首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 146 毫秒
1.
生活垃圾填埋场细菌气溶胶粒径分布及种群特征   总被引:6,自引:2,他引:4  
卫生填埋是一种常用的生活垃圾处置方法.在倾倒、堆放、推平和压实等垃圾填埋过程中,有大量带有致病菌的微生物气溶胶逸散,污染空气,危害人体健康.本研究在华北地区某生活垃圾卫生填埋场设置采样点,采集空气中的细菌气溶胶,解析细菌气溶胶的浓度、粒径分布和种群特征,研究空气温度、相对湿度以及风速对细菌气溶胶逸散的影响.结果表明,作业区和覆盖区空气细菌浓度分别为(5 437±572) CFU·m~(-3)和(2 707±396) CFU·m~(-3).垃圾渗滤液处理区空气中的细菌气溶胶浓度最高,平均为9 460 CFU·m~(-3).细菌气溶胶的浓度呈现明显的季节变化,夏季浓度明显高于其他季节.冗余分析(RDA)显示,气象参数如相对湿度、温度和风速,显著影响细菌气溶胶在空气中的数量.作业区和覆盖区空气细菌粒径分布高峰分别在2. 1~4. 7μm和0. 65~2. 1μm.渗滤液处理逸散的细菌气溶胶大部分大于4. 7μm. Moraxellaceae,Bacillus aerius,Arcobacter以及Aeromonas是垃圾填埋场细菌气溶胶中检出潜在或机会致病菌.  相似文献   

2.
监测了北京市某A2O工艺污水处理厂不同工艺段逸散出的微生物气溶胶的浓度和粒径分布情况,统计了各工艺段所有采集样本污染程度和可吸入颗粒占比,分析了影响各工艺段微生物气溶胶浓度和可吸入颗粒数变化的因素.同时,计算了各工艺段暴露风险值,判断微生物气溶胶对不同人群的危害性.结果表明,各工艺段微生物气溶胶均有不同程度的释放,浓度变化范围在107~37139 CFU·m-3之间,其中,生物池释放浓度最低,为107~624 CFU·m-3,一直处于清洁等级;板框脱水间释放浓度最高,为3329~37139 CFU·m-3,粉尘颗粒较多是造成板框脱水间微生物气溶胶浓度极高的重要原因.各工艺段可吸入颗粒(<4.7 μm)占比为42.30%~93.36%,其中,污泥处理单元吸入风险较高,可吸入颗粒占比为83.52%~93.36%.板框脱水间细菌气溶胶对人体存在非致癌风险(HQ>1),需引起重视.  相似文献   

3.
饮用水快速砂滤池优势微生物群落的代谢功能解析   总被引:2,自引:2,他引:0  
快速砂滤池广泛应用于饮用水处理中,其净水效能一直被认为是物理化学作用,而对滤池表面附着微生物的净水作用仍不明晰.为了解析滤池中微生物的群落构成和功能特征,研究对国内8个城市的11座饮用水快滤池的进出水和滤料进行采样分析.进出水水质分析结果表明经过滤池处理,溶解性有机碳(DOC)有少量去除,氨氮(NH_4~+-N)显著降低,硝酸盐氮(NO_3~--N)显著增加,总氮(TN)未发生明显变化.利用宏基因组技术获得了滤池中微生物群落的构成和功能信息,滤池优势菌属(相对丰度占前10%)共14种,包括两类氨氧化细菌Nitrospira和Nitrosomonas.对优势菌属的功能基因信息进行分析,发现优势微生物菌群具有更高的碳水化合物、氮、硫和异生物质代谢功能丰度. Aeromonas的碳水化合物代谢基因相对丰度最高,Bradyrhizobium的氮、硫及异生物质代谢基因的相对丰度最高,说明这两种菌是影响饮用水水质的重要菌属.通过评价各个优势菌属对异生物质的代谢潜能,发现Bradyrhizobium、Sphingomonas、Methyloglobulus、Sphingopyxis和Klebsiella是饮用水快速砂滤池中降解微量有机污染物的关键菌.  相似文献   

4.
西安市秋季灰霾天气微生物气溶胶的特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为探明西安市秋季灰霾天气条件下微生物气溶胶的特性,于2014年10月7日到23日两次灰霾过程期间,在西安市长安大学站点,采用Andersen六级撞击式空气采样器对细菌与真菌气溶胶进行采样,并对其浓度、粒径、种属分布及其与气象因素的相关关系进行详细分析.结果表明,在灰霾天期间,可培养细菌与真菌气溶胶的浓度水平分别为1102~1737 CFU·m-~3和1466~1704 CFU·m-~3,不仅远高于非灰霾天微生物气溶胶的浓度值,也超过了中国科学院推荐的标准值.在非灰霾天气条件下,空气中大部分可培养细菌气溶胶(79.7%)与真菌气溶胶(74.6%)均分布在粗颗粒范围(2.1μm),它们的中位径(NMD)分别为(2.32±0.12)μm、(2.48±0.24)μm;而在灰霾天气条件下,可培养细菌气溶胶与真菌气溶胶的中位径分别为(1.96±0.29)μm和(2.44±0.23)μm.此外,在灰霾天期间,空气中优势细菌除了葡萄球菌属(Micrococcus)与微球菌属(Staphylococcus)外,还鉴定出了非霾天没有检测出的致病菌种奈瑟氏菌属(Neisseria);而真菌在灰霾天时,除了曲霉属(Aspergillus)检出频率大幅提高外,还出现了非霾天未鉴定出的致病菌属拟青霉属(Paecilomyces)与头孢霉属(Cephalosporium).研究表明,相比于非灰霾天气,灰霾天气下有更高的微生物气溶胶暴露风险.研究结果可以为评估灰霾暴发时微生物气溶胶引起的环境与健康效应提供基础数据.  相似文献   

5.
采用Illumina高通量测序方法对青岛冬季一次霾过程中大气生物气溶胶中细菌群落结构特征进行了研究.测序获得的807104条序列以97%的相似水平可划分为874个OTUs,其中有344个OTUs注释到属水平.结果表明,霾发生时,大气生物气溶胶中细菌群落结构和多样性变化显著.由非霾到重度霾天过程中,细菌群落丰富度和多样性逐渐降低,且细菌群落丰富度在不同粒径颗粒物上的差异逐渐减小,多样性在不同粒径颗粒物上的差异逐渐增大.非霾天优势菌属为假单胞菌属(Pseudomonas)、韦荣氏球菌属(Veillonella)和鞘氨醇单孢菌属(Sphingomonas);霾发生后,优势菌属转变为鞘氨醇单孢菌属(Sphingomonas).此次霾发生过程中,浓度升高的鞘氨醇单孢菌属(Sphingomonas)和新检出的皮生球菌属(Dermacoccus)、梭菌属(Fusobacterium)、纤毛菌属(Sneathia)、黄杆菌属(Flavobacterium)为条件致病菌,可能存在健康风险.  相似文献   

6.
针对水源切换可能造成水厂出水微生物风险的问题,以北京某水厂由本地水源切换为河北水源期间原水和出厂水为研究对象,采用焦磷酸测序技术对水中的微生物种群结构和潜在致病菌进行分析.结果显示,出厂水的细菌多样性显著低于原水,原水和出厂水中的优势菌均为变形菌门(Proteobacteria),所占比例为11.99%~95.48%,其中包括α,β和γ变形菌纲(α, β, γ-Proteobacteria),但相对丰度有较大差异.水源切换后的原水中优势菌为蓝藻门(Cyanobacteria),且该菌在切换后的出厂水中也存在.出厂水中检测到部分潜在致病菌,优势菌包括不动杆菌(Acinetobacter)和代尔夫特菌(Delftia),增加了饮用水的微生物安全风险.PCoA结果显示,水源切换前后原水中细菌群落结构变化较大,但改变水源对出厂水的微生物群落影响较小,水厂能够维持稳定的运行.  相似文献   

7.
为探究不同季节尾水排放对河道细菌群落结构及多样性的影响,以常州市深水城北污水处理厂尾水、排放河道为例,利用Illumina Miseq高通量测序技术分析细菌群落结构,并分别讨论了不同季节尾水对河道水质、细菌群落结构及多样性的影响,分析细菌群落结构与水质的相关性.结果表明:①尾水增加了夏季、秋季河道的NO3--N、TN浓度.②由于尾水的排放,使夏季、秋季河道细菌多样性下降.③共检测到43个门,其中变形菌门(Proteobacteria)为最优势菌门,平均占比为60.11%,其次为放线菌门(Actinobacteria)和拟杆菌门(Bacteroidetes),尾水主要影响夏季、秋季河道Proteobacteria的相对丰度,其中假单胞菌属(Pseudomonas)夏季增加49.14倍,秋季减少0.95倍;鞘氨醇单胞菌属(Sphingomonas)夏季增加6.63倍,不动杆菌属(Acinetobacter)秋季减少0.98倍.④TN浓度对细菌菌属分布影响最大,其与微球菌属(Micrococcaceae)、Hgcl_clade呈负相关;与盐单胞菌属(Halomonas)呈正相关.研究显示,尾水排放对河道的影响主要表现在夏季和秋季,使NO3--N、TN浓度显著上升,而使细菌多样性下降,对河道Proteobacteria下的Pseudomonas、Acinetobacter、Sphingomonas相对丰度影响较大,水中的细菌分布主要受TN浓度影响.   相似文献   

8.
采用移动床生物膜反应器(moving bed biofilm reactor,MBBR)处理模拟废水,考察进水氨氮浓度(20,30,50,100,200 mg/L)对MBBR工艺处理效果的影响,并利用16S rDNA高通量测序技术,分析微生物群落结构变化。结果表明:氨氮浓度为30~100 mg/L时,氨氮浓度越小,越有利于氨氮的去除,对COD去除率影响较小。氨氮浓度为20,50,200 mg/L时,Ottowia为第1优势菌属,相对丰度分别为66.76%、34.40%、53.88%,而氨氮浓度为30,100 mg/L时,Ottowia优势地位被Arcobacter、Hydrogenophaga等取代,说明微生物群落结构发生波动性变化可能与各类起反硝化作用的菌属和Ottowia菌属争夺优势地位有关。与自养型硝化作用有关的菌属相对丰度稳定在0.3%左右,相对丰度受氨氮浓度影响不大,高浓度氨氮对硝化菌属产生的抑制作用,可能是对其微生物活性的抑制。通过研究发现,进水氨氮浓度对MBBR生物膜中的微生物群落结构有一定的影响。  相似文献   

9.
为阐释不同水力水质工况对市政排水管网底泥微生物在门和属水平多样性的影响,应用微生物16S rRNA基因测序技术,探讨了底泥微生物组Alpha和Beta多样性、样本组间差异及其与不同环境因子之间的统计学关系及可能原因. 结果表明:①底泥中优势菌门Bacteroidetes、Chloroflexi、Firmicutes、Acinetobacter等均为有机物降解类细菌,并且随着外源性碳浓度的增加,同种微生物的丰度越高;随着色氨酸类有机物种类越多,微生物群落多样性越高. ②在一定范围内,剪切力越高,底泥中呈显著差异(P≤0.001)的Dechloromona(5.5%)、norank_f_Anaerolineaceae(2.3%)、Longilinea(2.8%)等厌氧细菌(主要功能是分解蛋白、碳水化合物)的丰度越高. ③在一定范围内,温度越高,底泥微生物组的丰度越高. 在41 ℃环境下,呈显著差异(P≤0.001)的优势菌门Chloroflexi(11.1%)和优势菌属Defluviicoccus(4.9%)、Candidatus_Competibacter(3.8%)的相对丰度最高,而Proteobacteria、Bacteroidetes等菌门可能因微生物蛋白质活性受温度影响,丰度降低. ④在碱性环境中,只有Proteobacteria(49.4%)、Chloroflexi(10.1%)等杆状菌丰度最高,没有丝状菌. ⑤SO42?浓度对底泥微生物影响较小,但较高SO42?浓度提高了上覆水中Methylocystis、Zavarzinia等微生物丰度,抑制了Methylocystis等厌氧微生物的生长. 研究显示,重力流排水管道底泥微生物组多样性变化与水力剪切力、温度、pH、SO42?及外源性碳这5个环境因子相关.   相似文献   

10.
为了解武汉市新冠肺炎疫情后居民区微生物气溶胶分布特征及风险状况,以成熟社区——常青花园居民区为例对典型场所的微生物气溶胶分布及风险进行了评估.利用Andersen-6级空气微生物采样器于2020年10-12月对该居民区6处典型场所进行采样,通过平板菌落计数法监测微生物气溶胶浓度,采用《中国人群暴露参数手册(成人卷)》对采样点的暴露风险进行了评估.结果表明:①采样点微生物气溶胶浓度表现为生鲜市场>地下停车场>美食街>中心篮球场>中心广场>绿地亭.②不同场所细菌及真菌气溶胶浓度存在差异,细菌及真菌气溶胶最高浓度分别在生鲜市场[(1 525.32±1 311.31)CFU/m3]和美食街[(1 296.82±113.84)CFU/m3].③以典型场所空气微生物气溶胶浓度作为评价标准,中心篮球场、绿地亭和中心广场空气较为清洁,生鲜市场及地下停车场为轻微污染,美食街为轻度污染.④典型场所微生物气溶胶中值粒径均小于4.7 μm,表明微生物气溶胶容易进入人体下呼吸道,易引起居民下呼吸道感染.⑤10-12月,典型场所HQ(hazard quotient,危险系数)值均小于1,表明常青花园居民区受微生物气溶胶暴露的健康风险较小.研究显示,在新冠肺炎疫情防控常态化下,常青花园居民区空气状况良好,符合后疫情时代对卫生条件的要求.   相似文献   

11.
西安春季经常出现大量飞絮,易造成空气污染并引发居民哮喘等健康风险.采集西安市春季不同观测点(交通样点和校园样点)生物气溶胶、 PM2.5和飞絮样品,通过恒温培养和高通量测序等方法研究可培养生物气溶胶的浓度变化、粒径分布,PM2.5和飞絮携带的微生物的来源、群落结构和健康影响.结果表明,可培养细菌浓度在交通样点高于校园样点(P=0.027);交通样点可培养细菌浓度为真菌的2.7倍,而校园样点可培养真菌浓度高于细菌(1.4倍).可培养细菌和真菌日内最高浓度均出现在08:00;可培养细菌粒径呈双峰分布,真菌为单峰分布.土壤和植被是大气微生物的主要来源(占比85.9%),变形菌门(Proteobacteria)是飞絮和PM2.5中共有的、丰度最高的菌门,在飞絮中占比达到91.3%(交通样点)和99.1%(校园样点);在PM2.5样品中放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)、拟杆菌门(Bacteroidetes)、蓝藻门(Cyanobacteria)和异常球菌-栖热菌门(D...  相似文献   

12.
Biological risks of bioaerosols emitted from wastewater treatment processes have attracted wide attention in the recent years. However, the culture-based analysis method has been mostly adopted for detecting the bacterial community in bioaerosols, which may result in the underestimation of total microorganism concentration as not all microorganisms are cultivable. In this study, oligonucleotide fingerprinting of 16S rRNA genes was applied to reveal the composition and structure of the bacterial community in bioaerosols from an Orbal oxidation ditch in a Beijing wastewater treatment plant (WWTP). Bioaerosols were collected at different distances from the aerosol source, rotating brushes, and the sampling height was 1.5 m which is the common respiratory height of a human being. The bacterial communities of bioaerosols were diverse, and the lowest bacterial diversity was found at the sampling site just after the rotating brush rotating brush. A large proportion of bacteria in bioaerosols were affiliated with Proteobacteria and Bacteroidetes. Numerous bacteria present in the bioaerosols also emerged in water, indicating that the bacterial community in the bioaerosols was related to that of the aerosols’ sources. The forced aeration of rotating brushes brought about observably distinct bacterial communities between sampling sites situated before and after the rotating brush. Isolation sources of closest relatives in bioaerosols clone libraries were associated with the aqueous environment in the WWTP. Common potential pathogens in bioaerosols as well as those not reported in previous research were also analyzed in this study. Measures should be adopted to reduce the emission of bioaerosols and prevent their exposure to workers.  相似文献   

13.
利用Anderson空气微生物采样器对西安市2014年9月~2015年1月间可培养微生物气溶胶进行采样、培养,分析不同空气质量下其浓度与粒径变化特征,并对其与颗粒污染物(PM_(2.5)、PM_(10))、气象参数(温度、相对湿度)和其它气态污染物(NO_2、SO_2、O_3)进行主成分+多元线性回归分析.结果显示,可培养细菌和真菌气溶胶浓度范围分别为97~1 909CFU·m~(-3),92~1 737 CFU·m~(-3).随空气污染程度加深,两种微生物气溶胶浓度均呈现增加趋势;细菌气溶胶粒径分布向粗颗粒偏移;而真菌气溶胶在低污染时呈正态分布,高污染时粒径峰值向细颗粒偏移.主成分分析结果显示,可培养微生物气溶胶主要与灰霾、太阳辐射和相对湿度有关.多元线性回归结果表明,细菌气溶胶与灰霾呈显著正相关(P0.05),与太阳辐射呈不显著负相关,与湿度呈不显著正相关;真菌气溶胶与灰霾、太阳辐射和相对湿度均呈不显著正相关.研究结果可以为评估微生物气溶胶所引起的环境与健康效应提供基础数据.  相似文献   

14.
梅雨期大学宿舍室内生物气溶胶浓度及粒径分布   总被引:1,自引:1,他引:0  
大学宿舍室内生物气溶胶可通过空气传播,可能会危害学生身体健康.本研究调查了梅雨期大学宿舍室内生物气溶胶浓度和粒径分布特点,对其同空气颗粒物浓度、环境温度和湿度的Spearman相关性进行了研究,分析了学生活动对宿舍室内气溶胶的影响.结果表明,学生宿舍室内的细菌和真菌气溶胶平均浓度分别为(2 133±1 617)CFU·m~(-3)和(3 111±2 202)CFU·m~(-3),真菌气溶胶的浓度明显高于细菌.学生宿舍室内的PM1、PM_(2.5)、PM10与细菌气溶胶浓度呈负相关,与真菌气溶胶浓度呈显著负相关;PM_(2.5)与可吸入细菌气溶胶呈正相关,PM_(10)与可吸入真菌气溶胶呈正相关;环境温度与细菌和真菌气溶胶浓度呈正相关,环境相对湿度与细菌和真菌气溶胶浓度呈负相关.在下午,宿舍室内真菌气溶胶浓度显著增加,上午和下午生物气溶胶的粒径分布有差异.本研究结果将为评价高校学生宿舍室内空气质量提供基础数据.  相似文献   

15.
四环素对污泥蚯蚓粪中微生物种群和抗性基因的影响   总被引:4,自引:2,他引:2  
陈景阳  夏慧  黄魁  吴颖 《环境科学》2019,40(7):3263-3269
城市污泥中高含量的四环素可能会致使污泥蚯蚓堆肥产物中携带高丰度的抗性基因,降低其利用价值.本实验采用赤子爱胜蚓处理添加不同含量四环素(100、500和1 000 mg·kg-1)的新鲜污泥,以不添加为对照组,分析微生物种群和四环素抗性基因(tet C、tet G、tet M、tet W和tet X)及整合子基因(int I1)在不同四环素选择性压力下的变化,揭示四环素含量对污泥蚯蚓堆肥中微生物种群和抗性基因的影响.结果表明,添加四环素降低了污泥蚯蚓堆肥产物中变形菌门的丰度但增加了拟杆菌门的丰度,且四环素的含量与细菌的Shannon和Pielou指数有明显的负相关关系.同时,添加四环素致使int I1增加了4. 25倍;四环素类抗性基因增加了4. 7~186. 9倍,其中tet M基因丰度与四环素含量呈现出显著的正相关关系.因此初始污泥中较高含量的四环素会改变污泥蚯蚓粪的微生物种群结构,增加抗生素抗性基因的丰度和传播风险.  相似文献   

16.
为探究污水处理厂生物气溶胶抗生素抗性基因(ARGs)污染特征,在济南市某污水处理厂采用宏基因组测序技术对厂界内及周边生物气溶胶样本及污水或污泥样本进行分析.结果表明,相比于上风向,厂界内和下风向生物气溶胶具有更多的ARGs亚型种类数和更高的总相对丰度.厂界内与上风向生物气溶胶ARGs组成存在显著的差异性,差异度为47.57%;而厂界内与下风向生物气溶胶ARGs组成的差异性不显著,且差异度下降至33.98%.上风向背景空气和污水或污泥均是厂界内生物气溶胶ARGs的重要来源,两者总的源的贡献大于63.92%.共检测到43种ARGs亚型(8种ARGs主型)在至少一处污水处理单元极易负载于生物气溶胶颗粒逸出.本研究可为污水处理厂生物气溶胶抗生素抗性污染的风险评估和控制提供理论依据.  相似文献   

17.
为考察进水氨氧化菌(AOB)对活性污泥系统的季节性影响,对未设置初沉池的西安市第二污水处理厂中进水及活性污泥的氨氧化活性及群落结构进行长期调查分析.结果表明,进水及活性污泥的比氨氧化速率(SAUR)分别为0.48~3.02 mg·(g·h)-1和0.68~2.25 mg·(g·h)-1,相关性分析结果显示进水SAUR与次月活性污泥SAUR高度相关(r=0.862,P<0.05),表明进水硝化菌对活性污泥硝化性能有显著影响.根据硝化活性计算的进水AOB对活性污泥的接种强度为0.21~0.92 g·(g·d)-1,因此,在优化活性污泥模型及污水厂设计时,有必要考虑到进水硝化菌的迁移作用.qPCR结果显示,进水及活性污泥中AOB丰度分别为1.32×108~2.36×109cells·g-1和1.12×1010~1.19×1010 cells·g-1,而冬季活性污泥中AOB丰度虽有降低,但仍保持在1010 cells·g-1,这说明进水硝化菌的迁移能缓解因温度降低而导致的活性污泥硝化菌丰度下降.Illumina MiSeq测序结果表明,进水和活性污泥中具有共同的优势AOB,分为Nitrosomonas sp.Nm58、Nitrosomonas sp.JL21和bacterium CYCU-0253.  相似文献   

18.
合肥市夏季大气颗粒物中微生物群落的高通量测序分析   总被引:1,自引:1,他引:0  
大气颗粒物的组分、来源和时空变化特征等方面已进行了广泛的研究,但对占大气颗粒物25%的生物气溶胶中细菌和真菌等微生物群落的研究较少.本文使用电感耦合等离子体质谱仪(ICP-MS)和离子色谱仪(IC)分别测定了大气颗粒物中痕量元素和水溶性离子的含量,并结合高通量测序和荧光定量PCR分析了合肥市7~9月大气颗粒物PM1.0、PM2.5和PM10中微生物群落组成及其来源.结果表明,不同粒径下细菌群落多样性无显著差异(ANOVA,P>0.05),雨天细菌和真菌群落多样性均高于晴天,所有样品中细菌群落多样性均显著高于真菌群落多样性(ANOVA,P<0.01);大气中细菌的优势菌门为变形菌门(46.19%)、厚壁菌门(33.42%)、拟杆菌门(10.99%)、蓝藻门(3.33%)和放线菌门(2.11%),真菌的优势菌门为子囊菌门(73.23%)、担子菌门(5.78%)、被孢霉菌门(3.41%)和毛霉门(0.10%);通过分析潜在源环境的指示物种,发现土壤、植物叶片和动物粪便是合肥市大气中细菌群落的主要来源,真菌群落的主要来源是植物叶片和土壤;细菌群落主要受K、Pb、Al、Fe、Mg、Ca、Na+、NO2-和风速(WS)影响,而真菌群落的主要影响因素是V、Mn、Sr、NO2-、NO3-、Na+、Cl-、空气质量指数(AQI)和PM10;此外,在细菌和真菌群落分析中鉴定到了不动杆菌属、链球菌属、肠杆菌属、假单胞菌属、代夫特菌属、沙雷氏菌属、木霉属、链格孢属和曲霉属等9种致病菌,它们可以导致人类和其它生物的多种疾病.本文的研究结果有助于揭示大气微生物的各种特性及其影响因素,以及对人类健康的影响,对后续研究和政府相应政策的制定具有重要的参考价值.  相似文献   

19.
基于FCASM3建立了杭州市某污水厂A+A~2/O工艺模型.首先测定该污水处理厂的进水水质组分,以及不同阶段污染物浓度的变化和活性污泥中微生物动力学参数;然后,利用该厂2017年上半年的运行数据对模型进行校核.校核结果显示,该模型能够很好地模拟出系统中各物质的转化情况.最后,利用校核完成的工艺模型对该污水厂的主要工艺参数,包括溶解氧、污泥回流比和混合液回流比,进行多因素正交模拟试验.试验结果表明,该污水处理厂的最佳运行工况为:当A+A~2/O系统的好氧池氧传输速率(Oxygen Transfer Coefficient,KLa)、污泥回流比和混合液回流比分别控制在2 h-1、75%及250%时,好氧池TN出水浓度下降1.28 mg·L~(-1),脱氮效率提高了15.91%,同时该厂污水处理能耗降低.  相似文献   

20.
动物集约化养殖场可向空气环境释放大量微生物,包括抗生素耐药菌甚至是耐药致病菌,危害动物和工人健康并污染周边空气环境.针对以上问题,本研究以四环素和红霉素耐药菌为例,对动物养殖场空气颗粒物负载抗生素耐药菌的生物多样性以及群落结构展开研究.基于高通量测序技术,对比分析动物舍内与舍外颗粒物,以及粪便样品中抗生素耐药菌的生物学差异,并研究驱动以上差异的关键菌属.结果表明,整体上养殖场空气颗粒物负载红霉素耐药菌的生物多样性高于四环素耐药菌,舍内空气颗粒物负载生物的多样性高于粪便样品.细颗粒物和粗颗粒物负载抗生素耐药菌的生物多样性和群落结构均无显著差异.Actinobacteria是导致红霉素耐药菌和其他细菌群落差异的关键菌门之一,Staphylococcus是四环素耐药菌群区别于红霉素耐药菌和全部细菌菌群的关键菌属之一.群落结构研究结果显示,四环素和红霉素耐药菌的优势菌群和群落结构没有显著差异.但粪便和空气颗粒物负载生物的群落结构在属水平上差异显著,优势菌门也有所不同.本研究结果将为准确评估动物养殖场空气环境中抗生素耐药菌污染现状及其生态风险提供基础数据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号