首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
针对河湖氮磷控制标准不衔接问题,以大型浅水湖泊太湖为例,基于2013—2018年环太湖主要入湖河流和湖体总氮浓度〔ρ(TN)〕、总磷浓度〔ρ(TP)〕、叶绿素a浓度〔ρ(Chla)〕、水量等监测数据资料,采用湖盆模型(Bathtub模型),构建太湖主要入湖河流与湖体ρ(TN)、ρ(TP)和ρ(Chla)的响应关系,分析了主要入湖河流ρ(TN)、ρ(TP)和水量对湖体富营养化的影响,探讨了太湖主要入湖河流水量及其与湖体氮磷协同控制限值. 结果表明:①太湖主要入湖河流氮磷的输入仍显著影响湖体ρ(TN)、ρ(TP),尤其是对西北部湖区的富营养化水平产生了显著影响;②在入湖水量方面,湖西区入湖水量增加可导致太湖富营养化程度增加,而“引江济太”水量输入在一定程度上改善了太湖水质. 建议分区域控制直接入湖河流水量,其中,湖西区直接入湖水量控制在60×108~70×108 m3之间,望虞河“引江济太”水量控制在15×108~20×108 m3之间;③针对太湖流域而言,现行《地表水质量标准》(GB 3838—2002)在协同控制河、湖氮磷方面存在一定的不足,仅通过控制入湖河流ρ(TN)、ρ(TP),太湖ρ(TN)、ρ(TP)难以达到Ⅲ类水质标准;④与全湖平均值相比,湖西区要达到同一标准限值,入湖河流协同控制限值要更为严格. 在河湖氮磷衔接目标制定上,建议湖西区单独设定协同控制目标浓度值. 另外,建议结合《地表水质量标准》(GB 3838—2002),开展太湖流域水质、水量协同控制,有效约束入湖通量,达到河湖氮磷协同控制目的.   相似文献   

2.
近年来国家围绕太湖水环境污染治理做了大量的工作,对各类污水排放浓度进行了严格的控制,但是要从根本上解决太湖的生态环境问题,必须说清太湖流域主要污染物入湖总量,进一步满足太湖流域监督管理的要求,为太湖流域污染物总量削减计划和环境污染控制规划提供科学的依据。本文介绍了太湖流域主要污染物入湖总量研究成果,提出了水质自动站与手工监测结合对流域内主要污染物入湖总量核定的技术,并对入湖河流进行优化筛选。  相似文献   

3.
顾丹提 《环境科技》1995,8(1):15-16,39
太湖水源是整个太湖流域地区国计民生的命脉,近十年来,由于经济迅速发展,城市化进程加快,太湖生态环境问题日渐突出。太湖水质恶化,10年内下降了一个等级。目前太湖水质平均已接近三类水,近30%的水面为四类水,其中五类水面占全彻的15%,大部分入湖河道劣于五类水;太湖水体中藻类数量增长了5倍,2/3的湖面呈中富至富营养化过渡状态,1/3的湖面为中富营养化状态。太湖及其流域的主要污染来源是:(l)农业和生活污水大量增加。每年200至30O万吨化肥、5至8万吨农药中的70%未分解排入水体24000万人口的生活污水和粪便未经处理流入…  相似文献   

4.
国务院总理温家宝4月2日主持召开国务院常务会议,研究部署太湖流域水环境综合治理工作。会议原则同意《太湖流域水环境综合治理总体方案》的治理目标,要求到2012年,太湖湖泊富营养化趋势得到遏制,湖体水质有所改善,主要饮用水水源地水质基本达到三类。实现这一目标,一要优先保障饮用水安全,完善区域供水安全保障体系和蓝藻事故防范措施,  相似文献   

5.
环太湖河流水质时空分布特征   总被引:8,自引:2,他引:6       下载免费PDF全文
卢少勇  焦伟  王强  甘树  任德友 《环境科学研究》2011,24(11):1220-1225
针对太湖流域所划分的5个污染控制区,对各区共29条主要环太湖河流水质指标进行了测定,分析其时空变化特征,旨在为合理预防和治理太湖水体富营养化提供依据. 结果表明,北部重污染控制区内河流污染最为严重,并呈现出北部重污染控制区>湖西重污染控制区>浙西污染控制区>东部污染控制区的趋势. 对比10年来历史数据表明,环太湖河流水质呈好转趋势,但现状仍不容乐观. 入湖河流污染问题依然严峻,而削减氮入河量是太湖入湖河流治理的重中之重.   相似文献   

6.
太湖底泥的空间分布和富营养化特征   总被引:32,自引:0,他引:32  
太湖是一个大型的浅水湖泊,周围有数十条入湖河流,陆地风化物质被携带入湖即形成了底泥,由于湖底地形的差异。底泥在湖中的分布并不均匀,根据浅地层剖面仪的测量,在湖的西部存在一条南北向分布,宽度不等的古河道,底泥主要分布于古河道,在湖的沿岸和东太湖也有分布,根据估算,太湖底泥的蓄积量约为13.5亿m^3。太湖周围人口密集,工农业发达,二十多年来经济的快速发展引起了湖泊的富营养化,太湖底泥中的营养元素不断增高,并在一定的条件下向水体释放,加剧了水体的富营养化,引起连续多年春夏季节的蓝藻爆发,经过政府的源头控制和治理。目前富营养化状况初步得到遏止,并有改善的迹象。但底泥中的营养元素可以在很长时间内释放,因此富营养化的治理将是一个长期的过程。  相似文献   

7.
根据2008年度江苏省太湖流域15条主要入湖河流污染物(高锰酸盐指数、氨氮和总磷)每月一次的监测数据,分析15条主要入湖河流2008年度水质状况,并与2005年进行比较;计算2008年入湖河流污染物入湖总量,根据太湖水污染主要原因,提出治理建议。  相似文献   

8.
太湖出入湖河道与湖体水质季节差异分析   总被引:3,自引:0,他引:3  
基于2016年太湖16条主要河道及对应湖体的水质逐月监测数据,深入探讨了太湖流域不同分区河道的外源营养盐输入对湖体水质影响及其季节变化.结果发现:(1)太湖流域河道总氮(TN)、溶解性总氮(DTN)、总磷(TP)和溶解性总磷(DTP)的月平均浓度均高于对应湖体,主要入流区河道与临近湖体的营养盐浓度呈现显著正相关,表明外源补给对湖体营养盐浓度产生巨大影响;(2)无论是河道还是湖体的营养盐浓度,均呈现明显的季节变化,且峰值产生月份不同:河道平均TN最高值出现在3月,为4.82 mg·L-1,平均TP最高值出现在12月,为0.218 mg·L-1;湖体TN、TP峰值均出现在蓝藻水华暴发期间(7月),分别为4.13 mg·L-1和0.255 mg·L-1;(3)极端降水过程短期内能明显降低河道营养盐浓度,但会引起湖体营养盐外源负荷的明显增高,不利于湖体富营养化控制.本研究表明,对于空间异质性较高的大型浅水湖泊,流域河道入湖污染对湖体营养盐时空格局具有重要的塑造作用,而湖体的污染物自净能力、蓝藻水华物质的空间堆积及风浪引发的底泥再悬浮作用等也都对湖体营养盐浓度、时空格局产生重要影响.  相似文献   

9.
在总结“十一五”太湖富营养化治理成效、存在问题的基础上,提出“十二五”期间水体污染控制与治理科技重大专项太湖富营养化控制与治理项目的总体设计思路. 项目以综合示范区水质改善为目标,重点研发园区化乡镇企业工业废水中难降解含氮、磷有机物的深度削减技术,农田种植业和农村分散式生活污水的控源减排技术,“湖荡湿地-入湖河流-湖滨缓冲带”为一体的生态拦截与修复技术;以湖泊水生态安全保障为目标,研发湖泛与水华灾害应急处置技术及建立水资源优化调度决策平台. 选择太湖流域重污染型竺山湾小流域、面源污染主控型苕溪小流域和城市化型太湖新城三大典型综合示范区,通过控源减排和生态修复关键技术的研发、集成和综合实施,实现综合示范区污染负荷得到有效控制、示范区水环境质量得到改善和规模化蓝藻水华发生得到有效控制的目标.   相似文献   

10.
骆马湖富营养化调查   总被引:2,自引:0,他引:2  
骆马湖为一浅水湖泊,具有典型的过水性特征,其已经处于中—富营养化阶段。通过对骆马湖富营养化发生机制的研究,发现入湖河道携入大量营养物质入湖和水生植物的破坏是骆马湖富营养化进程加快的主要原因。并提出了控制骆马湖富营养化的一些措施:控制外源污染物入湖、加强湖滨湿地建设和水生植物的保护、合理的水库调度以及湖泊内部的生物治理。  相似文献   

11.
对"十一五"江苏省地面水域水质状况及时空分布特征进行了全面分析,结果表明,"十一五"期间,江苏省地表水水质总体处于轻度污染状态,河流水质呈现较为明显的有机污染特征,影响水质的主要污染物为石油类、氨氮、五日生化需氧量等;主要湖库氮、磷污染较为突出,湖库富营养化问题尚未得到有效控制。水质污染总体表现为枯水期>平水期>丰水期。受社会经济发展影响,地表水质呈现一定的区域流域差异,经济较发达地区水质污染也相对较重。总体来看,"十一五"期间由于加大了产业结构调整与污染防治力度,江苏省地面水域水质污染状况有所改善。  相似文献   

12.
太湖重点污染控制区综合治理方案研究   总被引:74,自引:1,他引:73  
太湖流域是中国人口和城镇最为密集的经济发达地区,同时也是富营养化和生态破坏严重的大湖流域之一。太湖的水质污染目前已严重影响流域的可持续发展,并对人们的身体健康造成潜在危险。如何治理太湖、保护太湖已成为当地政府和科技人员的紧迫任务。笔者通过对太湖近15 a来水质发展趋势及污染物来源的分析,提出了太湖污染治理的重点污染控制区及相应的治理工程方案。   相似文献   

13.
成都地区水质调查与富营养化评价   总被引:1,自引:0,他引:1  
蒋伟  柴夏  颜飞 《环境科学与技术》2012,(Z1):370-372,430
为了解成都地区各类水体的水质情况,以便为以后的水资源保护及水环境修复工作提供参考依据。特对成都地区的城市景观水体、住宅区景观水体、湖泊、河流以及农业养殖用水的水质情况进行调查,并采用综合营养状态指数法对各类水体的富营养化状态进行评价。结果表明:成都地区水质污染情况严重,河流和养殖水体均达到重度富营养水平,而城市水体也已接近中度富营养水平。  相似文献   

14.
Eutrophication status and control strategy of Taihu Lake   总被引:1,自引:0,他引:1  
The water quality and eutrophication status of Taihu Lake in recent years are presented and the pollution trends are analyzed. It is shown that because of unreasonable industrial structures, pollution discharge per GDP is high within the Taihu basin, and the pollution discharge from point and non-point sources exceed the basin’s environmental carrying capacity. Especially, excessive pollutants containing nitrogen and phosphorus are being discharged. Moreover, eutrophication may also result from internal pollution sources such as the release of nutrient elements from sediment. All these factors have resulted in the water quality deterioration of Taihu Lake. To solve this environmental problem, possible control strategies are summarized, including the control of internal pollution sources and inflow-river pollution, ecological restoration and reconstruction of the degraded lakeside zone ecosystem, clean water diversion, dredging, and manual algae removal.  相似文献   

15.
巢湖污染现状与水质恢复措施   总被引:2,自引:0,他引:2  
巢湖是属于国家"三河三湖"重点水污染防治流域之一。近年来,湖体营养过程加剧,生态环境受到明显损害,制约了流域社会经济的可持续发展。巢湖湖区水中高锰酸钾、总氮、总磷含量分别为4.9、2.48、0.227mg/L,水质类别为劣ⅴ类(重度污染);表层沉积物中总氮、总磷含量平均值为1065、587 mg/kg。要实现流域水资源的可持续利用,必须加快水污染综合治理。文章分析了巢湖污染现状,结合实际情况提出了治理对策。  相似文献   

16.
白洋淀污染的主成分分析   总被引:2,自引:0,他引:2  
在上游多种污染物排放的影响下,白洋淀的污染呈现了富营养化和沼泽化等多种表象。文章以白洋淀为研究对象,采用基于因子分析的主成分分析方法,将白洋淀水质监测数据概括为5个主成分,即:富营养化特征指标、有机物污染指标、藻类生物量指标、生物生长环境指标、水体酸碱度指标。经分析得出:富营养化污染最严重,有机污染次之。文章进一步分析讨论了各主成分的内涵和湖泊的污染净化机理,为白洋淀水体污染的科学治理提供依据。  相似文献   

17.
工业型城镇水环境调控研究——以张家港塘桥镇为例   总被引:1,自引:0,他引:1  
苏州市是长江三角洲城镇密集区,区内水网密布,湖泊众多,该流域丰富的水资源是区域社会经济发展的基础条件,但是伴随人口增长、城市扩大和工业化的快速发展,造成了很多的水体污染与环境容量下降问题。本文以张家港市塘桥镇为倒,分析了该镇在城镇化过程中的水环境变化及发展趋势,从水域治理、污水处理方式、污水资源化、监督管理手段等方面提出相应的调控对策。  相似文献   

18.
大纵湖是江苏省里下河地区的重要湖泊之一,该文介绍了大纵湖自然概况,分析了大纵湖污染现状,如对水环境状况,出、入湖河流水质状况,底泥污染状况以及污染源状况进行了分析,并剖析了大纵湖水环境和污染源特征。针对存在的氮磷超标导致湖体富营养化、生态退化以及入境客水污染等主要环境问题,提出了控制污染物排放总量、修复湖泊生态、治理客水和强化水质监控等措施,为有效地改善大纵湖水环境质量,遏制湖泊富营养化趋势提供科学支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号