首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 421 毫秒
1.
采用聚合酶链式-变性梯度凝胶电泳(PCR-DGGE)技术,研究了膜生物反应器(MBR)和传统活性污泥工艺(CAS)反应器中微生物在贫营养条件下的总细菌群落结构.结果表明,在培养过程中,污泥的微生物种群经历了一个比较明显的变化过程,且以CAS污泥微生物种群的变化更为明显,演替过程中既有原始优势种群的消亡,又有新的优势种群...  相似文献   

2.
MBR中微生物群落结构的演变与分析   总被引:17,自引:3,他引:14  
张斌  孙宝盛  季民  赵祖国 《环境科学学报》2008,28(11):2192-2199
为了揭示膜.生物反应器中微生物群落结构多样性的演变过程,通过细胞裂解法直接提取不同时期污泥中的基因组DNA,利用基于16SrDNA的PCR-DGGE技术获得了微生物群落的DNA特征指纹图谱,并对条带进行了统计分析和切胶测序,使用序列数据进行了同源性分析并建立了系统发育树.DGGE分析表明,在反应器运行前17d内污泥中微生物群落结构变化很大,与接种污泥的相似性系数下降到了29.2%,从而说明MBR中处理工艺和进水水质的改变导致微生物群落结构多样性降低.在试验过程中,Pscudomonas和Aeromonas hydrophila等种群一直保持着较为稳定的优势地位,也有原始种群如Bacillus sp.的消亡和以Enterococcus faecalis、Comamonas sp.、Fusobacterium sp.等为代表的次级种群的强化和演变.UPGMA聚类分析将DGGE图谱区分为3大类群并对应于各自的运行时期.测序结果表明,MBR中微生物菌群间进化距离较大,其中Proteobaeteria纲和Bacillus属细菌较多.在反应器运行后期演变为优势地位的菌群(如Comamonas sp.)加剧了膜污染物的产生和积累.  相似文献   

3.
利用PCR-DGGE研究膜生物反应器中微生物的群落结构   总被引:5,自引:2,他引:3  
使用聚合酶链式反应-变性梯度凝胶电泳技术(PCR-DGGE)考查了天津某再生水处理厂膜生物反应器(Membrane Bioreactor,简称MBR)培养驯化直至正常运行全过程中总细菌群落结构的演替情况.结果表明,在MBR环境中,接种的传统活性污泥中的微生物群落在几天内发生了较大的变化,在进污水驯化时,微生物群落也遭受了冲击,最后经过培养驯化趋于稳定,一些菌种逐渐成长为顶级优势微生物,在反应器内占据主导地位.最终该反应器逐渐形成了自己独有的微生物群落生态系统.另外,对该微生物群落的部分优势总细菌进行了克隆测序和系统发育树分析,通过鉴定获得的10条总细菌的16S rDNA序列,它们分别与气单胞菌属、假单胞菌、亚硝酸菌属、丛毛单胞菌属和杆菌的同源性在97%以上,这些优势微生物在MBR反应器去除有机物的过程中起到了关键的作用.  相似文献   

4.
硫酸盐还原反应器污泥驯化过程中微生物群落变化分析   总被引:2,自引:1,他引:1  
采用PCR-DGGE技术,对硫酸盐还原反应器UASB污泥驯化过程中微生物群落的变化进行了分析.结果表明,污泥驯化过程中,微生物群落生物多样性与反应器硫酸盐及COD去除率呈明显的正相关,微生物群落Shannon指数大于3.45时,反应器硫酸盐去除率稳定在95%左右;对DGGE图谱中优势条带进行回收克隆并测序表明,污泥中微生物群落主要包含Firmicutes、Proteobacteria、Deinococcus-Thermus和Chloroflexi这4大类群,分别占总数的50.0%、28.6%、14.3%和7.1%;其中厌氧发酵细菌Clostridium sp.在驯化全过程中均占优势,但优势菌群的种类发生变化;厌氧细菌Chloroflexi sp.、Geopsychrobacter sp.等在污泥驯化过程中曾成为优势菌群但之后消亡;厌氧细菌Geobacter sp.则在污泥驯化过程中逐渐成为优势菌群;Desulfovibrio sp.在污泥驯化的最后2个阶段成为优势菌.  相似文献   

5.
采用随机扩增多态性DNA(RAPD)方法研究了厌氧氨氧化污泥驯化过程中微生物遗传多样性的变化,并对接种物不同的3个反应器中的微生物作了聚类分析.在污泥驯化培养过程中,3个反应器内的微生物发生了较明显的遗传变异,以缺氧污泥接种的反应器中微生物在驯化过程中的Nei基因多样性指数和Shannon信息指数均较高,遗传变异较大.硝化污泥中存在与厌氧氨氧化细菌亲缘关系较近的菌种,更适宜作为接种物驯化培养厌氧氨氧化细菌.以好氧污泥作为种泥启动反应器,通过培养硝化污泥再转入厌氧氨氧化驯化,这种驯化途径优于以缺氧污泥和厌氧污泥启动反应器的途径.  相似文献   

6.
膜生物反应器与传统活性污泥反应器内生物群落特征   总被引:12,自引:4,他引:8  
欧阳科  刘俊新 《环境科学》2009,30(2):499-503
采用膜生物反应器(MBR)和传统活性污泥法(CAS)2种反应器处理相同的生活污水,考察了MBR和CAS的运行和生物群落结构及其动态变化.结果表明,MBR对COD和氨氮的去除效率均比CAS高, MBR和CAS出水COD的平均值分别为39.6 mg/L和62.9 mg/L,出水氨氮的平均值分别为6.8 mg/L和14.5 mg/L,可以看出无论是对于有机物还是NH+4-N,MBR的去除效果都比CAS要好.由于MBR的污泥处于大的曝气剪切力、过低的污泥负荷、以及长SRT导致的各种惰性物质积累等环境中,使MBR中污泥的群落及其变化与CAS相比有明显的不同.随着反应器运行时间的增加,DGGE的结果表明MBR的种群数量始终高于CAS, MBR群落相似性系数的变化也比CAS要大很多,在第15、 124、 186和230 d时,MBR的条带数分别是22、 25、 24和20条,而CAS在相应的运行时间时条带数分别为19、 14、 17和20条.MBR污泥与种泥的相似性系数分别是54.1%、 63.7%、 63.9%和66.8%,而CAS污泥与种泥的相似性系数分别是71.8%、 61.4%、 9.1%和65.9%.说明CAS的排泥导致非选择性的微生物流失,同时,也说明MBR的群落具有更好的适应环境因素变化的能力,这是MBR抗冲击负荷能力较强的原因之一.从戴丝系数来看,尽管群落相似性越来越高,但群落始终处于变化状态,说明环境的微小变化(进水水质、环境温度等)都会引起生物群落的变化.  相似文献   

7.
基因工程菌生物强化处理系统微生物群落分析   总被引:2,自引:0,他引:2  
在膜-生物反应器(MBR)和传统活性污泥反应器(CAS)中,考察了基因程菌生物强化对阿特拉津的去除效果,并通过PCRDGGE分析了反应器不同运行阶段污泥微生物群落的变化.结果表明,基因工程菌生物强化实现了阿特拉津的高效生物去除,MBR和CAS阿特拉津平均去除率分别达到88.6%和85.3%.阿特拉津生物强化去除有助于反...  相似文献   

8.
以白洋淀岸边带沉积物为接种污泥,启动了SBR厌氧氨氧化反应器.对反应器启动过程中的进出水水质进行了连续监测,并采用PCRDGGE、定量PCR和基因测序等分子生物学技术研究了系统内总细菌和厌氧氨氧化(ANAMMOX)细菌群落结构随培养时间的变化规律.结果表明:在启动过程中,总微生物菌群动态变化水平为26.6%~50.5%;微生物多样性先变小后增大,优势菌种得到重新分布;ANAMMOX细菌的群落结构变得单一化,最后系统的优势ANAMMOX细菌是Brocadia属.富集培养阶段SBR系统中ANAMMOX细菌的最大生物量达到了1.73×109copies·g~(-1)干污泥,而且总氮的去除率最高达到约82%.  相似文献   

9.
不同好氧颗粒污泥中微生物群落结构特点   总被引:3,自引:0,他引:3  
为了探讨活性污泥好氧颗粒化过程对微生物种群的影响、不同底物及不同颗粒化方法培养的好氧颗粒污泥中微生物群落结构的差异,以接种污泥、模拟废水好氧颗粒污泥和分别投加粉末活性炭和硅藻土的实际生活污水好氧颗粒污泥为研究对象,利用PCR-DGGE对比分析了接种污泥和好氧颗粒污泥中的微生物群落结构.结果表明:活性污泥好氧颗粒化过程会减少微生物种群多样性,影响颗粒污泥稳定性的细菌被淘汰,而聚磷菌、反硝化菌、难降解有机物降解菌等污水处理功能微生物都在颗粒化过程中得到保留.活性污泥好氧颗粒化过程中能够实现亚硝化细菌(AOB)一定程度的富集.与接种活性污泥相比,好氧颗粒污泥中AOB的多样性指数与均匀性指数均有提高.好氧颗粒污泥中的优势菌群主要分布于变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和未培养菌(uncultured bacterium).其中AOB均属于β-Proteobacteria的亚硝化单胞菌属(Nitrosomonas).  相似文献   

10.
不同污泥龄膜生物反应器内微生物的群落结构特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究不同污泥龄MBR(膜生物反应器)内的微生物群落结构特征,构建了SRT(污泥龄)分别为10、20、40和80 d的4个平行的MBR,通过PCR-DGGE技术获得各MBR内微生物的DNA指纹图谱,并对条带进行切胶测序. 结果表明,SRT不影响MBR对废水的处理效果,不同SRT下MBR对NH4+-N和CODCr的去除率均能达到90%以上. DGGE结果表明,在运行过程中,各MBR内的微生物群落结构均发生了明显变化,并且不同SRT的MBR内总细菌群落结构变化特征相同;SRT影响同一微生物在各MBR中的出现速率;总细菌Shannon-Wiener多样性指数和丰富度指数均随着SRT的增加而升高,SRT为80 d的MBR内Shannon-Wiener多样性指数最高. 测序结果表明,不同SRT的MBR内的优势种属不同,其中Arcobacter sp.、beta proteobacterium及Thiothrix sp.为不同SRT的MBR中共同存在的关键菌属,对MBR的运行起着重要作用.   相似文献   

11.
膜生物反应器系统中原生动物的群落特征   总被引:2,自引:2,他引:0  
郑祥  刘俊新 《环境科学》2009,30(9):2635-2640
与常规生物处理工艺相比,膜生物反应器(MBR)系统由于污泥停留时间长、污泥浓度高等特点,因此反应器内微生物种群结构呈现不同的特点.通过对MBR系统中原生动物的群落结构进行为期近2年连续的监测结果表明,过长的污泥龄对系统中原生动物的种类与数量均有负面的影响.研究发现:①在长期不排泥的MBR系统中,当环境温度从11℃上升到25℃,原生动物的多样性呈显著上升趋势;②当污泥龄从350 d下降到30 d,MBR系统中原生动物的种类与数量明显增加.特别在较低的环境温度条件下,系统中原生动物的种类与数量随着污泥龄的缩短呈显著的上升趋势;③与相同污泥龄(SRT=30d)的氧化沟(TOD)系统相比,MBR的污泥中原生动物的种类与数量均低于TOD.  相似文献   

12.
厌氧折流板反应器(ABR)中微生物种群演替特征   总被引:3,自引:0,他引:3  
采用SEM,FISH和PCR-DGGE技术对ABR(厌氧折流板反应器)各隔室中厌氧颗粒污泥进行分析,考察微生物形态、真细菌数量及种群结构演替过程,并对优势菌种进行了系统发育分析. 结果表明:ABR反应器颗粒污泥微生物中杆菌占优势,其中前端的微生物生长较好,活性高;沿反应器流程方向,各隔室微生物总量逐渐降低,真细菌相对丰度随之递减,其中1#隔室真细菌相对丰度最高,为65.9%,而5#隔室只有27.2%. 此外,ABR反应器前端以真细菌为主,而后端隔室古细菌含量升高,微生物种群随流程发生显著演替,但5个隔室间真细菌的Shannon-Wiener多样性指数没有显著性变化. UPMGA聚类分析表明,1#隔室与2#隔室的微生物群落相似性为77%,4#隔室与5#隔室的相似性为85%,3#隔室与其他隔室的相似性均较低,表明ABR反应器前端以发酵产酸作用为主,后端以产甲烷作用为主,ABR反应器具有明显的分阶段多相工艺特点.   相似文献   

13.
PCR-DGGE技术在城市污水化学生物絮凝处理中的特点   总被引:20,自引:4,他引:20  
通过PCR-DGGE等分子生物学技术可以不经过常规培养直接从活性污泥和生物膜样品中提取DNA,对16Sr DNA V3区进行PCR扩增,结合DGGE(变性梯度凝胶电泳),从而分析活性污泥与生物膜中微生物种群结构.研究证实,活性污泥培养前后微生物种群结构发生很大的改变.同时对2种污水处理工艺中微生物种群结构进行了对比研究,对同一反应器不同位置微生物分布以及不同工况下的微生物种群结构进行了初步探讨.测定了活性污泥中部分菌种的16S rDNA V3区片段序列,通过NCBI(美国国立生物技术信息中心)基因库比对,初步确定细菌的属.结果显示,PCR-DGGE结合测序技术是一种完全可行的快速进行环境学样品微生物研究的分析方法.  相似文献   

14.
PCR-DGGE技术解析生物制氢反应器微生物多样性   总被引:27,自引:9,他引:18  
为了揭示发酵法生物制氢反应器厌氧活性污泥的微生物种群多样性 ,从运行不同时期取厌氧活性污泥 ,通过细胞裂解直接提取活性污泥的基因组DNA .以细菌 16SrRNA基因通用引物F338GC/R5 34进行V3高变异区域PCR扩增 ,长约 200bp的PCR产物经变性梯度凝胶电泳 (DGGE)分离后 ,获得微生物群落的特征DNA指纹图谱 .研究表明 ,不同时期的厌氧活性污泥中存在共同种属和各自的特异种属 ,群落结构和优势种群数量具有时序动态性 ,微生物多样性呈现出协同变化的特征 .微生物多样性由强化到减弱 ,群落结构之间的相似性逐渐升高 ,演替速度由快速到缓慢 .优势种群经历了动态演替过程 ,最终形成特定种群构成的顶级群落 .  相似文献   

15.
在线NaClO反洗对倒置A2O-MBR系统微生物群落的影响   总被引:1,自引:0,他引:1  
为研究在线NaClO反洗对MBR系统微生物群落结构的影响,采用倒置A2O-MBR反应器分别经历稳定期、在线纯水反洗及在线NaClO反洗阶段,监测系统运行效果、膜污染状况以及微生物群落结构特征.结果表明,在线NaClO反洗阶段反应器对COD、氨氮、TN等的去除效果与反洗前相差无几.在线纯水反洗后平均膜污染速率较稳定期有所降低,而在线NaClO反洗阶段膜污染速率增加,EPS浓度最高,膜污染加剧. Chao指数、Simpson指数和Shannon指数结果表明,在线NaClO反洗后好氧池污泥的微生物多样性几乎不变,而滤饼层污泥的种群丰度略微升高,但微生物的种群多样性明显降低.好氧池和滤饼层污泥的微生物种群主要以变形菌门(Proteobacteria)为主,其次是拟杆菌门(Bacteroidetes).经在线NaClO反洗后,好氧池污泥的变形菌门和拟杆菌门种群相对丰度变化很小,而滤饼层污泥的种群组成变化明显,对氯消毒剂有一定抵抗性的变形菌门从53. 4%增加到77. 8%,而拟杆菌门从33. 4%减少至14. 5%.经在线NaClO反洗后,好氧池和滤饼层在科水平微生物群落分布上十分相似,固氮螺菌科、丛毛单胞菌科等相比NaClO反洗前明显增加,那些能够耐受NaClO处理的微生物种可能是在线NaClO反洗阶段膜污染加剧的主要原因.  相似文献   

16.
The bacterial strain Paracoccus denitrificans W12, which could utilize pyridine as its sole source of carbon and nitrogen, was added into a membrane bioreactor (MBR) to enhance the treatment of a pharmaceutical wastewater. The treatment efliciencies investigated showed that the removal of chemical oxygen demand, total nitrogen, and total phosphorus were similar between bioaugmented and non-bioaugmented MBRs, however, significant removal of pyridine was obtained in the bioaugmented reactor. When the hydraulic retention time was 60 hr and the influent concentration of pyridine was 250-500 mg/L, the mean effluent concentration of pyridine without adding W12 was 57.2 mg/L, while the pyridine was degraded to an average of 10.2 mg/L with addition of W12. The bacterial community structure of activated sludge during the bioaugmented treatment was analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that the W12 inoculum reversed the decline of microbial community diversity, however, the similarity between bacterial community structure of the original sludge and that of the sludge after bioaugmentation decreased steadily during the wastewater treatment. Sequencing of the DNA recovered from DGGE gel indicated that sp., Sphingobium sp., Comamonas sp., and Hyphomicrobium sp. were the dominant organisms in time sequence in the bacterial community in the bioaugmented MBR. This implied that the bioaugmentation was affected by the adjustment of whole bacterial community structure in the inhospitable environment, rather than being due solely to the degradation performance of the bacterium added.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号