首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
用体视显微镜和电化学极化技术考察了微液滴现象的形成特征及其在大气腐蚀过程中的作用.结果表明,金属性质、主液滴性质、气相环境相对湿度和液/固界面性质对微液滴形成有重要影响.微液滴的出现能够增强金属表面润湿能力,促进金属表面液膜的扩展,从而诱发和加速大气腐蚀过程.  相似文献   

2.
利用现有环境试验网站材料腐蚀数据和环境腐蚀数据并加以整理,在Unix操作系统环境下,采用Oracle数据库管理系统,设计和创建了材料大气腐蚀网络数据库中的有色金属材料子库.并在此有色金属材料大气腐蚀数据库的基础上,运用Java语言以及Spring、Hibernate等Java开源项目,编程设计、开发创建了B/S结构的数据库的共享系统.共享系统包括网络数据库管理系统和查询系统两大部分,易于扩展,操作方便,功能强大,可实现材料环境腐蚀数据的共享.  相似文献   

3.
采用电化学测量技术和原子力显微镜(AFM)研究室温含氧或无氧0.5 mol/L NaCl水溶液中铜的缝隙腐蚀现象.结果表明,铜发生缝隙腐蚀的过程中,金属腐蚀电位朝负移动,至一最低值并保持不变.同时,观察到铜缝隙腐蚀形态与通常的不锈钢缝隙腐蚀现象不同,即缝外腐蚀严重,缝内腐蚀相对较轻或几乎没有.发生这种现象主要是由于形成了金属离子浓差电池引起的.  相似文献   

4.
铝合金及其氧化膜大气腐蚀行为与机理研究进展   总被引:7,自引:3,他引:7  
综述了铝合金及其阳极氧化膜的大气腐蚀行为和特点。重点阐述了铝合金及阳极氧化膜大气腐蚀过程,大气腐蚀形态即点蚀、晶间腐蚀和剥蚀的特点,我国大气腐蚀规律,大气腐蚀的影响因素、研究方法以及最新进展,并展望了铝合金大气腐蚀的研究趋势。  相似文献   

5.
我国大气腐蚀研究进展   总被引:3,自引:2,他引:1  
总结了近几年来我国在大气腐蚀方面的研究现状和进展,尤其是国产、常用、量大、面广的4大类材料在我国9类主要典型大气环境下的腐蚀数据;各类典型材料在典型环境下的大气腐蚀行为规律;大气环境因素对材料大气腐蚀的影响;碳钢、低合金铜大气腐蚀行为预测.特别是在根据8年试验结果所总结出的大气腐蚀速度与试验时间之间具有幂函数关系的基础上,又进一步建立了腐蚀速度与合金元素之间的数学模型关系;探讨了采用ACM技术评估大气腐蚀严酷性;初步建立了大气腐蚀数据库,并进一步采用计算机发展网络查询服务系统,实现科学数据共享;经过20余年的研究,撰写并出版了中国材料自然环境腐蚀专著中的大气腐蚀篇,研制和生产了经济耐候钢.  相似文献   

6.
目的探索2A12铝合金在EXCO溶液中腐蚀损伤形貌的演化规律。方法开展实验室内2A12铝合金的加速腐蚀实验。为实现表面粗糙度与腐蚀损伤相关性的定量研究,首先采用3D扫描成像仪对实验样品进行扫描,取得样品微观几何特征,实现表面粗糙度值的数字化定量表征。观察样品在EXCO溶液中腐蚀损伤的发生发展过程、腐蚀形貌的演化过程,测量腐蚀样品蚀坑深度,并分析表面粗糙度对样品腐蚀损伤的影响。结果当腐蚀时间不超过6 h时,2A12铝合金样品在EXCO溶液中的腐蚀类型主要为点蚀,随着时间的延长,将向全面腐蚀发展。粗糙度值高的试件表面有打磨时形成的较深表面纹理,这些纹理制约了点蚀坑的扩展,使蚀坑沿纹理的方向发展,有演化为微裂纹的可能性,蚀坑边界的不规则处也会萌生微裂纹。粗糙度值较小的样品,腐蚀损伤也较小,但粗糙度对腐蚀损伤的影响随时间的延长而减弱。结论常温下,2A12铝合金在EXCO溶液中首先发生点蚀,由于蚀坑向四周扩展的速度快于深度方向,使腐蚀类型从点蚀向全面腐蚀演变。表面粗糙度对2A12铝合金样品腐蚀损伤形貌的演化有重要影响,表面微观几何特征通过制约蚀坑扩展方向的方式来改变样品的腐蚀行为,并造成腐蚀损伤的明显差异。随着腐蚀时间的延长,材料逐渐失去其原有表面微观几何特征,表面粗糙度对腐蚀行为的影响下降。  相似文献   

7.
首先简要阐述了金属大气腐蚀的机理及过程,介绍了大气腐蚀过程中腐蚀产物的种类。然后分别从腐蚀产物的物理性质、化学性质(电化学)等方面对金属大气腐蚀过程影响的研究进行了探讨,并着重总结了腐蚀产物光电性质对金属腐蚀的影响。最后对该研究方向进行了展望。  相似文献   

8.
建立了大气细粒子中类腐殖质(HULIS)表面活性的动态表征方法,并以华北平原乡村站点冬季大气PM2.5样品为例,对PM2.5中HULIS的表面活性进行表征.HULIS碳质组分(HULIS-C)浓度为2.0~4.6μg C/m3,占水溶性有机碳和总有机碳的比例分别为31%~40%和20%~26%.浓度为88~200mg C/L的HULIS水溶液,其表面张力相对于纯水降低了18%~22%.HULIS-C浓度在低于70mg C/L时表面张力降低显著,在88~320mg C/L之间降低相对缓慢.动态表面张力随着时间变化逐渐降低,在液滴形成后200s以内表面张力下降迅速,之后趋于平缓,说明表面活性分子在液滴中扩散趋于稳定需要一定的时间,该特征时间可能影响表面活性物质在云凝结核活化时的作用.证实了在污染地区的大气PM2.5中含有一定量的表面活性物质,这些物质可能对颗粒物活化为云滴、雾滴过程产生显著影响;表面活性物质的存在可能在外界湿度变化过程中导致颗粒物发生液-液相分离现象,在颗粒物表面形成有机膜,影响活性分子摄取以及半挥发性物质的气-粒分配过程,从而影响大气非均相反应过程.  相似文献   

9.
目的为30CrMnSiA高强钢的大气腐蚀防护设计、应用范围扩展和开发新钢种提供有益的借鉴和参考。方法采用腐蚀质量损失、XRD和SEM研究了30CrMnSiA高强钢在工业和海洋大气环境暴露60个月的大气腐蚀行为。结果 30CrMnSiA高强钢在工业和海洋大气环境中腐蚀质量损失随暴露时间变化的双对数函数分别是lgΔw=2.245+0.387lg t和lgΔw=2.822+0.637lg t。纤铁矿和针铁矿是两种大气环境中形成的腐蚀锈层的主要成分,除了纤铁矿和针铁矿外,在海洋大气环境形成的锈层中还发现了四方纤铁矿。随着暴露时间的延长,在海洋大气环境中形成的锈层呈现逐渐剥落的趋势。结论 30CrMnSiA高强钢在海洋大气环境中表现出较高的腐蚀敏感性,在工业大气环境中表现出较低的腐蚀敏感性。  相似文献   

10.
针对高压电网输变电设备的大气腐蚀问题,研究了几种典型的大气腐蚀监测技术。基于文献分析,探讨了电偶腐蚀电池、电化学阻抗谱、薄膜电阻传感器、石英晶体微天平以及交流导纳等腐蚀在线监测技术的研究进展,并对比分析了各种监测技术在电力设备中应用的优缺点。采用薄膜电阻探针和交流导纳技术可以实现高压输变电塔、架空地线以及变压设备大气腐蚀的在线监测。对输变电设备的大气腐蚀实施自动化在线监测,可以为设备安全诊断提供重要依据,与大数据分析结合,还可以为故障诊断与寿命评估提供参考。  相似文献   

11.
为解决飞机继电器因腐蚀而导致性能退化甚至失效的问题,从飞机继电器的设计、制造、检查和修理等方面提出腐蚀防护与控制要求.首先,针对继电器的使用环境、腐蚀特点,在继电器常见腐蚀失效模式基础上,提出了继电器腐蚀防护与控制的一般要求;其次,从材料选择、表面防护、密封设计、零件加工和装配工艺等方面提出腐蚀防护设计和制造要求;再次,按照检查准备、检查程序、检查标准、电气性能检查、腐蚀修理等步骤,研究制定了飞机继电器腐蚀检查与修理要求;最后,结合飞机日益严峻的腐蚀损伤现状,对继电器在使用过程中的腐蚀预防与控制方法进行了探索研究.  相似文献   

12.
以海洋环境中一个非常重要的局部腐蚀形式——低水位加速腐蚀(ALWC)为对象,自其检测、发生原因、防护三个方面就国内外的文献报告进行综述分析。在检测方面,首先介绍了常用的宏观观察这一被动形式,并突出其特征,然后介绍了利用海水中可溶性无机氮含量作为ALWC发生概率预测这一主动形式,分析其优势与不足。在发生原因方面,在对将ALWC认定为一种典型的微生物腐蚀(MIC)形式的认知过程进行介绍之后,重点分析了微生物对ALWC作用机制不清晰的原因,并建议在后续研究中突出动态演变过程,结合高通量测序等分子生物学技术,确定在不同的阶段影响ALWC的关键微生物,且进一步在大气-海水体系下研究典型菌株及其协同作用的影响,提出微生物对ALWC的作用机制。在防护方面,根据新建和已建钢结构设施分别对传统和针对ALWC所具有的MIC与局部腐蚀特性的新型高效防护方法进行了介绍,并分析了防护方法的优缺点。  相似文献   

13.
目的研究THFS-10软膜缓蚀剂和THFS-15长效硬膜缓蚀剂在海洋环境下对于海军某型装备结构电偶腐蚀的缓蚀效果。方法采用等效浸泡测量法,得到ZL115-T5铸铝合金、30Cr Mn Si A钢以及C41500海军黄铜在不同条件下的极化曲线和交流阻抗谱。以此为边界条件,基于边界元方法,对涂覆缓蚀剂后结构的电偶腐蚀行为进行仿真,对比分析两种缓蚀剂对该异种金属连接结构电偶腐蚀的缓蚀效果。结果 THFS-15能够显著减轻上述三种不同材料偶合时的电偶腐蚀,THFS-10则在在一定程度上加速了三者之间的电偶腐蚀。结论根据仿真结果,给出了THFS-10和THFS-15两种缓蚀剂的具体使用建议和注意事项。  相似文献   

14.
目的 研究低铬油套管钢材在不同腐蚀环境中的腐蚀特征。方法 采用高温高压动态反应釜对1Cr、3Cr这2种常用低铬油套管钢材进行纯CO2、CO2和低浓度H2S共存条件下的腐蚀试验。结果 温度在40~80 ℃条件下,各种钢材的腐蚀速率随着温度的升高而变大。加入低浓度H2S后,可以抑制CO2腐蚀,且随着温度升高,抑制性逐渐减弱。分析认为,在单独CO2环境以及CO2和低浓度H2S共存的环境中,1Cr、3Cr钢表面出现铬富集现象,形成的Cr(OH)3膜保护基底。同时,在CO2和低浓度H2S共存的环境中,1Cr、3Cr钢表面形成致密的FeS产物膜有助于保护基底,抵抗Cl侵蚀。结论 低Cr钢表面因铬的富集形成钝化膜,能有效抑制油套管的腐蚀速率,以上研究成果对CO2和低浓度H2S环境中的腐蚀理论以及油田油套管材料合理选择均有一定指导意义。  相似文献   

15.
飞机结构腐蚀监测技术现状及发展趋势   总被引:2,自引:1,他引:1       下载免费PDF全文
简要介绍了腐蚀监测技术的分类,阐述了飞机结构腐蚀监测几种常用技术的工作原理,从技术角度分析了其优缺点,重点介绍了新型腐蚀监测系统的研发及其应用现状,根据我国飞机使用特点与工程实际情况,阐明了腐蚀监测技术的发展及主要应用方向。  相似文献   

16.
目的针对在安徽省内H1、R1及T28三个站点自然环境下暴露1年后的Q235、40Cr及镀锌钢,开展腐蚀速率、腐蚀产物及腐蚀层形貌的研究,探讨其大气腐蚀机理。方法采用称量法计算腐蚀质量损失,通过光学及电子显微镜法观察腐蚀层表面及截面形貌,用电子能谱仪测试微区成分,用X-射线衍射法测试腐蚀层的物相构成。结果 Q235、40Cr的大气腐蚀产物为Fe OOH、Fe3O4、Fe(OH)3及FeSO4,镀锌钢则为Zn O及Zn SO4。Q235、40Cr腐蚀层表面分布着绒球状的α-FeOOH及片状的γ-FeOOH,镀锌钢大气腐蚀层致密,但T28站点镀锌钢表面形成点状的腐蚀坑,腐蚀防护能力降低。结论同一站点三种钢腐蚀速率大小次序为40CrQ235镀锌钢,站点R1钢的腐蚀速率最大,站点T28的腐蚀速率最小。  相似文献   

17.
目的通过自主研发的大气环境腐蚀参数自动检测仪,监测并积累变电站大气腐蚀数据,判断大气腐蚀性,为变电站选择腐蚀与防护手段,提供数据支持和依据。方法依据变电站大气腐蚀研究的最新理论成果,参考最新国家标准,将影响变电站腐蚀因素的各参数整合,选择国内外最先进的传感器,根据实际工况要求,研制了一台基于变电站环境的大气腐蚀参数检测仪。结果仪器的各项技术指标均达到设计要求,能够满足现场要求,可以根据变电站设备材质要求,定制腐蚀传感器。结论通过在国家大气腐蚀网站(沈阳站)、浙江电力公司所属变电站的测试,研制的大气环境腐蚀参数自动检测仪能够实时采集影响腐蚀的各影响因子的参数值,满足未来腐蚀监测仪器、装备多参数、智能化的要求。  相似文献   

18.
通过在内蒙古包头土壤中室内埋设试样的方法,考察了土壤温度、含水量以及埋设时间对X70钢腐蚀情况的影响,利用失重法和电化学极化曲线方法测定了腐蚀速率.通过SEM和EDS对腐蚀形貌和腐蚀产物进行了观察与分析.实验结果表明,腐蚀速率在埋设60天内一直没有达到稳定,并随温度的升高而增加,在45℃、10%含水量土壤中埋设15天时达最大值;腐蚀程度随时间的延长而加剧;当埋设时间和温度相同时,X70钢在10%含水量土壤中腐蚀严重,在20%含水量的包头土壤中腐蚀轻微;X70钢的腐蚀机理主要是均匀腐蚀和点蚀,腐蚀产物主要为Fe的氧化物.  相似文献   

19.
目的对硫磺回收装置的腐蚀机理进行细化研究。方法研究NH4HS垢下腐蚀、CO2-H2O腐蚀、H2S-H2O腐蚀、H2SO4/H2SO3腐蚀、硫高温腐蚀等几种腐蚀情形,为预防设备管线腐蚀提供相应的理论依据,并且通过硫磺回收装置的液硫及管线腐蚀、高温掺和阀腐蚀、阀门腐蚀及点火枪部位腐蚀等典型案例进行详尽分析。结果通过能谱(EDS)对现场损坏管线分析得知,在液硫界面产生的氧、碳、硫等腐蚀产物导致液硫池蒸汽管线和伴热管腐蚀断裂、液硫泵壳腐蚀。该部分腐蚀产物与液硫池中的水发生反应,生成多种酸(硫酸、亚硫酸等)造成腐蚀。随着液位逐渐升高,腐蚀范围不断上升和扩大。结论由于高温掺和阀阀芯基本处于800~1000℃的高温环境中,大量的单质硫、二氧化硫、硫化氢及有机硫物质在高温环境中,形成高速气流,设备经过高速气流的冲刷,造成严重的腐蚀。同时NH4HS结晶在阀门或点火枪部位析出,在流速较低的部位发生沉积,导致设备功能下降和电化学垢下腐蚀。通过分析硫磺回收装置的工艺原理、腐蚀机理及腐蚀现状,结合具体案例分析,提出相对应的防护措施。  相似文献   

20.
围绕金属在海洋环境中所面临的腐蚀问题,概述了金属海洋环境腐蚀评估与预测研究现状。首先,探讨了海洋环境中多种化学、物理和生物因素对金属腐蚀的影响,归纳总结了当前常用的金属腐蚀评估方法,涵盖基于试验和检测结果、仿真计算和大数据分析的评估方法。此外,全面综述了现有经验式、基于物理机制以及数据驱动的金属腐蚀预测模型的特点及应用现状,提出了未来金属海洋环境腐蚀评估和预测的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号