首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
夏收时段农村大气亚微米颗粒物数浓度分布特征   总被引:1,自引:0,他引:1  
为了从源区的角度研究华北平原夏收时段大气亚微米颗粒物粒径谱分布,采用扫描电迁移率粒径谱仪,于2017年6月对华北平原典型农村点位亚微米颗粒物数浓度进行连续观测.结果表明,观测期间大气亚微米颗粒物粒径分布主要集中在小于300nm处,平均数浓度为28371cm-3.不同模态颗粒物数浓度分布差异明显,核模态(< 20nm)呈线性分布,爱根核模态(20~100nm)呈多项分布,积聚模态(>100nm)呈对数分布.48h后向轨迹聚类结果表明,观测点位气团受其东部的江苏省、山东省和安徽省生物质燃烧传输影响时,颗粒物总数浓度增加66.7%.潜在源贡献因子法和浓度权重轨迹法,表明潜在源区为观测点位以东的区域,且以粒径小于100nm的颗粒物为主.  相似文献   

2.
通过烟雾箱实验,研究了SO2-NO2-NH3-H2O四元反应体系在气-粒转化过程中新形成颗粒物数浓度与粒径分布的变化.研究发现,SO2-NO2-NH3-H2O四元反应体系具有显著的成核能力,且其成核强度大,持续时间短.当SO2、NO2浓度为200mg/m3,NH3浓度为12x10-6时,反应体系的气溶胶总个数浓度在2min时达到峰值2.5x106cm-3.缺少任一种气体均会使气溶胶成核强度下降.SO2、NO2及NH3浓度分别为0的工况下气溶胶总个数浓度峰值分别下降了41.0%、83.6%及98.5%.在电厂污染气体排放浓度区间内,NO2对气溶胶生成影响大于SO2.燃煤电厂控制NOx排放浓度对改善烟囱出口气溶胶数浓度更有效.在实验基础上,对颗粒物成核特性进行拟合,反应体系在气-粒转化过程中产生的新颗粒物总个数浓度及中值粒径与气态前体物浓度线性相关;采用布朗团聚模型对气溶胶成核后的团聚过程总个数浓度及粒径变化进行模拟计算,根据给定的燃煤电厂SO2、NO2、NH3排放浓度,给出预测气溶胶颗粒成核速率、粒径分布及总个数浓度变化的方法.  相似文献   

3.
为研究大气边界层中上层大气颗粒物的数浓度谱分布特征及气团来源的影响,于2018年6月利用3080型SMPS粒径谱仪对武当山14.6~660 nm颗粒物数浓度谱进行观测,分析和探讨了其数浓度谱分布及日变化特征,并结合后向轨迹、潜在源贡献因子法(PSCF)与浓度权重轨迹分析法(CWT)探讨对武当山颗粒物数浓度影响较大的外源输送路径和贡献源区.结果表明:①武当山大气颗粒物主要以爱根模态为主,平均数浓度为2 500个/cm3,积聚模态、核膜态平均数浓度分别为2 265、359个/cm3,3种模态数浓度分别占总数浓度的48.79%、44.21%、7.01%.②在新粒子生成日,核膜态数浓度于10:00开始上升,11:00—17:00的核膜态数浓度相对较高,约2 000个/cm3.新粒子生成日ρ(SO2)与ρ(O3)的日变化趋势均与核模态数浓度较为相似,表明SO2和O3参与光化学反应后的产物(硫酸及有机物)有利于新粒子的生成与增长.新粒子生成日风速、温度均大于非新粒子生成日,但相对湿度较低.③在东部及局地气团影响下大气颗粒物主要以积聚模态为主,数浓度分别为2 311和2 596个/cm3;核模态、爱根模态数浓度在受西北气团影响时最大,数浓度分别为806和3 078个/cm3.④潜在源区分析表明,影响武当山积聚模态数浓度的主要源区为十堰市本地及襄阳市,二者贡献值在840个/cm3以上.研究显示,武当山颗粒物主要以爱根模态为主,颗粒物数浓度日变化主要受大气边界层发展及山谷风的影响,较高的ρ(SO2)与ρ(O3)以及高温、低湿及较大的风速均有利于新粒子的生成,周边城市的区域性传输对武当山颗粒物的影响较大.   相似文献   

4.
对2017年9月至2018年8月、12月采集的乌鲁木齐市PM2.5、“沙雪”样品和克拉玛依土样的水溶性离子进行分析,并结合城市主要风向、扫描电镜联能谱(SEM/EDS)和后向轨迹模型(HYSPLIT),对环境中盐尘粒子的来源及其对大气颗粒物形成的影响进行了研究.结果表明:PM2.5中总水溶性离子平均浓度为(62.65±64.75)μg/m3,变化范围为0.69~328.60 μg/m3.其中SO42、Ca2+、Na+、Cl-、K+和Mg2+ 6种盐尘粒子浓度分别为(22.73±26.45),(2.11±3.11),(1.85±1.43),(0.40±0.40),(0.28±0.20),(0.21±0.15)μg/m3.四季风向结合HYSPLIT模型结果可知,PM2.5中盐尘粒子主要来源于艾比湖及玛纳斯盐湖的气团;受风沙影响,乌鲁木齐市雪样中Cl-、SO42-、Ca2+、K+、Mg2+和Na+分别增加了30,19,20,5,7和5倍.  相似文献   

5.
针对北京地区冬季和春季PM2.5污染特征进行研究.于2009年12月~2010年5月在城市点采集24h 大气颗粒物样品,进行颗粒物主要化学组分分析.冬季和春季颗粒物的平均质量浓度分别为(84.97±68.98)μg/m3和(65.25±45.76)μg/m3.冬季和春季颗粒物中二次组分(SNA+SOA)有重要贡献,二次组分分别占颗粒物质量浓度的49%和47%.冬春季重污染时期较强的源排放和低温、低风速、高相对湿度等不利的气象特征使得颗粒物中二次无机离子SNA(NH4+、NO3-、SO42-)的比重较干净天明显上升,其中硝酸盐贡献的增强最为显著.同时冬春季有机物中二次有机组分贡献显著.而受一次源的影响,冬春季重污染时期一次有机物的增强.  相似文献   

6.
利用2018年11月21日~2019年2月8日期间的Xact元素仪观测数据,分析了华北农村地区望都站点秋冬季细颗粒物PM2.5中的元素组分特征.结果表明,采样期间,望都站受到了严重的PM2.5污染,PM2.5的平均浓度为(186.6±142.0)μg/m3.PM2.5中最主要的元素是S、Cl和K,其平均质量浓度分别为6230,8708,1780ng/m3;其次是Al、Si、Ca、Fe和Zn,其平均质量浓度在500~1000ng/m3;剩余元素的平均质量浓度均低于500ng/m3.使用Al作为参比元素计算各元素的富集系数判断来源,Si、Ca、Ti、Fe主要来自于地壳源,K、Cr、Mn、Ni、Se、Ba同时受地壳源与人为源影响,Cu、Zn、As、Ag、Cd、In、Sn、Pb主要来自于人为源;采用NMF(非负矩阵因子分解法)模型量化各种潜在排放源对本研究中PM2.5的贡献,确认烟花爆竹源、扬尘源、机动车尾气源、燃煤/生物质燃烧源、二次源和工艺过程源是主要污染源,其贡献分别为2.6%、1.7%、6.5%、39.7、36.5%和13%.夜间燃煤/生物质燃烧源贡献与白天二次源贡献是造成PM2.5重污染的主要成因.春节期间,烟花爆竹燃放源会造成农村地区重污染过程.Ba的富集因子适合作为烟花爆竹燃放的指征.本文研究结果可为华北农村冬季细颗粒物溯源和治理提供数据支持.  相似文献   

7.
2014年5~6月在东海海域采集PM2.5和PM10气溶胶样品,通过离子色谱法对样品中主要水溶性阳离子(Na+、K+、NH4+、Mg2+、Ca2+)和阴离子(Cl-、NO3-、SO42-、MSA)的浓度进行测定,并结合相关数理统计方法探讨了其主要来源.结果表明,PM2.5和PM10样品中主要水溶性离子的总浓度范围分别为7.9~23.7μg/m3和10.4~47.9μg/m3,平均值分别为(14.9±5.8)μg/m3和(21.3±10.7)μg/m3.二次离子(nss-SO42-、NO3-和NH4+)浓度最高,分别占测定离子总浓度的80.8%和73.3%,其中SO42-和NH4+主要富集在细颗粒物(PM2.5)中,NO3-主要富集在粗颗粒物(PM10)中.富集因子及相关性分析表明K+主要来自陆源,Mg2+受海源和陆源双重输入影响.阴阳离子浓度平衡计算结果表明,细颗粒物样品呈弱碱性;粗颗粒物样品酸碱基本中和.两种样品中NH4+的主要结合方式均为(NH42SO4和NH4NO3.来源分析结果表明,PM2.5和PM10样品中生源硫化物对nss-SO42-的贡献率分别为13.7%和8.7%.根据估算的干沉降通量结果,NH4+对氮沉降的贡献程度小于NO3-.  相似文献   

8.
利用阿克达拉大气本底站2011~2017年黑碳气溶胶(BC)逐小时质量浓度资料和同期气象数据,采用后向轨迹聚类分析、潜在来源贡献函数法(PSCF)和浓度权重轨迹分析法(CWT),研究了阿克达拉站BC不同时间尺度浓度特征和潜在源区.结果表明:阿克达拉站2011~2017年BC呈波动下降趋势,BC清洁程度较高;BC浓度呈春冬高,夏秋低的季节变化特征,春季(398.85±189.35) ng/m3>冬季(389.89±105.94) ng/m3>夏季(272.07±90.07) ng/m3>秋季(269.52±68.07) ng/m3,自然因素为BC浓度变化的主要原因;日变化特征表现为白天低、夜间高,基本呈单峰分布;阿克达拉站BC潜在源随季节变化差异明显,后向轨迹,WPSCF和WCWT分析都表明,春季潜在源集中于俄罗斯南部与新疆交界处的阿尔泰山北麓,秋季潜在源为新疆北疆经济带,冬季BC多受境外排放源影响.BC污染控制需要区域环境合作,实现联防联治,尤其是加强跨境污染源监测工作.  相似文献   

9.
为探究超大城市居民在中心城区公交车站候车的颗粒物暴露情况,使用Grimm Aerosol 11-A型便携式气溶胶光学粒径谱仪对广州市越秀区和天河区共7个典型公交车站的颗粒物污染暴露进行平行监测.结果表明:①各公交车站的平均PM1、PM2.5和PM10暴露浓度分别为(33.35±15.96)(46.97±22.94)和(89.70±67.07)μg/m3,休息日公交车站的暴露浓度约为工作日的2倍,高峰期颗粒物暴露浓度略高于平峰期.②候车乘客数、道路车流量和相对湿度是影响PM1、PM2.5暴露浓度的主要因素,纯电动公交车停靠次数虽对细颗粒物暴露浓度无明显贡献,但其制动、轮胎与路面摩擦以及扬尘产生的粗粒径排放成为PM10污染的主要因素之一.③粗粒径模态(1~10 μm)颗粒物是颗粒物浓度的主要贡献源,其浓度占比高达63%,但数浓度占比不足1%;而积聚模态(0.25~1 μm)颗粒物数浓度占比在99%以上,部分车站积聚模态颗粒物质量浓度占比超过40%,说明细颗粒污染严重.④单位时间内公交车站候车乘客PM1、PM2.5和PM10总暴露剂量分别为(241.80±82.85)(342.59±112.11)和(681.17±226.89)μg/h,表现出工作日高于休息日、工作日高峰期高于平峰期、休息日高峰期低于平峰期的特征,部分车站(如DF和LS站)老人总暴露剂量占比超过40%,成为公交车站主要暴露对象之一.研究显示,广州市中心城区公交车站颗粒物暴露特征时空差异明显,道路车流量、相对湿度、候车乘客数和公交车停靠次数是影响颗粒物暴露浓度的主要因素.   相似文献   

10.
对广州地区春季(2015年3~4月)、夏季(2015年6~7月)、秋季(2015年9~10月)、冬季(2015年12月~2016年1月)四个季节6个粒径段(<0.49、0.49~0.95、0.95~1.5、1.5~3.0、3.0~7.2以及7.2~10.0μm)的大气颗粒物样品中水溶性有机碳(WSOC)的浓度和光学性质等变化特征进行了研究.结果表明,WSOC的浓度水平呈现冬季[(5.07±2.80)μg/m3]>秋季[(3.87±1.51)μg/m3]>春季[(3.60±1.16)μg/m3]>夏季[(2.42±0.51)μg/m3]的季节变化特征;WSOC的质量平均直径(MMD)为0.57μm (春)、0.42μm (夏)、0.49μm (秋)和0.56μm (冬).WSOC的质量吸收效率MAE365差异较大,分布在0.18~1.42m2/g之间,冬季最高;吸收波长指数AAE值分布在3.6~9.8之间.细颗粒物(<3μm)中WSOC对PM10WSOC总吸光的贡献达到了90%以上,其中<0.49μm颗粒物的贡献超过50%.在300~500nm之间,春季、夏季、秋季和冬季WSOC对颗粒物总吸光比例平均值分别为5.23%、2.95%、3.04%和6.92%;其中<0.49μm粒径段的贡献最高,分别为3.11%、1.79%、1.65%和3.45%.进一步通过特征紫外吸光度SUVA值的分析表明芳香性和分子量可能是影响WSOC吸光能力的重要因素.粒径越小颗粒物含有越多的不饱和键,使得MAE365值较高.  相似文献   

11.
余创  张玉秀  陈伟 《中国环境科学》2021,41(7):3055-3065
基于2015~2017年银川市PM2.5逐小时质量浓度和同期气象数据,采用气流后向轨迹聚类分析法、潜在来源贡献函数法(PSCF)和浓度权重轨迹分析法(CWT)研究银川市PM2.5的输送路径及潜在源分布.结果表明:2013~2018年银川市大气PM2.5质量浓度呈先升高后下降的趋势,其中2016年PM2.5浓度年均值最高(54.25±20.91)μg/m3;在四季变化中,冬季PM2.5浓度最高(75.11±29.21)μg/m3,夏季最低(31.83±7.09)μg/m3.聚类分析表明西北方向气流是银川市四季PM2.5主要的输送路径,在春、秋、冬3季PM2.5均为西北长距离输送路径;而在夏季,短距离输送气流是PM2.5主要的输送方式.PSCF与CWT分析表明,冬季PM2.5潜在源区范围最大,主要集中在西北-东南走向的潜在贡献源区带,包括新疆中东部、青海省北部、河西走廊地区、内蒙古西南部、甘肃省南部以及宁夏西北部;春、秋两季PM2.5潜在源区主要位于新疆东部与甘肃省交界区域、甘肃省东南部、湖北北部、陕西西南部以及重庆北部;夏季的潜在源区范围最小,主要集中在新疆东部与甘肃交界区域.在PM2.5重污染天气期间,其主要来源于西北方向气流,潜在源区主要分布在新疆东部与甘肃交界区域、内蒙古西南部与甘肃交界区域以及甘肃中南部地区.因此,在实施防风固沙的基础上,加强区域环境合作,实施大气污染联合防治,可以有效缓解银川乃至京津冀地区的大气污染.  相似文献   

12.
为验证城市空气污染物排放及协同控制后的周期性规律,利用小波变换对武汉市2013~2020年共计2421d的逐日PM2.5、PM10及臭氧浓度数据进行分析.结果表明:可吸入颗粒物污染情况逐年改善,PM2.5浓度年均值由80.5μg/m3降至45.3μg/m3,超标比例由44%降至11%;PM10浓度年均值由113.6μg/m3降至72.6μg/m3,超标比例由22%降至2%.臭氧污染未有明显改善,浓度年均值在90~100μg/m3间波动.PM2.5、PM10与臭氧浓度均表现出明显的周期性,PM2.5浓度主周期300d、次周期140d左右;PM10浓度主周期300d、次周期125d左右;臭氧浓度主周期300d、次周期143d左右.PM2.5与PM10的周期与位相均相...  相似文献   

13.
北京市2018年春季一次沙尘回流过程的污染特征   总被引:1,自引:0,他引:1  
通过监测数据分析,结合轨迹模拟和特征雷达图的分析结果,对2018年4月14~19日北京出现的一次沙尘天气过程进行分析.结果显示:依据ρ(PM2.5)和ρ(PM10)及其比值PM2.5/PM10[ρ(PM2.5)/ρ(PM10),下同]的变化情况,此次沙尘过程可分为沙尘期、中间期、回流期和回流后期4个典型时期.沙尘期ρ(PM10)平均值达到(278.5±83.7)μg/m3,明显高于回流期和回流后期,回流后期ρ(PM2.5)平均值达到(135.5±16.9)μg/m3,明显高于回流期和沙尘期.沙尘期逐小时PM2.5/PM10<0.2,回流期和回流后期PM2.5/PM10比值分别介于0.3~0.6和0.5~0.8范围内.SO42-、NO3-和NH4+等(SNA)水溶性离子沙尘期浓度占比仅为7.3%±2.5%,沙尘回流期和回流后期SNA占比分别增长至47.0%±6.3%和51.3%±5.7%.研究表明,受天气系统影响,回流沙尘可裹挟南部的细颗粒和气态污染物输送到北京后发生累积和二次转化,从而推高PM2.5浓度,因此发生沙尘回流时,区域内应加强一次污染物排放的管控力度,同时北京市需进一步加强机动车氮氧化物的排放监管.  相似文献   

14.
为了解深圳地区黑碳气溶胶(BC)的污染特征,使用深圳市西涌(XC)站点(郊区)和竹子林(ZZL)站点(城区)2014年1月1日~2015年6月30日测得的BC浓度及常规气象资料,对比研究了深圳地区两个不同代表性站点的BC变化特征.结果表明:在观测期间,郊区XC和城区ZZL站点BC小时平均浓度分别为(1.12±0.90),(2.58±2.00)μg/m3,本底浓度分别为(0.27±1.31),(1.07±0.85)μg/m3,气溶胶吸收系数σabs分别为(5.87±4.81),(13.47±10.50) Mm-1,城区站点值均高于郊区站点.两站点BC浓度分布均为对数正态分布,且都呈现干季高、湿季低的季节变化特点.日变化分析表明ZZL站点BC浓度呈现明显的双峰结构,XC站点日变化不明显.通过计算两地的气溶胶波长吸收指数AAE值,发现两地AAE值均接近1,说明两地BC污染主要来源于化石燃料的燃烧.进一步分析可知XC站点西北方向32km处是世界第三大集装箱码头,当西北风达到一定程度时(10~20m/s),码头排放的污染物将严重影响XC站点的BC浓度.后向轨迹聚类分析结果表明,XC站点主要受中远距离输送影响,ZZL站点主要受周边及本地污染源排放影响.  相似文献   

15.
利用主动观测技术对宁东能源化工基地大气PM2.5、PM1.0和气相中的PAHs浓度水平、族谱特征、时空分布及来源进行研究,并基于该观测数据对居民呼吸暴露健康风险进行评估.结果表明,宁东基地大气PM2.5、PM1.0及气相中∑16PAHs浓度范围分别为:17.95~325.12ng/m3、12.66~311.96ng/m3和26.33~97.88ng/m3,年均浓度分别为(99.42±117.48)ng/m3、(78.88±100.58)ng/m3和(57.89±47.39)ng/m3.宝丰基地冬夏季大气PM2.5、PM1.0和气相中∑16PAHs浓度水平均明显高于英力特;宝丰和英力特基地冬季大气PM2.5、PM1.0中∑16PAHs浓度水平均明显高于夏季浓度.宁东基地大气中∑16PAHs的浓度水平要高于国内外其他城市,大气PAHs污染较为严重.源解析表明夏季宁东基地PAHs的主要排放源是工业煤燃烧和机动车尾气,冬季则主要来自工业煤燃烧和木材、薪柴等生物质燃烧排放.宁东基地人群暴露于大气PAHs可能会造成平均冬季每百万人中约有33~2628人罹患癌症,夏季每百万人中约有11~834人罹患癌症的风险.  相似文献   

16.
利用空中国王飞机平台搭载单颗粒黑碳光度计(SP2)针对北京2016年12月冬季一次污染过程进行了连续观测,阐述了污染发生、发展和消散过程中的黑碳(BC)气溶胶质量浓度、粒径分布和混合状态的变化特征.结果表明,此次污染过程是以PM2.5污染为主的霾污染过程,最大值为432μg/m3.NO2、SO2和CO等气态污染物浓度经过3次污染积累阶段,为PM2.5最终爆发增长提供了物质基础.静稳的大气条件为PM2.5爆发增长提供了动力条件.污染发展过程中BC气溶胶先在地面累积增加,然后向高空传输;清除过程则是高空先被移除,低层缓慢降低.污染发展过程中北京地区黑碳气溶胶在边界层(PBL)浓度变化为先升高后减小,平均浓度为3.45μg/m3,质量中值直径(MMD)范围在190~220nm.随着污染过程的发展,气溶胶迅速老化,PBL内的BC老化比例在一天内可从27%增加到了51%,老化过程使得PM2.5质量浓度爆发增长.污染过程中BC在边界层的垂直演变导致大气加热率发生变化,有利于逆温的维持和发展,加剧了污染物过程.  相似文献   

17.
为了评估华南地区国庆期间频发的大范围区域光化学污染事件对华南背景大气的影响,2018年国庆节前后(9月19日~10月19日),在广东南岭国家大气背景站对光化学污染的代表产物过氧乙酰硝酸酯(PAN)开展了连续在线观测,并对PAN的浓度特征和来源进行了分析.结果表明,研究期间南岭PAN的平均体积浓度为(0.66±0.54)×10-9,最大值为2.33×10-9,显著高于国内外其他背景站点((0.21~0.44)×10-9),且PAN的夜间浓度一直维持在较高的水平;PAN和O3r=0.90)、NO2r=0.87)的相关性较强,通过PAN和O3的线性拟合估算出O3的大气背景体积浓度为(46.22±0.65)×10-9,表明南岭光化学反应十分活跃;受区域光化学污染事件的影响,国庆期间南岭PAN的浓度显著升高,达到(1.18±0.45)×10-9,而同期NO/NO2比值降低,导致PAN大气寿命延长,有利于PAN的本地累积;结合气团后向轨迹,潜在源贡献分布以及前体物NO2的全国分布特征分析,发现国庆期间高浓度PAN主要来自湖南,湖北、河南、江西等华中地区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号