首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
移动床膜生物反应器同步硝化反硝化特性   总被引:11,自引:3,他引:8  
杨帅  杨凤林  付志敏 《环境科学》2009,30(3):803-808
采用挂膜填料代替传统膜生物反应器(MBR)的活性污泥,构建一种新型的移动床膜生物反应器 (MBMBR),考察其处理模拟生活污水的效果及同步硝化反硝化(SND)特性.结果表明,移动床膜生物反应器运行67 d,对模拟生活污水表现出良好的去除有机物及同步硝化反硝化能力.进水COD浓度为573.5~997.7 mg/L时,膜出水COD去除率为88.3%~99.2%.进水氨氮浓度为45.5~99.2 mg/L时,膜出水氨氮去除率为72.1%~99.8%,总氮去除率为62.0%~96.3%.批式实验结果表明,生物膜去除总氮的最佳溶解氧浓度为1 mg/L,其中氨氮和总氮去除率分别为100%和60%.生物膜系统内可能存在好氧反硝化现象.DO为3 mg/L且有机碳源充足时,生物膜总氮去除率为99.0%,SND率达到99.8%.扫描电镜对生物膜的观察发现生物膜内部存在着明显的孔隙,有利于溶解氧和有机基质从外界向生物膜内部传递.  相似文献   

2.
一体式膜生物反应器同步硝化反硝化中试实验研究   总被引:1,自引:1,他引:0  
通过一体式膜生物反应器中试装置的连续运行,研究了DO、进水碳氮比(C/N)、有机负荷率(F/M)、pH值对同步硝化反硝化的影响机制,结果表明:一体式膜生物反应器中试装置中同步硝化反硝化效果最好的工作条件为:DO控制在0.8mg/L左右,进水C/N比在10左右,F/M为0.34kgCOD/(kgMLSS·d),pH值在中性略微偏碱处。  相似文献   

3.
循环流生物膜反应器同时硝化反硝化实验研究   总被引:3,自引:0,他引:3  
研究了循环流软性填料生物膜反应器的同时硝化反硝化。实验结果表明,反应器中确实存在着同时硝化反硝化现象。考察了碳氮比(C/N)和溶解氧(DO)对同时硝化反硝化的影响。在进水COD和NH4+—N浓度为500mg/L、15mg/L时,出水COD、NH4+—N和TN浓度<50mg/L、3.0mg/L、4.5mg/L,COD去除率、硝化率和反硝化率分别达到90%、80%和70%。  相似文献   

4.
一体式膜-生物反应器同步硝化反硝化中试试验   总被引:3,自引:0,他引:3  
当污泥浓度维持在19~20g/L时,一体式平板膜-生物反应器运行112d,通量稳定在25.2~25.7L/(m2.h),运行过程除正常曝气以保持对膜进行水力冲刷外没有进行任何物理和化学清洗。试验考察不同DO浓度对同步硝化反硝化效果的影响,结果表明,反应器内有较好的硝化反硝化效应,当温度在18~12℃变动时,膜生物反应器的硝化反硝化效果基本不受温度的影响。  相似文献   

5.
张静蓉  王淑莹  尚会来  彭永臻 《环境科学》2009,30(12):3624-3629
采用SBR反应器考察了短程硝化反硝化和同步硝化反硝化脱氮过程中N_2O的释放.通过实时控制策略实现了短程硝化反硝化生物脱氮,亚硝化率可维持在90%以上.在溶解氧水平为0.5、 1.0、 1.5和2.0 mg/L条件下,考察N_2O的释放和亚硝化率的变化情况.结果表明,溶解氧1.5 mg/L时最有利于维持稳定的亚硝化率,同时N_2O逸出量最小,每去除1 g氨氮释放N_2O 0.06 g;在碳纤维填料SBR反应器中,通过维持较低溶解氧水平和分段投加碳源的运行方式成功实现了同步硝化反硝化,同步硝化反硝化率在79%以上.在溶解氧水平为0.2、 0.4、 1.0和1.5 mg/L时,考察N_2O的逸出情况.结果表明,溶解氧在1.0 mg/L时最有利于控制N2O的释放,每去除1g氨氮释放N2O 0.021 g,其N_2O释放量仅为短程硝化反硝化的1/3.  相似文献   

6.
MBR中影响同步硝化反硝化的生态因子   总被引:40,自引:1,他引:39  
研究了DO、C/N、pH等生态因子对膜生物反应器同步硝化反硝化的影响.结果表明,只有在各生态因子保持得当的条件下,同步硝化反硝化才能顺利地进行.DO为1mg/L左右、C/N比为30左右、进水pH值约7.2左右时COD、NH4+、TN的去除率分别为96%、95%和92%.  相似文献   

7.
在序批式生物膜反应器内接种以氨氧化细菌和反硝化细菌为主的活性污泥,期望实现亚硝酸型同步硝化反硝化生物脱氮,处理城市污水。在进水TN为30~40 mg/l、氨氮为30~35 mg/l、COD为250 mg/l左右、pH值为7.50~7.80、温度为25±1℃等条件下,研究不同溶解氧对总氮去除率和亚硝酸盐氮积累率的影响,结果表明,在溶解氧浓度为1.5~2.5 mg/l时,可以实现稳定的亚硝酸型硝化反硝化,总氮去除率为75%左右,亚硝酸盐氮积累率为65%~82%。  相似文献   

8.
研究了不同的C/N比对半悬浮生物填料同步硝化反硝化(SND)过程的影响,并尝试找出能够实现完全脱氮的最佳C/N比.半悬浮生物填料生物膜反应器采用一种新颖的DO微电极技术展开试验,其结果从物质传递和分子生物学角度来阐明SND效率的差别.结果表明,物质传质和微生物的因素对SND效率有联合作用,生物膜的生物量、生物膜的结构和厚度及EPS在SND过程中有着重要的作用.使用半悬浮生物填料明显提高生物膜反应器内的生物多样性,它可以在C/N比20的条件下运行8 h后实现总氮的去除.  相似文献   

9.
曝气—过滤一体化装置中同步硝化反硝化的研究   总被引:5,自引:0,他引:5  
曝气—过滤一体化装置主要由生物反应器、慢性砂滤池及滤布组成。因慢性砂滤池和滤布具有分离截留作用,可以使生物反应器中活性污泥浓度维持在较高水平。当污泥浓度维持在9~l0g/L时,曝气一过滤一体化装置中要取得较好的同步硝化反硝化效果应满足:DO为1mg/L,C/N值为29,pH值在7.7~8.1之间。  相似文献   

10.
亚硝化/电化学生物反硝化全自养脱氮工艺研究   总被引:6,自引:0,他引:6  
开发出了针对低C/N比高氨氮废水处理的亚硝化/电化学生物反硝化全自养脱氮新工艺,并对新工艺进行了系统的研究.试验结果表明,新工艺能取得较好的脱氮效果,在溶解氧为0.5~1.2mg·L-1,pH值为7.5~8.2,温度为17~30℃,进水氨氮浓度不高于1000 mg·L-1,C/N比不高于0.5,HRT不高于32h条件下,亚硝化/电化学反硝化工艺装置运行稳定,亚硝化段膜生物反应器(MBR)出水的氨氮去除率和亚硝氮生成率均能稳定在50%左右,MBR出水中的剩余氨氮和生成的亚硝氮经电化学生物反硝化段(硫碳混合反应器)处理后,最终出水总氮去除率超过95%;出水中的SO2-4浓度不高于1280 mg·L-1.新工艺最高氨氮负荷为1.11kg·m-3·d-1.  相似文献   

11.
生物膜—膜生物反应器脱氮除磷性能   总被引:12,自引:1,他引:11       下载免费PDF全文
在膜生物反应器中投加聚乙烯悬浮填料,考察生物膜—膜生物反应器对生活污水中污染物质去除效果.结果表明,投加悬浮填料使膜生物反应器去除有机污染物质的能力得到增强,总氮、总磷的平均去除率由45.5%和47.2%分别增至57.4%和71.8%.投加悬浮填料还可以延缓膜污染,膜生物反应器中膜丝比流量在试验结束时为0.1L/(hkPa),而未投加悬浮填料的膜生物反应器中膜丝比流量降至0.036L/(hkPa).  相似文献   

12.
膜-生物反应器处理微污染水源水的运行特性   总被引:17,自引:0,他引:17       下载免费PDF全文
考察了悬浮生长型MBR和3种附着生长型MBR处理人工模拟微污染水源水时的运行特性.结果表明,4种MBR对氨氮的去除率均可达到85%~90%.投加块状填料和粉末活性炭(PAC)的MBR对有机污染物去除率较高;投加沸石粉的MBR和悬浮生长型MBR有机物去除效果较前两者低.当水力停留时间(HRT)为2~4h时,HRT对MBR有机物和氨氮的去除效果影响很小.PAC投加量及其饱和程度会影响PAC-MBR系统对有机物特别是UV254的去除率.当PAC投加量提高到1000mg/L以上时,PAC饱和前UV254的去除率可较块状填料-MBR提高约25%; PAC饱和后,两系统对有机物的去除效果相差不大.对于连续运行中膜的过滤性能,投加PAC和块状填料的MBR与悬浮生长型MBR相差不大,而沸石粉-MBR最低.改变PAC投加量对PAC-MBR中膜过滤性能的影响不大.  相似文献   

13.
溶解氧对膜生物反应器处理高氨氮废水的影响   总被引:4,自引:0,他引:4  
采用膜生物反应器(MBR)处理高氨氮有机废水,探讨了溶解氧(DO)对有机物、氨氮、总氮等去除效果的影响。当进水COD1500mg/L,NH4+-N150mg/L,TP为15mg/L,pH7.5~8.0,MLSS控制在6000~7000mg/L,DO在0.5~4mg/L时对COD的去除效果没有明显影响,都可高达95%;在DO为4.0和2.0mg/L时对NH4+-N的去除率都很高,最高可达99.17%,在DO为0.5mg/L时明显降低,最低降至48.30%。在DO2.0mg/L时,取得了较好的同步硝化反硝化效果,COD、NH4+-N、TN去除率分别高达97%、97%、68%。MBR中硝化反应的比氨氮消耗速率与氨氮浓度成零级反应动力学,比氨氮硝化速率为0.0979/d,比常规处理系统中的污泥硝化活性高。  相似文献   

14.
为了寻找经济适用、无二次污染的选矿药剂废水的处理方法,首次采用MBR技术对辽宁某选矿药剂厂的黄药废水进行处理。研究了MBR系统启动与驯化过程中污泥的变化特性,并利用已运行稳定的MBR系统处理黄药废水,考察其处理效果。试验结果表明:当废水水样的黄药质量浓度为353.5~487.0 mg/L、ρ(COD)为1135.5~1486.9 mg/L、pH为9左右时,MBR系统在外加C源无水乙酸钠为0.5g/L、HRT为24 h、反应温度为(28±2)℃时处理该废水,系统连续运行12 d,其出水COD去除率均高于94.5%、黄药去除率均高于99.8%。该研究结果为选矿药剂———黄药废水的处理提供了一条新途径。  相似文献   

15.
为探究高效经济的电镀废水处理工艺,本研究采用悬浮载体复合MBR工艺(HMBR)与普通MBR工艺平行运行,以重金属离子Cu2+、Ni2+、Cr(VI)为代表,重点研究了不同浓度重金属冲击下对两种工艺处理电镀综合废水效能及微生物活性的影响,以及载体的介入对膜污染的控制作用和对微生物种群多样性的影响.实验结果表明:在Cu2+、Ni2+、Cr(VI)浓度5~30mg/L冲击下,HMBR工艺对COD和NH4+-N去除效率分别在60%和40%以上,而普通MBR工艺对COD、NH4+-N的去除率分别为30%和15%以上.随着重金属Cu2+、Ni2+、Cr(VI)浓度的升高,MBR反应器内活性污泥的污泥浓度及SOUR逐步下降,HMBR工艺SOUR受抑制率48.9%远小于普通MBR工艺的73.9%.HMBR系统中EPS分泌显著低于普通MBR工艺,有效减缓膜污染的速率.此外,投加载体增加了反应系统中微生物种群多样性.  相似文献   

16.
采用连续流MBR反应器处理晚期垃圾渗滤液,考察其亚硝化性能;并探讨底物、产物和毒性物质对亚硝化性能的抑制及其动力学特性.结果表明,在进水NH4+-N浓度为(280±20) mg/L时,通过控制DO为0.5~1 mg/L,pH值为7.8~8.2和温度为(30±1)℃,成功启动MBR的亚硝化工艺,在第32d时, NO2--N积累率为84.27%;后逐步升高进水负荷,并提高DO至2~3 mg/L,逐渐实现MBR系统中以晚期垃圾渗滤液原液为进水的亚硝化,在第112d时,系统出水NO2--N浓度为889 mg/L, NO2--N积累率为97.23%.底物、产物和毒性物质的抑制实验表明,毒性物质对微生物的抑制作用强于底物和产物;当毒性物质浓度(以COD计)为1600.2 mg/L时,氨氧化速率下降了22.15%,而相应条件下若以FA为单因子抑制时,氨氧化速率下降了4.74%~6.49%,若以FNA为单因子抑制时,氨氧化速率相比下降了14.46%~15.86%.分别采用Haldane底物抑制模型、Aiba产物抑制模型以及修正后的毒性物质抑制模型对实验数据进行非线性拟合,相关系数R2分别为0.9821、0.9961和0.9924,并得到底物、产物和毒性物质的抑制动力学模型.  相似文献   

17.
分别采用PVDF膜(第1~219d)和尼龙(Nylon)膜(第220~360d)长期运行膜生物反应器(MBR),分析MBR系统的脱氮性能和膜污染特性.结果表明,反应器最终在进水NH4+-N和NO2--N浓度分别为400~740mg/L和460~790mg/L的条件下稳定运行112d,总氮去除率(TNRE)维持在86%左右,总氮去除负荷(NRR)为0.61~1.08kg N/(m3·d).经过263d的运行,反应器中混合液悬浮固体浓度(MLSS)从4918mg/L增至7230mg/L,混合液挥发性悬浮固体浓度(MLVSS)从2585mg/L增加至4455mg/L,比厌氧氨氧化活性(SAA)最高达0.46g N/(d·gVSS).无论是PVDF膜还是尼龙膜,Anammox-MBR系统在一个膜污染周期结束时,都是泥饼层阻力占主导,但二者的膜污染机制不同.与相同水力停留时间(HRT)下运行的PVDF膜相比,尼龙膜的膜污染发展速度显著减小.结合脱氮性能和膜污染情况,本实验条件下,MBR系统优先采用尼龙膜在HRT=1.5d运行.  相似文献   

18.
生物膜MBR反应器和MBR反应器处理洗涤废水比较   总被引:1,自引:1,他引:1  
比较生物膜MBR反应器和MBR反应器处理洗涤废水的效果。结果表明,两个系统对COD、LAS及氨氮的去除均具有良好的处理效果。和MBR反应器相比,生物膜MBR反应器的运行条件要好。生物膜MBR反应器的运行条件:水力停留时间(HRT)4~4.5h,气水比351∶,而MBR反应器的运行条件:水力停留时间(HRT)9~10h,气水比451∶。通过两个反应器抗冲击负荷实验的研究,结果表明,在进水水质相同的条件下,就膜生物反应器的上清液而言,生物膜MBR反应器具有更好的抗冲击负荷能力。  相似文献   

19.
实验采用厌氧膨胀颗粒污泥床(EGSB)反应器与好氧膜生物反应器(MBR)组合工艺对糖蜜发酵废水进行处理.重点考察了组合工艺对发酵废水的处理效能,包括甲烷的产生效率、污染物(COD、NH4+-N和TN)的去除效能.实验结果表明:控温条件下[(35±1)℃]、进水COD约为2250mg/L、pH在为6.0左右时,EGSB对发酵废水的COD去除率可达75.6%,甲烷的容积产气速率为0.48m3/(m3·d).MBR在溶解氧(DO)为1~2mg/L左右时,采用曝气-搅拌交替运行方式处理EGSB出水,可以实现同步硝化反硝化,并且在曝气3h-搅拌1h交替运行条件下,NH4+-N、TN去除率分别为85.13%、58.57%,而最终COD去除率达到85%.  相似文献   

20.
MBR工艺处理磷霉素制药废水启动实验   总被引:2,自引:1,他引:1  
采用膜生物反应器(Membrane bioreactor,MBR)土艺处理磷霉素制药废水,考察了MBR反应器的启动过程及MBR工艺对磷霉素废水的处理效果和稳定性.结果表明,COD值为1 498.9 mg/L,总磷浓度为105.4 mg/L,有机磷浓度为98.0 mg/L的磷霉素废水,反应器在启动30d后MBR内的污泥驯...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号