burned in a residential cooking stove were (3.84±1.02),(0.846±0.895) and (0.391±0.350) g/kg,respectively.EF PM,EF OC and EF EC were found to be positively correlated with each other (p < 0.05),but they were not significantly correlated with the EF of co-emitted CO,suggesting that special attention should be paid to the use of CO as a surrogate for other incomplete combustion pollutants.  相似文献   

12.
Interest in renewable energy sources has increased in recent years due to environmental concerns about global warming and air pollution,reduced costs and improved efficiency of technologies.Under the European Union(EU)energy directive,biomass is a suitable renewable source.The aim of this study was to experimentally quantify and characterize the emission of particulate matter(PM_(2.5))resulting from the combustion of two biomass fuels(chipped residual biomass from pine and eucalypt),in a pilot-scale bubbling fluidized bed(BFB)combustor under distinct operating conditions.The variables evaluated were the stoichiometry and,in the case of eucalypt,the leaching of the fuel.The CO and PM_(2.5)emission factors were lower when the stoichiometry used in the experiments was higher(0.33±0.1 g CO/kg and 16.8±1.0 mg PM_(2.5)/kg,dry gases).The treatment of the fuel by leaching before its combustion has shown to promote higher PM_(2.5)emissions(55.2±2.5 mg/kg,as burned).Organic and elemental carbon represented 3.1 to 30 wt.% of the particle mass,while carbonate(CO_3~(2-))accounted for between 2.3 and 8.5 wt.%.The particulate mass was mainly composed of inorganic matter(71% to 86% of the PM_(2.5)mass).Compared to residential stoves,BFB combustion generated very high mass fractions of inorganic elements.Chloride was the water soluble ion in higher concentration in the PM_(2.5)emitted by the combustion of eucalypt,while calcium was the dominant water soluble ion in the case of pine.  相似文献   

13.
To evaluate the potential benefits of biomass use for air pollution control, this paper identified and quantified the emissions of major reactive organic compounds anticipated from biomass-fired industrial boilers. Wood pellets(WP) and straw pellets(SP) were burned to determine the volatile organic compound emission profiles for each biomass-boiler combination. More than 100 types of volatile organic compounds(VOCs) were measured from the two biomass boilers. The measured VOC species included alkanes, alkenes and acetylenes, aromatics, halocarbons and carbonyls. A single coal-fired boiler(CB) was also studied to provide a basis for comparison. Biomass boiler 1(BB1) emitted relatively high proportions of alkanes(28.9%–38.1% by mass) and alkenes and acetylenes(23.4%–40.8%),while biomass boiler 2(BB2) emitted relatively high proportions of aromatics(27.9%–29.2%)and oxygenated VOCs(33.0%–44.8%). The total VOC(TVOC) emission factors from BB1(128.59–146.16 mg/kg) were higher than those from BB2(41.26–85.29 mg/kg). The total ozone formation potential(OFP) ranged from 6.26 to 81.75 mg/m~3 with an average of 33.66 mg/m~3 for the two biomass boilers. The total secondary organic aerosol potential(SOAP) ranged from 61.56 to 211.67 mg/m~3 with an average of 142.27 mg/m~3 for the two biomass boilers.The emission factors(EFs) of TVOCs from biomass boilers in this study were similar to those for industrial coal-fired boilers with the same thermal power. These data can supplement existing VOC emission factors for biomass combustion and thus enrich the VOC emission inventory.  相似文献   

14.
The iron and steel production process is one of the predominant anthropogenic sources of atmospheric mercury emissions worldwide. In this study, field tests were conducted to study mercury emission characteristics and mass flows at two iron and steel plants in China. It was found that low-sulfur flue gas from sintering machines could contribute up to41% of the total atmospheric mercury emissions, and desulfurization devices could remarkably help reduce the emissions. Coal gas burning accounted for 17%–49% of the total mercury emissions, and therefore the mercury control of coal gas burning, specifically for the power plant burning coal gas to generate electricity, was significantly important. The emissions from limestone and dolomite production and electric furnaces can contribute29.3% and 4.2% of the total mercury emissions from iron and steel production. More attention should be paid to mercury emissions from these two processes. Blast furnace dust accounted for 27%–36% of the total mercury output for the whole iron and steel production process. The recycling of blast furnace dust could greatly increase the atmospheric mercury emissions and should not be conducted. The mercury emission factors for the coke oven,sintering machine and blast furnace were 0.039–0.047 g Hg/ton steel, and for the electric furnace it was 0.021 g Hg/ton steel. The predominant emission species was oxidized mercury, accounting for 59%–73% of total mercury emissions to air.  相似文献   

15.
Intermediate volatility organic compounds (IVOCs) are crucial precursors of secondary organic aerosol (SOA). In this study, gaseous IVOCs emitted from a ship main engine burning heavy fuel oil (HFO) were investigated on a test bench, which could simulate the real-world operations and emissions of ocean-going ships. The chemical compositions, emission factors (EFs) and volatility distributions of IVOC emissions were investigated. The results showed that the main engine burning HFO emitted a large amount of IVOCs, with average IVOC EFs of 20.2–201?mg/kg-fuel. The IVOCs were mainly comprised of unspeciated compounds. The chemical compositions of exhaust IVOCs were different from that of HFO fuel, especially for polycyclic aromatic compounds and alkylcyclohexanes. The volatility distributions of IVOCs were also different between HFO exhausts and HFO fuel. The distinctions in IVOC emission characteristics between HFO exhausts and HFO fuel should be considered when assessing the IVOC emission and related SOA formation potentials from ocean-going ships burning HFO, especially when using fuel-surrogate models.  相似文献   

16.
The long-range transport of oxidized sulfur(sulfur dioxide(SO_2) and sulfate) and oxidized nitrogen(nitrogen oxides(NO_x ) and nitrate) in East Asia is an area of increasing scientific interest and political concern. This paper reviews various published papers, including ground- and satellite-based observations and numerical simulations. The aim is to assess the status of the anthropogenic emissions of SO_2 and NO_x and the long-range transport of oxidized S and N pollutants over source and downwind region. China has dominated the emissions of SO_2 and NO_x in East Asia and urgently needs to strengthen the control of their emissions, especially NO_x emissions. Oxidized S and N pollutants emitted from China are transported to Korea and Japan, due to persistent westerly winds, in winter and spring.However, the total contributions of China to S and N pollutants across Korea and Japan were not found to be dominant over longer time scales(e.g., a year). The source–receptor relationships for oxidized S and N pollutants in East Asia varied widely among the different studies. This is because:(1) the nonlinear effects of atmospheric chemistry and deposition processes were not well considered, when calculating the source–receptor relationships;(2) different meteorological and emission data inputs and solution schemes for key physical and chemical processes were used; and(3) different temporal and spatial scales were employed. Therefore, simulations using the same input fields and similar model configurations would be of benefit, to further evaluate the source–receptor relationships of the oxidized S and N pollutants.  相似文献   

17.
The constrained weighted-non-negative matrix factorization(CW-NMF) hybrid receptor model was applied to study the influence of steelmaking activities on PM_(2.5)(particulate matter with equivalent aerodynamic diameter less than 2.5 μm) composition in Dunkerque,Northern France. Semi-diurnal PM_(2.5)samples were collected using a high volume sampler in winter 2010 and spring 2011 and were analyzed for trace metals, water-soluble ions, and total carbon using inductively coupled plasma – atomic emission spectrometry(ICP-AES),ICP- mass spectrometry(ICP-MS), ionic chromatography and micro elemental carbon analyzer. The elemental composition shows that NO_3~-, SO_4~(2-), NH_4~+and total carbon are the main PM_(2.5)constituents. Trace metals data were interpreted using concentration roses and both influences of integrated steelworks and electric steel plant were evidenced. The distinction between the two sources is made possible by the use Zn/Fe and Zn/Mn diagnostic ratios. Moreover Rb/Cr, Pb/Cr and Cu/Cd combination ratio are proposed to distinguish the ISW-sintering stack from the ISW-fugitive emissions. The a priori knowledge on the influencing source was introduced in the CW-NMF to guide the calculation. Eleven source profiles with various contributions were identified: 8 are characteristics of coastal urban background site profiles and 3 are related to the steelmaking activities. Between them,secondary nitrates, secondary sulfates and combustion profiles give the highest contributions and account for 93% of the PM_(2.5)concentration. The steelwork facilities contribute in about 2%of the total PM_(2.5)concentration and appear to be the main source of Cr, Cu, Fe, Mn, Zn.  相似文献   

18.
The present study investigated the emissions of naphthalene and other compounds from several different moth repellents(MRs) and one toilet deodorant block(TDB)currently sold in Korea,using a headspace analysis.The emission factors and emission rates of naphthalene were studied using a small-scale environmental chamber.Paper-type products emitted a higher concentration of the total volatile organic compounds(VOCs)(normalized to the weight of test piece)than ball-type products,which in turn emitted higher ...  相似文献   

19.
Large-scale gold production(LSGP) is one of the five convention-related atmospheric mercury(Hg) emission sources in the Minamata Convention on Mercury. However, field experiments on Hg flows of the whole process of LSGP are limited. To identify the atmospheric Hg emission points and understand Hg emission characteristics of LSGP, Hg flows in two gold smelters were studied. Overall atmospheric Hg emissions accounted for 10%–17% of total Hg outputs and the Hg emission factors for all processes were 7.6–9.6 kg/ton. There were three dominant atmospheric Hg emission points in the studied gold smelters, including the exhaust gas of the roasting process, exhaust gas from the environmental fog collection stack and exhaust gas from the converter of the refining process. Atmospheric Hg emissions from the roasting process only accounted for 16%–29% of total emissions and the rest were emitted from the refining process. The overall Hg speciation profile(gaseous elemental Hg/gaseous oxidized Hg/particulate-bound Hg) for LSGP was 34.1/57.1/8.8. The dominant Hg output byproducts included waste acid, sulfuric acid and cyanide leaching residue. Total Hg outputs from these three byproducts were 80% in smelter A and 84% in smelter B. Our study indicated that previous atmospheric Hg emissions from large-scale gold production might have been overestimated.Hg emission control in LSGP is not especially urgent in China compared to other significant emission sources(e.g., cement plants). Instead, LSGP is a potential Hg release source due to the high Hg output proportions to acid and sludge.  相似文献   

20.
Improving our understanding of air pollutant emissions from the asphalt industry is critical for the development and implementation of pollution control policies. In this study, the spatial distribution of potential maximum emissions of volatile organic compounds (VOCs) in the complete life cycle of asphalt mixtures, as well as the particulate matter (PM), asphalt fume, nonmethane hydrocarbons (NMHCs), VOCs, and benzoapyrene (BaP) emissions from typical processes (e.g., asphalt and concrete mixing stations, asphalt heating boilers, and asphalt storage tanks) in asphalt mixing plants, were determined in Beijing in 2017. The results indicated that the potential maximum emissions of VOCs in the complete life cycle of asphalt mixtures were 18,001 ton, with a large contribution from the districts of Daxing, Changping, and Tongzhou. The total emissions of PM, asphalt fume, NMHC, VOCs, and BaP from asphalt mixing plants were 3.1, 12.6, 3.1, 23.5, and 1.9 × 10?3 ton, respectively. The emissions of PM from asphalt and concrete mixing stations contributed the most to the total emissions. The asphalt storage tank was the dominant emission source of VOCs, accounting for 96.1% of the total VOCs emissions in asphalt mixing plants, followed by asphalt heating boilers. The districts of Daxing, Changping, and Shunyi were the dominant regions for the emissions of PM, asphalt fume, NMHC, and BaP, while the districts of Shunyi, Tongzhou, and Changping contributed the most emissions of VOCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号