首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
北京市典型排放源PM_(2.5)成分谱研究   总被引:6,自引:1,他引:5  
为了建立和完善北京市PM_(2.5)本地化源谱,对北京市11类排放源PM_(2.5)进行采集,并测定其26种组分,分析了不同排放源源谱的组分特征.结果表明,在有组织排放源中,燃煤电厂PM_(2.5)中OC和Si含量很高,占PM_(2.5)的质量分数分别为8.56%和6.19%(平均值),而供热/工业锅炉排放PM_(2.5)中则是SO_4~(2-)(占48.38%)和OC(11.0%)比例最高,水泥窑炉PM_(2.5)中OC(7.12%)、Ca(4.81)和Si(4.41%)占有较大比例;垃圾焚烧排放的PM_(2.5)中Si、Ca、K和SO_4~(2-)均较高,分别占8.15%、9.36%、7.17%和6.79%,且Cl~-含量(2.5%)高于其他所有源,生物质燃烧源PM_(2.5)中OC(21.7%)、Si(6.75%)、Ca(6.15%)较为丰富,餐饮源PM_(2.5)中OC(19.44%)、SO_4~(2-)(5.76%)和K(3.11%)含量均较高;无组织开放源中,道路扬尘和土壤风沙PM_(2.5)化学组分含量变化较为一致,均是Si(分别为16.8%和9.3%)和OC(分别为8.89%和6.61%)最高,建筑水泥尘PM_(2.5)中Ca(17.46%)含量高于其他源;流动排放源PM_(2.5)中OC、EC比例最高,其中,重型柴油车的OC(29.79%)与EC(26.5%)排放比例相当,而轻型汽油车OC排放占有绝对优势(占75%).本文通过对比国内外部分排放源PM_(2.5)成分谱的差异,指出不同区域相同源类排放的PM_(2.5)化学组分差异较大,在应用受体模型中的化学质量平衡模型(CMB)判断受体颗粒物来源时,应基于本地的排放源成分谱,以避免较大的误差.  相似文献   

2.
天津市春季道路降尘PM2.5和PM10中的元素特征   总被引:1,自引:0,他引:1  
为探究天津市春季道路降尘中元素污染特征及来源,于2015年春季采集了天津市道路降尘样品,通过再悬浮得到PM_(2.5)和PM_(10)滤膜样品,继而测定了滤膜样品中16种元素的含量,通过非参数检验、分歧系数法、富集因子法等研究了道路降尘中元素的污染特征、来源和成分谱的相似性.结果表明,天津市春季道路降尘PM_(2.5)和PM_(10)质量分数平均值在1%~20%之间的元素从大到小依次为:SiAlCaFeMgKNa;PM_(10)和PM_(2.5)中元素成分谱分歧系数为0.06,表明两者元素成分谱很相似;PM_(10)和PM_(2.5)中,元素Cd和Cr强烈富集,Zn、Cu、Pb和As显著富集;道路降尘PM_(2.5)和PM_(10)中元素主要来源于土壤风沙尘、建筑尘、交通尘(汽车尾气的排放、轮胎磨损和刹车片磨损)和煤烟尘.  相似文献   

3.
于2015年8月到2016年4月在菏泽市城区采集PM_(2.5)颗粒,利用热/光碳分析仪测定了颗粒物中8种碳组分,获得了有机碳(OC)和元素碳(EC)的质量浓度,分析了OC与EC的比值、相关性,使用OC/EC比值法估算了二次有机碳(SOC)的浓度,并使用主成分分析法研究8种碳组分含量.结果表明,(1)PM_(2.5)中OC、EC的年质量浓度变化范围分别为1.2~60.6μg·m~(-3)、0.6~24.8μg·m~(-3),OC/PM_(2.5)、EC/PM_(2.5)的季节分布特征相似:冬季春季秋季夏季;(2)OC/EC的年平均值为2.6±1.0,春夏秋冬OC、EC的相关系数分别为0.91、0.56、0.86、0.75,估算的SOC年平均浓度为(4.7±5.0)μg·m~(-3);(3)不同季节8种碳组分质量分数均为EC1最高,EC3最低.主成分分析结果显示,春秋冬这3个季节碳组分的主要来源为燃煤、机动车和生物质燃烧.  相似文献   

4.
我国典型钢铁行业主要工艺环节排放颗粒物源成分谱特征   总被引:7,自引:5,他引:2  
鉴于我国钢铁行业排放颗粒物源成分谱数量不足,有待更新的现状,致力于服务精细化颗粒物源解析的需求,采用稀释通道系统对武汉市某钢铁公司的3个主要工艺环节(烧结、炼钢、炼铁)排放源进行了采样.构建了3类PM_(2.5)源成分谱及3类PM_(10)成分谱,对源谱主要化学组分特征进行了研究,并与国内其他区域已有的钢铁行业源谱研究进行了对比.结果表明:(1)烧结工艺源成分谱中,SO_4~(2-)、Al和NH_4~+等含量高,PM_(2.5)源谱中质量分数依次为22. 2%、4. 5%和3. 5%,PM_(10)源谱中依次为36. 0%、5. 2%和2. 7%,炼铁工艺Fe元素含量最高,在PM_(2.5)源谱和PM_(10)源谱中分别达到28. 3%和24. 5%,炼钢工艺源谱Ca、Fe元素等为主要组分;(2)元素组分中,烧结工艺S元素含量最高,地壳元素在PM_(10)源谱中含量更高,炼铁工艺Pb、Cr等重金属含量偏高,炼钢工艺Cr富集;(3)源谱之间分歧系数的计算显示,同类工艺粗细粒径源谱相似性偏高,烧结工艺与其他两类工艺源谱之间差异性较高,炼钢工艺与炼铁工艺差异性较低.同国内其他区域研究源谱相比,发现Fe、Si和Ca等为钢铁行业排放颗粒物中标识性组分,而碳组分和SO_4~(2-)等组分特征随生产方式、除污设备等不同表现出不同特征.  相似文献   

5.
叶招莲  刘佳澍  李清  马帅帅  许澎 《环境科学》2017,38(11):4469-4477
为更好地了解碳质组分的特点和来源,在常州市采集了夏季(7~8月)和秋季(10~11月)60个细颗粒物(PM_(2.5))样品.采样期间,夏季PM_(2.5)、OC、EC平均浓度分别为73.0、14.3和3.3μg·m~(-3),秋季为84.2、13.2和3.5μg·m~(-3).总碳质组分(OC+EC)占PM_(2.5)总质量的24.3%(夏季)和20.7%(秋季).采用IMPROVE-A热/光反射法测定的碳质8组分结果表明,OC2、OC3、OC4和EC1相关性好(r0.92),EC2和EC3相关性较好(r0.65),说明可能的相似来源.OC与EC相关性中等,表明碳质组分来源复杂.秋季WSOC/OC(60.9%)略高于夏季(57.4%),而夏季SOC/OC(52.5%)略高于秋季(49.0%).夏季和秋季SOC/OC都低于WSOC/OC,说明部分水溶性有机碳是一次源.WSOC和SOC相关性强,进一步验证了大部分SOC具有水溶性.碳质组分之间的关系及主成分分析表明,采样期间燃煤和机动车尾气排放是碳质组分的两个主要来源.后向轨迹分析表明,采样点PM_(2.5)和碳质组分主要受当地排放源和短距离传输的影响,长距离传输贡献较小.  相似文献   

6.
王艳  郝炜伟  程轲  支国瑞  易鹏  樊静  张洋 《环境科学》2018,39(8):3518-3523
利用稀释采样系统,针对桶内燃烧和自然堆积两种常见露天焚烧方式,分别对橡塑类、纸类和木竹类这3种组分生活垃圾露天焚烧PM_(2.5)排放特征进行实测,计算PM_(2.5)、OC、EC、水溶性离子和无机元素排放因子.结果表明,木竹类生活垃圾PM_(2.5)排放因子(7.44±0.76)g·kg~(-1)最高,纸类PM_(2.5)排放因子(2.72±0.52)g·kg~(-1)最低.桶内燃烧的条件会造成更多污染物排放.在不同的燃烧方式下,橡塑类和纸类生活垃圾在桶内燃烧的条件下PM_(2.5)排放因子是自然堆积燃烧的2.5~3.5倍.PM_(2.5)中OC和EC为主要组成成分,PM_(2.5)组分构成占比约为46.6%~67.2%.不同垃圾组分OC/EC比率差异较大,但该比率受焚烧条件影响较小,有助于解析不同组分垃圾焚烧排放贡献.水溶性离子中NH+4离子、Cl-离子含量最高,在PM_(2.5)中所占比例范围分别为2.28%~6.35%和1.04%~14.31%.无机元素中Ca、K、Fe和Ba元素排放因子较高.重金属元素中Zn元素排放因子最高,Cu、Cr、Sb和Pb等元素也有一定富集.Zn元素含量主要由燃烧方式决定,桶内燃烧大约是自然堆积燃烧的20倍左右.  相似文献   

7.
四川省典型工业行业PM2.5成分谱分析   总被引:3,自引:3,他引:0  
利用荷电低压颗粒物撞击器(ELPI+)对四川省水泥行业、玻璃行业、陶瓷行业、砖瓦行业、燃煤锅炉、生物质锅炉、电厂、钢铁行业等典型行业开展排放特征测试,通过组分分析,获取各行业PM_(2.5)成分特征谱.结果表明:①水泥、玻璃、陶瓷、砖瓦等建材行业均以Si、Ca、Mg等元素为主要排放组分,双碱法脱硫SO_4~(2-)排放占比高于其他脱硫工艺;②电厂PM_(2.5)中SO_4~(2-)、Ca~(2+)、NH_4~+、Mg和Si为特征组分;燃煤锅炉中OC、Al、Si和Ca等为特征组分;③OC和EC是生物质锅炉PM_(2.5)主要排放组分,成型生物质燃料锅炉中K排放占比也较高,非成型生物质燃料锅炉中Cl~-排放占比为所有行业中最高;④钢铁行业中Ca含量最高,为18. 11%,其次为SO_4~(2-)、Na~+和Fe.  相似文献   

8.
廊坊市秋季环境空气中颗粒物组分昼夜变化特征研究   总被引:3,自引:0,他引:3  
为研究廊坊市区秋季环境空气中颗粒物浓度及其组分昼夜变化特征,于2015年9月12—21日在廊坊市进行PM_(2.5)和PM_(10)采样,并对采集的样品无机元素、水溶性离子和碳组分(OC和EC)分析.结果表明,夜间PM_(2.5)和PM_(10)浓度比白天高,且下半夜出现大幅上升.PM_(2.5)/PM_(10)比值为0.49~0.62,下半夜最高.碳组分、Ba、Cr、Cl~-、NO_3~-、SO_4~(2-)、NH_4~+等主要富集在PM_(2.5)中,而Ca、Al、Si、Mg~(2+)和Ca~(2+)等主要富集在PM_(10)中.通过昼夜颗粒物组分对比发现,夜间EC、Cu、Zn、Cr、Pb、Cl~-、NO_3~-和NH_4~+等浓度明显上升.同时,下半夜OC/EC比值明显变小,Cl-、NO_3~-和NH_4~+浓度明显增大,同时段CO和NO_2浓度上升,而SO_2浓度变化平缓.以上表明采样期间廊坊夜间可能存在移动源和部分工业污染源排放.  相似文献   

9.
郭森  王蕾  周盼  郭硕  秦伟  安塞  肖捷颖  刘娟  姬亚芹 《环境工程》2018,36(4):122-126
为明确石家庄市夏季道路尘中有机碳和元素碳污染特征及来源,用样方法采集市区4种不同类型共8条铺装道路尘样,处理后经热光碳分析仪测定有机碳(OC)和元素碳(EC)组分。结果表明:总碳(TC)在道路尘PM_(2.5)、PM_(10)中质量分数分别为129 465.2,103 911.4μg/g;PM_(2.5)和PM_(10)中OC和EC相关系数分别为0.94和0.86,可认为OC、EC来源基本一致;OC/EC均>2,表明存在二次有机碳(SOC)的贡献;通过OC/EC最小比值法估算得出SOC占PM_(2.5)和PM_(10)中OC总量的42.5%和32.8%,一次有机碳(POC)贡献较大;夏季道路积尘中的碳主要来自于汽、柴油车尾气排放、大气降尘中燃煤成分和生物质燃烧。  相似文献   

10.
为明确邯郸市PM_(2.5)中碳组分污染浓度、来源和近年来的变化,分别于2015和2017年1、4、7、10月在河北工程大学能环实验楼4层采集PM_(2.5)样品,采用热/光碳分析仪测定了样品中8种碳组分含量,并计算得到有机碳(OC)、元素碳(EC)、Char-EC和Soot-EC含量.结果表明,2017年PM_(2.5)中碳组分浓度较2015年下降约15%,质量分数下降约17%,季节变化均表现为冬高夏低的特点;2017年SOC浓度和SOC/PM_(2.5)、SOC/OC比值均低于2015年,SOC浓度和SOC/PM_(2.5)比值下降约36%,季节分布特征相似(秋冬高、春夏低).两年除夏季外,其余季节OC、EC相关系数均高于0.7,表明存在共同来源;2017年OC、OC1与EC相关性高于2015年,此外,两年中EC1~EC3、Char-EC和Soot-EC与各组分相关系数差异较大;两年中Char-EC与OC、EC的相关性(r=0.5~1.0)明显高于Soot-EC与OC、EC的相关性(r=0.1~0.6),这主要与二者形成机理有关.碳组分之间的关系和主成分分析结果表明,燃煤、生物质燃烧和柴油车尾气的混合源是2015年碳质组分的主要来源,而2017年则来源于燃煤和机动车尾气排放.  相似文献   

11.
北京市典型道路扬尘化学组分特征及年际变化   总被引:3,自引:3,他引:0  
胡月琪  李萌  颜旭  张超 《环境科学》2019,40(4):1645-1655
选择北京市具有代表性道路,于2004年9月和2013年5月进行采样,利用再悬浮设备制备道路扬尘PM10与PM2.5样品,并进行化学组分分析,建立了2004年和2013年北京市道路扬尘PM10与PM2.5源成分谱,以分析和探讨北京市道路扬尘化学组分特征及其组分年际变化.结果表明,北京市道路扬尘PM10与PM2.5源成分谱中的化学组分特征均为Ca、Si、有机碳(organic carbon,OC)、Al、Fe、K、Mg、SO42-和元素碳(element carbon,EC),其在道路扬尘中的含量之和分别为:2004年PM10为46.7303%、PM2.5为56.9198%和2013年PM2.5为38.7478%;占全部被测组分的比例分别为95.9%、94.3%和94.7%.2004年道路扬尘中,环路Si、Al的含量显著低于其他道路类型,受到的土壤风沙尘影响最小;建筑水泥尘特征元素Ca主干道含量最高,高速五环进京口含量最低;EC在高速五环进京口的含量显著高于其他道路类型.而2013年PM2.5中被测组分总含量及Si、Al、Ca的含量次干道均显著低于其他道路类型.2013年与2004年相比,北京市道路扬尘PM2.5中除SO42-含量略上升了2.0%外,其余组分含量下降显著,Ca、Si、OC、Al、Fe、K、EC和NO3-下降幅度分别为45.1%、31.5%、17.5%、20.3%、55.6%、33.3%、30.0%和50.3%.结果表明,[NO3-]/[SO42-]比值不能准确反映固定源和移动源相对贡献大小的变化.[OC]/[EC]比值,2004年PM10为9.77±3.88,PM2.5为9.36±3.25,2013年PM2.5为14.41±10.41,北京市道路扬尘存在二次有机碳(secondary organic carbon,SOC),且SOC是道路扬尘PM10与PM2.5的重要组成部分.不同城市道路扬尘及同一城市不同粒径的道路扬尘成分谱相似度不高,应建立相应的成分谱并适时更新.  相似文献   

12.
王成  闫雨龙  谢凯  李如梅  徐扬  彭林 《环境科学》2020,41(3):1036-1044
采集了阳泉市城区2017年10月15日~2018年1月23日PM_(2.5)样品,分析了优良天和污染天PM_(2.5)及其化学组分特征,并利用富集因子分析法(EF)和正定矩阵因子分析法(PMF)对PM_(2.5)进行来源分析.结果表明,采样期间污染天二次无机离子(SO_4~(2-)、 NO~-_3和NH~+_4)在PM_(2.5)中的比例为23.83%,是优良天的2.43倍,污染天二次无机污染严重,污染天人为源相关的元素Cd、 Sb、 Sn、 Cu、 Pb、 Zn和As富集程度大于优良天;主要的污染源对PM_(2.5)的贡献分别是燃煤29.26%、扬尘23.83%、机动车19.34%、二次源16.01%和工业源11.57%,其中,污染天机动车排放对PM_(2.5)的贡献20.57%,高于优良天时17.82%,而燃煤源的贡献23.04%明显低于优良天时33.75%,静稳天气时机动车排放对PM_(2.5)贡献较优良天上升,燃煤源对PM_(2.5)贡献有下降.因此,阳泉市在秋冬季应加强对燃煤、扬尘源的控制,同时进一步加强对机动车的控制,以减少污染期间机动车的贡献.  相似文献   

13.
晋城城市扬尘化学组成特征及来源解析   总被引:12,自引:8,他引:4  
采集晋城市城市扬尘及其他污染源样品,分析其中元素、离子、碳含量,选取富集因子分析法、潜在生态风险评价法、化学质量平衡模型分析城市扬尘化学组成及来源,为制定有效的城市扬尘污染防治工作方案提供科学依据.结果表明,晋城市城市扬尘中主量成分包括Si、TC、Ca、OC、Al、Mg、Na、Fe、K和SO_4~(2-),质量分数总和为61.14%.地壳元素在城市扬尘中含量最丰富,离子更易在细颗粒上富集.OC在PM_(2.5)上的质量分数较高,EC在PM_(10)上的质量分数较高,说明二次有机污染物主要集中在细颗粒上.城市扬尘PM_(2.5)和PM_(10)潜在生态风险指数均为极强,且PM_(2.5)比PM_(10)具有更强的生态危害性.城市扬尘中Pb的富集因子最大,在PM_(2.5)中达196.97,其次为As、Cr、Ni、V、Zn、Cu,且这些重金属元素的富集因子均在10以上,表明这几种元素显著富集,受人类活动影响较大.土壤风沙尘、建筑水泥尘、机动车尾气尘、煤烟尘是城市扬尘的主要来源.  相似文献   

14.
为研究天津市春季道路降尘PM2.5和PM10中碳组分特征,丰富道路降尘的成分谱库,于2015年3月22日-5月23日在天津市主干道、次干道、支路、快速路和环线5种道路类型道路两侧采集道路降尘样品,通过再悬浮装置得到PM2.5和PM10的滤膜样品,并用热光碳分析仪测定PM2.5和PM10中OC(有机碳)和EC(元素碳)的百分含量,利用两相关样本非参数检验、OC/EC比值法以及相关分析法,定性分析天津市春季道路降尘PM2.5和PM10的碳组分的特征及其主要来源;利用因子分析法,进一步分析道路降尘PM2.5和PM10的主要来源.结果表明:道路降尘PM2.5中w(OC)为10.27%(主干道)~13.94%(快速路)、w(EC)为1.24%(支路)~1.77%(环线),PM10中w(OC)为8.48%(主干道)~12.56%(快速路)、w(EC)为1.01%(次干道)~1.59%(快速路),可见快速路中碳组分含量相对较高,这可能与其车流量较大,导致道路扬尘和机动车尾气排放量较大有关,也可能与其路面保养及保洁状况有关.对于大部分碳组分而言,其在PM2.5中的百分含量均高于PM10;除EC2,其他碳组分在PM2.5和PM10间均无显著性差异.不同道路类型PM2.5和PM10中OC/EC的大小顺序基本相同,与其车质量变化趋势相反.道路降尘中PM2.5中碳组分主要来源于道路扬尘、机动车尾气、生物质燃烧以及燃煤源的混合源,PM10主要受道路扬尘、燃煤和柴油车尾气等污染源的影响.   相似文献   

15.
鉴于我国本地化源谱(源成分谱)数量不足的现状,采用稀释通道系统对燃煤源和工业过程源进行采样,建立了4类燃煤锅炉(链条炉、流化床、往复炉和煤粉炉)和6类工业过程源(炼铁、铝焙烧、铝煅烧、砖瓦炉、水泥窑头和窑尾)的PM2.5成分谱,并对源谱特征进行研究.结果表明:① 不同源谱组分特征差异明显.水泥窑炉排放的PM2.5中,w(Ca)、w(Si)、w(OC)、w(SO42-)较高,分别为8.51%~14.18%、5.69%~11.80%、3.47%~15.56%、8.67%~16.85%;燃煤锅炉中Al(4.50%~8.67%,质量分数,余同)、OC(6.44%~15.33%)、SO42-(9.85%~22.87%)组分贡献较大;炼铁和铝冶炼工艺源谱中主导化学组分分别为Fe(8.57%~9.88%)和Al(11.81%~16.58%);砖瓦炉颗粒物源谱中主要组分为SO42-、NH4+、Si等.② 不同污染源PM2.5成分谱的分歧系数结果显示,流化床和煤粉炉、水泥窑头和窑尾源谱较为相似,其分歧系数分别为0.26和0.28,其余源谱间均存在一定差异.进一步计算组分差异权重(R/U)发现,往复炉源谱中组分Zn、Sn与其他3类锅炉有明显不同.流化床/煤粉炉源谱中的Si、Ni,窑头/窑尾源谱中的K、Mn、OC组分差异显著,可以作为区分相似源谱的标识组分.与其他研究建立的源谱相比,燃煤源谱中w(EC)和w(SO42-)偏高.钢铁源谱中w(EC)和w(NH4+)较其他地区偏高,w(Pb)偏低;工业过程源谱中,w(Cl-)较SPECIATE相关源谱偏低,而w(Ⅴ)和w(Cr)偏高.鉴于颗粒物源谱受到不同燃料种类、燃烧方式和烟气控制设施等影响而存在差异,源谱的准确性和代表性还需进一步测试和验证.   相似文献   

16.
大气颗粒物源成分谱可以表征源排放颗粒物的理化特征,为受体模型开展来源解析研究提供基础数据.餐饮油烟排放是室内外环境大气污染的来源之一,当前餐饮源排放PM2.5的化学成分谱仍然缺乏.该研究分别在成都市、武汉市和天津市采集了29组6种餐饮源(居民烹饪、火锅店、烧烤店、职工食堂、中餐馆、商场综合餐饮)排放的PM2.5样品,分析无机元素、离子、碳、多环芳烃(PAHs)等化学组分,并构建了餐饮源排放颗粒物化学成分谱.结果表明:①餐饮源排放PM2.5化学成分中的主要组分为OC(有机碳)、EC(元素碳)、Ca、Al、Fe、NH4+、SO42-、NO3-、Na+、K+、Mg2+和Cl-,其中w(OC)最高,为41.67%~57.91%.②餐饮源排放PM2.5的PAHs中,3环和4环占比较高,其中芴(Flu)、菲(Phe)、荧蒽(Fla)、芘(Pyr)的质量分数相对其他物质较高.研究显示:餐饮源排放PM2.5中OC/EC约为15.99~67.61,在一定程度上可以用来表征餐饮源排放;Fla/(Fla+Pyr)和InP/(InP+BghiP)多集中在0.45~0.55之间,或可作为标识餐饮源的特征比值.   相似文献   

17.
为探究四川盆地典型城市PM2.5污染特征和来源,利用成都市、绵阳市、自贡市超站数据分析2020年冬季典型污染过程PM2.5组分特征,并采用CMB模型模拟获得研究期间PM2.5来源及演变特征.结果表明,不同城市PM2.5组分变化特征不尽相同,成都市污染过程整体呈现NO3-主导特征,但重度污染由OC主导.绵阳市污染期间呈现OC主导特征,是污染加重时增长最快的组分.EC是自贡市轻度污染增长最快的组分,NO3-、SO42-、NH4+是中度污染增长较快的组分,OC、EC是重度污染增长较快的组分.3个城市均是二次硝酸盐对PM2.5贡献率最高.比较而言,成都市机动车、扬尘源贡献率均最高;绵阳市二次有机碳贡献率最高,是成都市的2倍;自贡市燃煤源和二次硫酸盐贡献率分别比成都市和绵阳市高出4%~6%和7%~9%.成都市由优良天气到中度污染,二次硝酸盐贡献率随着污染程度的加重而增加,轻度污染较优良天气上升6%,中度污染较轻度污染天气上升3%.中度到重度污染,二次有机碳、机动车贡献率分别上升2%和1%.绵阳市由轻度到重度污染,二次有机碳对PM2.5的贡献率上升3%,机动车贡献率上升2%,是其污染加重的主要原因.自贡市由轻度到重度污染,各污染源贡献率变化幅度较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号