首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 265 毫秒
1.
黑碳(BC)气溶胶来源复杂且具有特殊环境和气象影响效应.我国不同大气环境下的BC时空分布特征亟待全面认识.使用2006~2020年中国7个大气本底站长期BC观测数据,结合气象数据、排放源、增强植被指数(EVI)和气溶胶光学厚度(AOD)数据,综合分析了BC的时空分布特征、长期演化趋势及其影响因素.结果表明,中国不同地区的BC浓度和AOD差异较大,BC对AOD多为正贡献.受排放源和气象条件等因素的影响,BC浓度和AOD空间分布为东高西低,"胡焕庸线"以东的龙凤山、上甸子、临安和金沙的浓度较高,ρ(BC)和AOD平均值分别为(1699±2213)~(3392±2131) ng·m-3和0.36±0.32~0.72±0.37;"胡焕庸线"以西的阿克达拉、瓦里关和香格里拉的浓度较低,ρ(BC)和AOD平均值分别为(287±226)~(398±308) ng·m-3和0.20±0.13~0.22±0.19.不同大气本底站BC的年际变化可分为4类:年际变化较小型,主要为阿克达拉站;先增后减然后稳定型,主要为瓦里关站;先降低后稳定类,主要为香格里拉站;先稳定后降低型,主要为龙凤山、上甸子、金沙和临安.不同大气本底站BC的季节变化具有差异."胡焕庸线"以西地区秋季BC浓度最低,冬季和春季BC浓度较高;"胡焕庸线"以东地区冬季BC浓度最高,夏季BC浓度最低.BC对AOD的影响在"胡焕庸线"东西部站点的春季和夏季均较大,在"胡焕庸线"以西站点的秋季较小,在"胡焕庸线"以东站点的冬季较小.大气本底站BC的日变化多为双峰型分布,但是峰值时间存在显著地区和季节差异.  相似文献   

2.
采用2010~2013年BC连续在线观测资料,分析天津地区BC的季节分布、潜在来源及其健康效应.结果表明,2010~2013年BC气溶胶浓度平均值为(4.49±3.26)μg/m3,秋季浓度最高,为6.31μg/m3,冬季和夏季次之,春季最低,为2.59μg/m3.各季节BC浓度的日变化特征类似,均呈早晚双峰分布,早间峰值高于晚间,且夜间高于日间.混合层高度和近地层风从垂直和水平两方面影响BC的时空分布,各季节作用强度并不相同.浓度权重轨迹分析表明天津高浓度BC的主要贡献区域为河北、山东、河南等华北平原地区.此外,秋季内蒙古中部和山西北部等西北区域也会影响天津.天津城区各季节成人和儿童的致癌风险(CR)均高于EPA给定的可接受风险水平(10-6),非致癌风险水平较低,秋季因高浓度BC引发的呼吸系统死亡率相对风险为1.118,需要引起高度关注.  相似文献   

3.
余创  张玉秀  陈伟 《中国环境科学》2021,41(7):3055-3065
基于2015~2017年银川市PM2.5逐小时质量浓度和同期气象数据,采用气流后向轨迹聚类分析法、潜在来源贡献函数法(PSCF)和浓度权重轨迹分析法(CWT)研究银川市PM2.5的输送路径及潜在源分布.结果表明:2013~2018年银川市大气PM2.5质量浓度呈先升高后下降的趋势,其中2016年PM2.5浓度年均值最高(54.25±20.91)μg/m3;在四季变化中,冬季PM2.5浓度最高(75.11±29.21)μg/m3,夏季最低(31.83±7.09)μg/m3.聚类分析表明西北方向气流是银川市四季PM2.5主要的输送路径,在春、秋、冬3季PM2.5均为西北长距离输送路径;而在夏季,短距离输送气流是PM2.5主要的输送方式.PSCF与CWT分析表明,冬季PM2.5潜在源区范围最大,主要集中在西北-东南走向的潜在贡献源区带,包括新疆中东部、青海省北部、河西走廊地区、内蒙古西南部、甘肃省南部以及宁夏西北部;春、秋两季PM2.5潜在源区主要位于新疆东部与甘肃省交界区域、甘肃省东南部、湖北北部、陕西西南部以及重庆北部;夏季的潜在源区范围最小,主要集中在新疆东部与甘肃交界区域.在PM2.5重污染天气期间,其主要来源于西北方向气流,潜在源区主要分布在新疆东部与甘肃交界区域、内蒙古西南部与甘肃交界区域以及甘肃中南部地区.因此,在实施防风固沙的基础上,加强区域环境合作,实施大气污染联合防治,可以有效缓解银川乃至京津冀地区的大气污染.  相似文献   

4.
采用2010~2013年BC连续在线观测资料,分析天津地区BC的季节分布、潜在来源及其健康效应.结果表明,2010~2013年BC气溶胶浓度平均值为(4.49±3.26)μg/m3,秋季浓度最高,为6.31μg/m3,冬季和夏季次之,春季最低,为2.59μg/m3.各季节BC浓度的日变化特征类似,均呈早晚双峰分布,早间峰值高于晚间,且夜间高于日间.混合层高度和近地层风从垂直和水平两方面影响BC的时空分布,各季节作用强度并不相同.浓度权重轨迹分析表明天津高浓度BC的主要贡献区域为河北、山东、河南等华北平原地区.此外,秋季内蒙古中部和山西北部等西北区域也会影响天津.天津城区各季节成人和儿童的致癌风险(CR)均高于EPA给定的可接受风险水平(10-6),非致癌风险水平较低,秋季因高浓度BC引发的呼吸系统死亡率相对风险为1.118,需要引起高度关注.  相似文献   

5.
对广州地区春季(2015年3~4月)、夏季(2015年6~7月)、秋季(2015年9~10月)、冬季(2015年12月~2016年1月)四个季节6个粒径段(<0.49、0.49~0.95、0.95~1.5、1.5~3.0、3.0~7.2以及7.2~10.0μm)的大气颗粒物样品中水溶性有机碳(WSOC)的浓度和光学性质等变化特征进行了研究.结果表明,WSOC的浓度水平呈现冬季[(5.07±2.80)μg/m3]>秋季[(3.87±1.51)μg/m3]>春季[(3.60±1.16)μg/m3]>夏季[(2.42±0.51)μg/m3]的季节变化特征;WSOC的质量平均直径(MMD)为0.57μm (春)、0.42μm (夏)、0.49μm (秋)和0.56μm (冬).WSOC的质量吸收效率MAE365差异较大,分布在0.18~1.42m2/g之间,冬季最高;吸收波长指数AAE值分布在3.6~9.8之间.细颗粒物(<3μm)中WSOC对PM10WSOC总吸光的贡献达到了90%以上,其中<0.49μm颗粒物的贡献超过50%.在300~500nm之间,春季、夏季、秋季和冬季WSOC对颗粒物总吸光比例平均值分别为5.23%、2.95%、3.04%和6.92%;其中<0.49μm粒径段的贡献最高,分别为3.11%、1.79%、1.65%和3.45%.进一步通过特征紫外吸光度SUVA值的分析表明芳香性和分子量可能是影响WSOC吸光能力的重要因素.粒径越小颗粒物含有越多的不饱和键,使得MAE365值较高.  相似文献   

6.
为了解深圳地区黑碳气溶胶(BC)的污染特征,使用深圳市西涌(XC)站点(郊区)和竹子林(ZZL)站点(城区)2014年1月1日~2015年6月30日测得的BC浓度及常规气象资料,对比研究了深圳地区两个不同代表性站点的BC变化特征.结果表明:在观测期间,郊区XC和城区ZZL站点BC小时平均浓度分别为(1.12±0.90),(2.58±2.00)μg/m3,本底浓度分别为(0.27±1.31),(1.07±0.85)μg/m3,气溶胶吸收系数σabs分别为(5.87±4.81),(13.47±10.50) Mm-1,城区站点值均高于郊区站点.两站点BC浓度分布均为对数正态分布,且都呈现干季高、湿季低的季节变化特点.日变化分析表明ZZL站点BC浓度呈现明显的双峰结构,XC站点日变化不明显.通过计算两地的气溶胶波长吸收指数AAE值,发现两地AAE值均接近1,说明两地BC污染主要来源于化石燃料的燃烧.进一步分析可知XC站点西北方向32km处是世界第三大集装箱码头,当西北风达到一定程度时(10~20m/s),码头排放的污染物将严重影响XC站点的BC浓度.后向轨迹聚类分析结果表明,XC站点主要受中远距离输送影响,ZZL站点主要受周边及本地污染源排放影响.  相似文献   

7.
瓦里关大气本底监测站位于青藏高原东北部,几乎不受局地人为活动的影响,可反映较大空间尺度的大气成分信息.为研究人为活动对本底大气成分产生的影响,在瓦里关站点利用七波段黑碳仪(AE33)对2019年1—12月的黑碳(BC, black carbon)气溶胶浓度进行连续观测,获得了其季节和日变化特征,并使用黑碳仪模型和拉格朗日大气传输模式FLEXPART(Flexible Particle Dispersion Model)对BC来源类型和源区分布进行了分析.结果显示:黑碳气溶胶平均浓度为(332 ± 308) ng?m-3;受污染排放和气象因子的季节性变化的影响,BC在春季、夏季、秋季、冬季的平均值分别为(446 ± 343)、(297 ± 223)、(233 ± 209)、(352 ± 382) ng?m-3;BC日变化峰值分别出现在凌晨(3:00)和中午(13:00),凌晨出现的峰值由污染长距离输送引起,中午出现的峰值与局地山谷风环流有关.中午的峰值是由BC黑碳来源解析结果显示化石燃料燃烧对BC浓度的贡献占主导地位,全年平均贡献率为68%.生物质燃烧的贡献率在冬季明显升高,达到了40% ± 1%;FLEXPART源区结果表明离采样点距离近的西宁、兰州对瓦里关BC影响最大,四季平均贡献均超过100 ng?m-3;印度半岛在秋季和冬季对瓦里关的影响较大;在春季和秋季,我国中部和西南部地区也存在BC的源区,但贡献值较小.  相似文献   

8.
为了研究太原市大气PM2.5不同季节的传输路径和污染源区,利用HYSPLIT后向轨迹模型和NCEP的GDAS全球气象要素数据,对2017~2018年不同季节太原市逐日48h气流后向轨迹进行聚类分析,同时结合小时污染物质量浓度数据,分析不同季节太原市PM2.5的潜在源贡献因子(WPSCF)和浓度权重轨迹(WCWT).结果表明,太原市PM2.5的质量浓度在季节上呈现冬季(77.56μg/m3) > 秋季(69.89μg/m3) > 春季(63.78μg/m3) > 夏季(45.51μg/m3)的变化趋势.PM2.5与SO2、NO2和CO之间存在明显的同源性和二次转化过程.春、秋和冬季大气传输路径主要以西和西北方向近距离、慢移速的轨迹为主,夏季以南和东方向轨迹为主.PM2.5潜在源区季节变化明显:夏季主要受太原本地和晋中地区的影响;春、秋和冬季主要受陕西中北部、吕梁、临汾和晋中等地的影响.  相似文献   

9.
于2018年冬季(1月)和夏季(7月)在中国南方江西于都某偏远乡村采集PM2.5样品,分析PM2.5中BC浓度及其稳定碳同位素(δ13CBC),水溶性离子浓度.结果表明,采样期间BC在冬季和夏季平均浓度分别为(1.3±0.8),(0.8±0.3)μg/m313CBC在冬季和夏季平均值分别为(-25.8±1.6)‰和(-26.3±0.7)‰,两者整体呈现冬季高夏季低趋势,可能受到不同来源影响.相关性分析和贝叶斯模型源解析结果表明:冬季受生物质燃烧贡献最大为44.3%,其次机动车尾气和煤燃烧,分别为29.3%和26.4%;夏季受机动车尾气贡献最大为58.5%,其次生物质燃烧和煤燃烧,分别为28.8%和12.7%.后向轨迹表明,中国南方乡村的BC可能受到城市污染区域的长距离输送影响.  相似文献   

10.
采用单颗粒黑碳光度计(SP2)结合MARGA在线分析仪对南京地区冬季和夏季黑碳(BC)的质量浓度,以及硫酸盐,硝酸盐对其混合状态的影响进行了研究.结果表明,冬季和夏季南京地区BC质量浓度分别在1.01~14.5μg/m3和0.20~3.81μg/m3之间,均值分别为(4.39±2.66)μg/m3和(1.67±0.76)μg/m3,均呈现早晚高值的双峰型日变化特征.运用相对包裹层厚度Dp/Dc表示BC混合状态,冬季和夏季Dp/Dc分别在1.39~2.34和1.03~1.45之间,均值分别(1.81±0.21)和(1.24±0.08),Dp/Dc日变化特征与BC相反,冬季Dp/Dc日变化幅度较大.冬季Dp/Dc与SO42-和NO3-的相关性较好,Dp/Dc与NO3-的相关性高于其与SO42-的相关性,夏季则相反.冬季清洁时期BC以本地源排放为主,其混合状态受硫酸盐和硝酸盐影响较高,冬季重污染时期,受排放源以及区域传输的影响,Dp/Dc与SO42-和NO3-的相关性较低.  相似文献   

11.
利用2009~2019年阿克达拉国家大气本底站CH4浓度数据、气象要素数据,使用随机森林模型、后向轨迹模型聚类分析方法对其CH4浓度变化特征和影响因素进行分析.结果表明,10a间阿克达拉站CH4浓度增长明显,年平均浓度为(1934.30±30.94)x10-9,平均增长率0.45%;季节变化呈现秋冬高、春夏低的特征,冬...  相似文献   

12.
本研究采用Aerodyne气溶胶化学组成在线监测质谱仪ACSM,于2019年春季、夏季后期、秋季和冬季典型代表月对北京市东南城区非难熔亚微米颗粒物NR-PM1进行了实时监测与分析,研究了NR-PM1及其物种在不同时段,特别是霾污染期间的演变特征,以及4个季节有机物的来源.结果表明,整个研究期间NR-PM1的平均浓度为22.06μg/m3,其季节变化呈现出春季>冬季>秋季>夏季后期的特征.整个研究期间,Org (有机物)的平均浓度为7.12μg/m3,占NR-PM1的32.30%;NO3-和SO42-的平均浓度分别为5.91和6.20μg/m3,分别占NR-PM1的26.80%和28.12%;而NH4+和Cl-的平均质量浓度和质量百分数均较低.所有物种呈现出Org> SO42-~NO3-> NH4+>Cl-的特征.清洁天NR-PM1以Org为主要特征,各季节所有物种的日变化均较小,而霾污染天NR-PM1以二次无机物种为主要特征,不同季节各物种表现出不同的日变化特征.OA (有机气溶胶)在不同季节解析出的物种有所不同.一次有机气溶胶POA对OA的贡献随春夏秋冬逐渐升高,而二次有机气溶胶SOA则随之逐渐降低.  相似文献   

13.
利用2020年6月~2021年5月在成都市观测的碳质气溶胶小时分辨率数据,分析了气溶胶中总碳(TC)、有机碳(OC)、元素碳(EC)和二次有机碳(SOC)的变化特征.结果表明:观测期间m(TC)、m(OC)、m(EC)和r(OC/EC)的年均值分别为(9.5±4.4)μg/m3,(6.4±3.2)μg/m3,(3.2±1.1)μg/m3,2.2±0.5.成都m(TC)、m (OC)、m (EC)均表现冬为季最高((15.8±8.2),(11.1±5.8),(4.6±2.5)μg/m3),春秋次之,夏季最低((6.1±0.9),(4.5±2.0),(2.7±1.4)μg/m3)的特征.r(OC/EC)季节均值(1.9~2.6)以及四个季节的m(TC)、m(OC)、m(EC)呈现早(07:00~09:00)晚(22:00~01:00)“双峰”的日变化特征,表明机动车排放源对成都碳质气溶胶的影响较大.春夏季OC与EC的相关性小于秋冬季,表明春夏季OC、EC来源差异较大.由EC示踪法和最小相关性法得到m(SOC),r(SOC/OC)在夏季最大(40.4%),冬季最小(27.3%).春、夏季SOC与O3呈显著正相关,表明较强的光化学反应对SOC生成有重要贡献.选取各季节连续高m(TC)时段与季节平均作对比,发现碳质气溶胶有明显夜间积累过程,夏季高浓度时段二次生成使得m(OC)增长显著高于m(EC),r(OC/EC)也迅速上升.  相似文献   

14.
对2017年9月~2018年8月深圳市北部大气PM2.5中水溶性有机物(WSOM)的质量浓度、质谱及来源结构进行测量和分析.结果表明:PM2.5的质量浓度为(32.3±18.4)μg/m3,WSOM的质量浓度为(9.4±5.7)μg/m3,占颗粒物总有机物的(77.6%±14.0%).质谱分析显示,WSOM的氧碳比(O/C)平均值达到(0.57±0.09),属于二次有机物的O/C值范围,且生物质燃烧排放的离子碎片C2H4O2+的丰度显著,说明WSOM的来源中有显著的生物质燃烧排放的有机气溶胶.为了明确WSOM的来源结构,利用正矩阵因子分解法(PMF)模型进行来源解析,发现3个合理因子:高氧化态有机气溶胶(MO-OOA),低氧化态有机气溶胶(LO-OOA)和生物质燃烧(BBOA),贡献比例分别为51.7%,31.8%和16.5%.MO-OOA和BBOA贡献浓度均呈现秋冬高、春夏低的季节变化特征,反向轨迹分析显示其与内陆污染传输关系密切.LO-OOA的变化相对稳定,本地源的贡献较大.结合14C同位素示踪法对秋冬季WSOM样品分析,发现机动车等化石源二次有机物是WSOM的主要来源,贡献比例达到53.9%,需继续加强对化石燃料控制来降低WSOM污染.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号