首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic ammonia oxidation(Anammox) process is a novel and promising wastewater nitrogen removal process. The feasibility of transition of Anammox from denitrification and the performance of lab-scale Anammox biofilm reactor were investigated with sludge dewatering effluent. The results showed that Anammox process could be successfully started up after cultivation of denitrification biofilm and using it as inoculum. The transition of Anammox from denitrification was accomplished within 85 d. Anammox process was found suitable to remove ammonia from sludge dewatering effluent. The effluent ammonia concentration was detected to be 23.11 mgN/L at HRT of 28 h when influent ammonia concentration was fed 245 mgN/L, which was less than that for the national discharge standard Ⅱ (25 rngN/L) of China. Volumetric total nitrogen loading rate was up to 584.99 mg TN/(L. d) at HRT of 17 h, while influent concentrations were kept 243.25 mg NH4* -N/L and 288.31 mg NO2^- -N/L.  相似文献   

2.
The anaerobic ammonia oxidation(Anammox) bioreactor was successfully started up with the nitrifying activated sludge. After anaerobically operated for 105 d, the bioreactor reached a good performance with removal percentage of both ammonia and nitrite higher than 95% and volumetric total nitrogen removal as high as 149.55 mmol/( L. d). The soft padding made an important contribution to the high efficiency and stability because it held a large amount of biomass in the bioreactor.  相似文献   

3.
The catalysts of iron-doped Mn-Ce/TiO 2(Fe-Mn-Ce/TiO 2) prepared by sol-gel method were investigated for low temperature selective catalytic reduction(SCR) of NO with NH 3.It was found that the NO conversion over Fe-Mn-Ce/TiO 2 was obviously improved after iron doping compared with that over Mn-Ce/TiO 2.Fe-Mn-Ce/TiO 2 with the molar ratio of Fe/Ti = 0.1 exhibited the highest activity.The results showed that 96.8% NO conversion was obtained over Fe(0.1)-Mn-Ce/TiO 2 at 180°C at a space velocity of 50,000 hr 1.Fe-Mn-Ce/TiO 2 exhibited much higher resistance to H 2 O and SO 2 than that of Mn-Ce/TiO 2.The properties of the catalysts were characterized using X-ray diffraction(XRD),N 2 adsorption,temperature programmed desorption(NH 3-TPD and NOx-TPD),and Xray photoelectron spectroscopy(XPS) techniques.BET,NH3-TPD and NOx-TPD results showed that the specific surface area and NH3 and NOx adsorption capacity of the catalysts increased with iron doping.It was known from XPS analysis that iron valence state on the surface of the catalysts were in Fe3+ state.The doping of iron enhanced the dispersion and oxidation state of Mn and Ce on the surface of the catalysts.The oxygen concentrations on the surface of the catalysts were found to increase after iron doping.Fe-Mn-Ce/TiO2 represented a promising catalyst for low temperature SCR of NO with NH3 in the presence of H2 O and SO2.  相似文献   

4.
To reduce excess sludge, a Tubificidae reactor was combined with an integrated oxidation ditch with vertical circle (IODVC), and a new integrated system was developed for wastewater treatment. A pilot-scale of this integrated system was tested to investigate the sludge reduction with Tubificidae and the impact on effluent quality and sludge production. The dominant worm was Branchnria Sowerbyi in the Tubificidae reactor after inoculation of Branchnria Sowerbyi and Limnodrilns sp., and the maximal volume density of wet Tubificidae in vessels of the Tubificidae reactor was 17600 g/m3. Two operational modes, treating the excess sludge (first mode) and the returned sludge (second mode) of IODVC by the Tubificidae reactor, were used in this experiment. The results showed that the excess sludge reduction rate was 46.4% in the first mode, and the average sludge yield of the integrated system was 6.19×10-5 kg SS/kg COD in the second mode. Though the sludge returned to IODVC via the Tubificidae reactor, it had little impact on the effluent quality and the sludge characteristics of the IODVC. No new type of recalcitrant substance in the supernatant was discharged into the environment when the sludge was treated by Tubificidae. The experimental results also indicated that no significant changes occurred on the viscosity, specific resistance, and the floc size distribution of the sludge.  相似文献   

5.
A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration(SRF) and moisture of sludge cake(MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge p H dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation.Meanwhile, the SRF declined from 6.45 × 1010 to 2.07 × 1010s2/g, and MSC decreased from91.42% to 87.66%. The bioleached sludge was further conditioned with Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+were 0.12 and 0.036 mol/L,respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF,volatile solids reduction, and MSC were 3.43 × 108s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides,the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioning mechanisms by bioleaching-Fenton oxidation might mainly include the flocculation effects and the releases of extracellular polymeric substances–bound water and intercellular water.  相似文献   

6.
The massive amount of sludge generated by the classic Fenton process, which has often been hypothesized to consist of ferric hydroxide, remains a major obstacle to its large-scale application. Therefore, reutilization of Fenton sludge has recently gained more attention.Understanding the formation, transformation, and properties of Fenton sludge combined with the stages of the Fenton reaction is pivotal, but not well illustrated yet. In this study,SEM-EDS, FT-IR, XRD, and XPS were applied to study the morphology, crystallinity,elemental composition, and valence state of Fenton sludge. The authors report that schwertmannite and 2-line ferrihydrite were generated and transformed in the oxidation phase and the neutralization phase of the Fenton process. SO_4~(2-) in the solution decreased by8.7%–26.0% at different molar ratios of Fe(II) to H_2 O_2; meanwhile, iron ion precipitated completely at pH 3.70 with the formation of schwertmannite containing sulfate groups in the Fenton sludge. The structural sulfate(Fe-SO_4) in schwertmannite was released from the precipitate with the addition of OH-, and the production of Fenton sludge decreased with increasing pH when pH 3.70. Goethite was found to form when the final p H was adjusted to 12 or at a reaction temperature of 80°C. Moreover, the possible thermal transformation to goethite and hematite indicated that Fenton sludge can be reused as a raw material for synthesizing more stable iron(hydro)oxides. The results provide useful insights into the formation and transformation of Fenton sludge, with implications for regulating the crystal type of Fenton sludge for further reuse.  相似文献   

7.
Sediments from an arsenic(As) contaminated groundwater vent site were used to investigate As( Ⅲ) binding, transformation and redistribution in native and iron oxide amended lake sediments using aging spiked batch reactions and a sequential extraction procedure that maintains As(V) and As( Ⅲ) speciation. In the native sediments, fractionation analysis revealed that 10% of the spiked As( Ⅲ) remained intact after a 32-day aging experiment and was predominantly adsorbed to the strongly sorbed(NH_4H_2PO_4 extractable) and amorphous Fe oxide bound(H_3PO_4 extractable) fractions. Kinetic modelling of the experimental results allowed identifying the dominant reaction path for depletion of dissolved As( Ⅲ) to As( Ⅲ)absorbed on to the solid phase, followed by oxidation in the solid phase. Arsenite was initially adsorbed primarily to the easily exchangeable fraction((NH_4)_2SO_4 extractable), then rapidly transformed into As(V) and redistributed to the strongly sorbed and amorphous Fe oxide bound fractions. Oxidation of As( Ⅲ) in recalcitrant fractions was less efficient. The iron oxide amendments illustrated the controls that iron oxides can have on As( Ⅲ) binding and transformation rates. In goethite amended samples As( Ⅲ) oxidation was faster and primarily occurred in the strongly sorbed and amorphous Fe oxide bound fractions. In these samples,19.3 μg Mn was redistributed(compared to the native sediment) from the easily exchangeable and crystalline Fe oxide bound fractions to the strongly sorbed and amorphous Fe oxide bound fractions, indicating that goethite may act as a catalyst for Mn(Ⅱ) oxidation, thereby producing sorbed Mn( Ⅲ/Ⅳ ), which then appears to be involved in rapidly oxidizing As( Ⅲ).  相似文献   

8.
Dechlorination of carbon tetrachloride by the catalyzed Fe-Cu process   总被引:2,自引:0,他引:2  
The electrochemical reduction characteristics of carbon tetrachloride (CT) were investigated using cyclic voltammetry in this study. In addition, the difference in reduction mechanisms of CT between Master Builders' iron and the catalyzed Fe-Cu process was discussed. The results showed that CT was reduced directly on the surface of copper rather than by atomic hydrogen produced at the cathode in the catalyzed Fe-Cu process. The reduction was realized largely by atomic hydrogen in Master Builders' iron. The entire CT in 350 ml aqueous solution with 320 mgL was reduced to trichloromethane and dichloromethane in 2.25 h when 100 g of scrap iron with FeCu ratio of 10:1 (ww) were used. Moreover, the reduction rate slowed with time. CT could be reduced at acidic, neutral and alkaline pH from solution by Fe-Cu bimetallic media, but the mechanisms were di?erent. The degradation rate was not significantly in?uenced by pH in the catalyzed Fe-Cu process; in Master Builders' iron it clearly increased with decreasing pH. The kinetics of the reductions followed pseudo-first order in both cases. Furthermore, the reductions under acidic conditions proceeded faster than that under the neutral and alkaline conditions. The catalyzed Fe-Cu process was superior to Master Builders' iron in treating CT-containing water and this advantage was particularly noticeable under alkaline conditions. The reduction was investigated in the cathode (Cu) and anode (Fe) compartments respectively, the results showed that the direct reduction pathway played an important role in the reduction by the catalyzed Fe-Cu process. The catalyzed Fe-Cu process is of practical value.  相似文献   

9.
Microbially mediated bioreduction of iron oxyhydroxide plays an important role in the biogeochemical cycle of iron.Geobacter sulfurreducens is a representative dissimilatory ironreducing bacterium that assembles electrically conductive pili and cytochromes.The impact of supplementation withγ-Fe_2O_3 nanoparticles(NPs)(0.2 and 0.6 g)on the G.sulfurreducens-mediated reduction of ferrihydrite was investigated.In the overall performance of microbial ferrihydrite reduction mediated byγ-Fe_2O_3 NPs,stronger reduction was observed in the presence of direct contact withγ-Fe_2O_3 NPs than with indirect contact.Compared to the production of Fe(Ⅱ)derived from biotic modification with ferrihydrite alone,increases greater than 1.6-and 1.4-fold in the production of Fe(Ⅱ)were detected in the biotic modifications in which direct contact with 0.2 g and 0.6 gγ-Fe_2O_3 NPs,respectively,occurred.X-ray diffraction analysis indicated that magnetite was a unique representative iron mineral in ferrihydrite when active G.sulfurreducens cells were in direct contact withγ-Fe_2O_3 NPs.Because of the sorption of biogenic Fe(Ⅱ)ontoγ-Fe_2O_3 NPs instead of ferrihydrite,the addition ofγ-Fe_2O_3 NPs could also contribute to increased duration of ferrihydrite reduction by preventing ferrihydrite surface passivation.Additionally,electron microscopy analysis confirmed that the direct addition ofγ-Fe_2O_3 NPs stimulated the electrically conductive pili and cytochromes to stretch,facilitating long-range electron transfer between the cells and ferrihydrite.The obtained findings provide a more comprehensive understanding of the effects of iron oxide NPs on soil biogeochemistry.  相似文献   

10.
The catalyst of Fe-Mo/ZSM-5 has been found to be more active than Fe-ZSM-5 and Mo/ZSM-5 separately for selective catalytic reduction (SCR) of nitric oxide (NO) with NH3. The kinetics of the SCR reaction in the presence of O2 was studied in this work. The results show that the observed reaction orders were 0.74-0.99, 0.01-0.13, and 0 for NO, O2 and NH3, respectively, at 350-450℃. And the apparent activation energy of the SCR was 65 kJ/mol on the Fe-Mo/ZSM-5 catalyst. The SCR mechanism was also deduced. Adsorbed NO species can react directly with adsorbed ammonia species on the active sites to form N2 and H2O. Gaseous O2 might serve as a reoxidizing agent for the active sites that have undergone reduction in the SCR process. It is also important to note that a certain amount of NO was decomposed directly over the Fe-Mo/ZSM-5 catalyst in the absence of NH3.  相似文献   

11.
Mobilization of arsenic under anaerobic conditions is of great concern in arsenic contaminated soils and sediments. Bacterial reduction of As(V) and Fe(Ⅲ) influences the cycling and partitioning of arsenic between solid and aqueous phase. We investigated the impact of bacterially mediated reductions of Fe(Ⅲ)/Al hydroxides-bound arsenic(V) and iron(Ⅲ) oxides on arsenic release. Our results suggested that As(V) reduction occurred prior to Fe(Ⅲ) reduction, and Fe(Ⅲ) reduction did not enhance the release of arsenic. Instead, Fe(Ⅲ) hydroxides retained their dissolved concentrations during the experimental process, even though the new iron mineral-magnetite formed. In contrast, the release of reduced As(Ⅲ) was promoted greatly when aluminum hydroxides was incorporated. Thus, the substitution of aluminum hydroxides may be responsible for the release of arsenic in the contaminated soils and sediments, since aluminum substitution of Fe(Ⅲ) hydroxides universally occurs under natural conditions.  相似文献   

12.
The catalyst of Fe-Mo/ZSM-5 has been found to be more active than Fe-ZSM-5 and Mo/ZSM-5 separately for selective catalytic reduction (SCR) of nitric oxide (NO) with NH_3.The kinetics of the SCR reaction in the presence of O_2 was studied in this work.The results showed that the observed reaction orders were 0.74-0.99,0.01-0.13,and 0 for NO,O_2 and NH_3 at 350-450℃,respectively. And the apparent activation energy of the SCR was 65 kJ/mol on the Fe-Mo/ZSM-5 catalyst.The SCR mechanism was also deduced. Adsorbed NO species can react directly with adsorbed ammonia species on the active sites to form N_2 and H_2O.Gaseous O_2 might serve as a reoxidizing agent for the active sites that have undergone reduction in the SCR process.It is also important to note that a certain amount of NO was decomposed directly over the Fe-Mo/ZSM-5 catalyst in the absence of NH_3.  相似文献   

13.
The low activity of Anammox bacteria at low temperatures and competition from nitrite oxidation bacteria(NOB) when treating low strength wastewater have been major bottlenecks in implementing Anammox in mainstream wastewater treatment. By intermittent high strength feeding(IHSF) and stepwise temperature reduction, stable operation of a granular Anammox reactor was realized at low temperatures(down to 15°C) for 28 days when treating low strength synthetic wastewater. The nitrogen loading rate reached 1.23–1.34 kgN/m~3/day,and the total nitrogen removal rate reached 0.71–0.98 kgN/m~3/day. The IHSF enriched the Anammox sludge in high strength cycles and compensated for sludge loss in low strength cycles, and the high concentration of ammonium in high strength cycles inhibited NOB. The 16 SrRNA gene sequencing results revealed that Candidatus Kuenenia was predominant in the reactor at low temperatures.  相似文献   

14.
To investigate the feasibility of detoxifying chromium slag by sewage sludge,synthetic chromium slag containing 3% of Cr(VI) was mixed with sewage sludge followed by thermal treatment in nitrogen gas for stabilizing chromium.The effects of slag to sludge ratio(0.5,1 and 2) and temperature(200,300,500,700 and 900°C) on treatment efficiency were investigated.During the mixing process before thermal treatment,59.8%-99.7% of Cr(VI) was reduced,but Cr could be easily leached from the reduction product.Increasing heating temperature and decreasing slag to sludge ratio strengthened the reduction and stabilization of Cr(VI).When the slag to sludge ratio was 0.5 and thermal treatment temperature was 300°C,the total leached Cr and Cr(VI) declined to 0.55 mg/L and 0.17 mg/L respectively,and 45.5% of Cr in the thermally treated residue existed as residual fraction.A two-stage mechanism was proposed for the reduction and stabilization of Cr.  相似文献   

15.
Cathodic reduction of CO2 and anodic oxidation of organic matters are crucial to methane-producing microbial electrolysis cell (MEC) applied in anaerobic digestion of waste activated sludge. However, cathodic CO2 reduction is usually restrained by slow metabolism rates of H2-utilizing methanogens and low electron-capturing capacity of CO2, which consequently slows down the anodic oxidation that participates to sludge disintegration. Herein, a strategy with adding nitrate as electron acceptor to foster electronic transfer between the anode and cathode was proposed to improve anodic oxidation. Results showed that the average efficiency of anodic oxidation in the nitrate-added MEC increased by 55.9%. Accordingly, volatile suspended solid removal efficiency in the nitrate-added MEC was 21.9% higher than that of control MEC. Although the initial cumulative methane production in the nitrate-added MEC was lower than that of control MEC, the cumulative methane production in 24?days was 8.9% higher. Fourier transform infrared spectroscopy analysis indicated that anodic oxidation of MEC with nitrate accelerated the disintegration of sludge flocs and cell walls. Calculation on current signal further revealed that anodic oxidation driven by cathodic nitrate reduction was the main mechanism responsible for the improved sludge digestion.  相似文献   

16.
Humic substances are ubiquitous redox-active organic compounds of environment.In this study,experiments were conducted to determine the reduction capacity of humic acid in the matrix of bromate and Fe(Ⅲ) solutions and the role of Fe(Ⅲ) in this redox process.The results showed that the humic acid regenerated Fe(Ⅱ) and reduced bromate abiotically.The addition of Fe(Ⅲ) could accelerate the bromate reduction rate by forming humic acid-Fe(Ⅲ) complexes.Iron species acts as electron mediator and catalyst for the bromate reduction by humic acid,in which humic acid transfers electrons to the complexed Fe(Ⅲ) to form Fe(Ⅱ),and the regenerated Fe(Ⅱ) donate the electrons to bromate.The kinetics study on bromate reduction further indicated that bromate reduction by humic acid-Fe(Ⅲ) complexes is pH dependent.The rate decreased by 2-fold with the increase in solution pH by one unit.The reduction capacity of Aldrich humic acid was observed to be lower than that of humic acid or natural organic matter of Suwanne River,indicating that such redox process is expected to occur in the environment.  相似文献   

17.
A novel joint method of bioleaching with Fenton oxidation was applied to condition sewage sludge. The specific resistance to filtration (SRF) and moisture of sludge cake (MSC) were adopted to evaluate the improvement of sludge dewaterability. After 2-day bioleaching, the sludge pH dropped to about 2.5 which satisfied the acidic condition for Fenton oxidation. Meanwhile, the SRF declined from 6.45 × 1010 to 2.07 × 1010 s2/g, and MSC decreased from 91.42% to 87.66%. The bioleached sludge was further conditionedwith Fenton oxidation. From an economical point of view, the optimal dosages of H2O2 and Fe2+ were 0.12 and 0.036 mol/L, respectively, and the optimal reaction time was 60 min. Under optimal conditions, SRF, volatile solids reduction, and MSC were 3.43 × 108 s2/g, 36.93%, and 79.58%, respectively. The stability and settleability of sewage sludge were both improved significantly. Besides, the results indicated that bioleaching-Fenton oxidation was more efficient in dewatering the sewage sludge than traditional Fenton oxidation. The sludge conditioningmechanisms by bioleaching-Fenton oxidationmight mainly include the flocculation effects and the releases of extracellular polymeric substances-bound water and intercellular water.  相似文献   

18.
Formic acid was used for the nitrate reduction as a reductant in the presence of Pd:Cu/γ-alumina catalysts. The surface characteristics of the bimetallic catalyst synthesized by wet impregnation were investigated by SEM, TEM-EDS. The metals were not distributed homogeneously on the surface of catalyst, although the total contents of both metals in particles agreed well with the theoretical values. Formic acid decomposition on the catalyst surface, its influence on solution pH and nitrate removal efficacy was investigated. The best removal of nitrate (50 ppm) was obtained under the condition of 0.75 g/L catalyst with Pd:Cu ratio (4:1) and two fold excess of formic acid. Formic acid decay patterns resembled those of nitrate removal, showing a linear relationship between kf (formic acid decay) and k (nitrate removal). Negligible amount of ammonia was detected, and no nitrite was detected, possibly due to buffering effect of bicarbonate that is in situ produced by the decomposition of formic acid, and due to the sustained release of H2 gas.  相似文献   

19.
The reduction of the nitrobenzene compounds (NBCs) by the catalyzed Fe-Cu process and the relationship between the electrochemical reduction characteristics of NBCs at copper electrode and reduction rate were studied in alkaline medium(pH=11). The catalyzed Fe-Cu process was found more effective on degradation of NBCs compared to Master Builder's iron. The reduction rate by the catalyzed Fe-Cu process decreased in the following order: nitrobenzene 〉4-chloro-nitrobenzene ≥m-dinitrobenzene :〉 4-nitrophenol ≥2,4-dinitrotoluene 〉2-nitrophenol. The reduction rate by Master Builder's iron decreased in the following order: m-dinitrobenzene ≥4-chloro-nitrobenzene 〉4-nitrophenol 〉2,4-dinitrotoluene ≈nitrobenzene 〉2-nitrophenol. NBCs were reduced directly on the surface of copper rather than by the hydrogen produced at cathode in the catalyzed Fe-Cu process. The reduction was realized by the hydrogen produced at cathode and Fe(OH)2 in Master Builder's iron, It is an essential difference in reaction mechanisms between these two technologies. For this reason, the reduction by the catalyzed Fe-Cu depended greatly on NBC's electron withdrawing ability.  相似文献   

20.
A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2 Fe O4oxidation and KMn O4 oxidation. The degree of disintegration(DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2 Fe O4oxidation was more efficient than KMn O4 oxidation. The content of free water increased obviously with K2 Fe O4and KMn O4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2 Fe O4oxidation, and increased slightly with KMn O4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2 Fe O4oxidation, and did not changed with KMn O4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2 Fe O4and KMn O4 oxidation improved the sludge dewaterability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号