首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
The bacterial strain Paracoccus denitrificans W12, which could utilize pyridine as its sole source of carbon and nitrogen, was added into a membrane bioreactor (MBR) to enhance the treatment of a pharmaceutical wastewater. The treatment efliciencies investigated showed that the removal of chemical oxygen demand, total nitrogen, and total phosphorus were similar between bioaugmented and non-bioaugmented MBRs, however, significant removal of pyridine was obtained in the bioaugmented reactor. When the hydraulic retention time was 60 hr and the influent concentration of pyridine was 250-500 mg/L, the mean effluent concentration of pyridine without adding W12 was 57.2 mg/L, while the pyridine was degraded to an average of 10.2 mg/L with addition of W12. The bacterial community structure of activated sludge during the bioaugmented treatment was analyzed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that the W12 inoculum reversed the decline of microbial community diversity, however, the similarity between bacterial community structure of the original sludge and that of the sludge after bioaugmentation decreased steadily during the wastewater treatment. Sequencing of the DNA recovered from DGGE gel indicated that sp., Sphingobium sp., Comamonas sp., and Hyphomicrobium sp. were the dominant organisms in time sequence in the bacterial community in the bioaugmented MBR. This implied that the bioaugmentation was affected by the adjustment of whole bacterial community structure in the inhospitable environment, rather than being due solely to the degradation performance of the bacterium added.  相似文献   

2.
Two sequencing batch reactors (SBRs) were operated for 100 days under aerobic conditions, with one being fed with unsterilized municipal wastewater (USBR), and the other fed with sterilized municipal wastewater (SSBR). Respirometric assays and fluorescence in situ hybridization (FISH) results show that active nitrifiers were present in the unsterilized influent municipal wastewater. The maximum ammonia utilization rate (AUR) and nitrite utilization rate (NUR) of the unsterilized influent were 0.32 ± 0.12 mg NH4+-N/(L·hr) and 0.71 ± 0.18 mg NO2?-N/(L·hr). Based on the maximum utilization rates, the estimated seeding intensity for the ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) of the USBR was 0.08 g AOB/(g AOB·day) and 0.20 g NOB/(g NOB·day) respectively. The fraction of nitrifiers/total bacteria in the influent was 5.35% ± 2.1%, the dominant AOB was Nitrosomonas spp., Nitrosococcus mobilis hybridizated with Nsm156, and the dominant NOB was Nitrospira hybridizated with Ntspa662. The influent nitrifiers potentially seeded the activated sludge of the bioreactor and hence demonstrated a mitigation of the acclimatization times and instability during start-up and early operation. The AUR and NUR in the USBR was 15% and 13% higher than the SSBR respectively during the stable stage, FISH results showed that nitrifiers population especially the Nitrospira in the USBR was higher than that in the SSBR. These results indicate that the natural continuous immigration of nitrifiers from municipal influent streams may have some repercussions on the modeling and design of bioreactors.  相似文献   

3.
Quorum sensing (QS) regulation of the composition of ammonia-oxidising archaea (AOA) and ammonia-oxidising bacteria (AOB) communities and functions in wastewater treatment was investigated. Specifically, we explored the role of N-acyl-l-homoserine lactones (AHLs) in microbial community dynamics in activated sludge. On average, the specific ammonia-oxidising-rate increased from 1.6 to 2.8?mg?NH4+-N/g?MLSS/hr after treatment with long-chain AHLs for 16?days, and the addition of AHLs to sludge resulted in an increased number of AOA/AOB amoA genes. Significant differences were observed in the AOA communities of control and AHL-treated cultures, but not the AOB community. Furthermore, the dominant functional AOA strains of the Crenarchaeota altered their ecological niche in response to AHL addition. These results provide evidence that AHLs play an important role in mediating AOA/AOB microbial community parameters and demonstrate the potential for application of QS to the regulation of nitrogen compound metabolism in wastewater treatment.  相似文献   

4.
To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more thanlO years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron).  相似文献   

5.
Biological risks of bioaerosols emitted from wastewater treatment processes have attracted wide attention in the recent years. However, the culture-based analysis method has been mostly adopted for detecting the bacterial community in bioaerosols, which may result in the underestimation of total microorganism concentration as not all microorganisms are cultivable. In this study, oligonucleotide fingerprinting of 16S rRNA genes was applied to reveal the composition and structure of the bacterial community in bioaerosols from an Orbal oxidation ditch in a Beijing wastewater treatment plant (WWTP). Bioaerosols were collected at different distances from the aerosol source, rotating brushes, and the sampling height was 1.5 m which is the common respiratory height of a human being. The bacterial communities of bioaerosols were diverse, and the lowest bacterial diversity was found at the sampling site just after the rotating brush rotating brush. A large proportion of bacteria in bioaerosols were affiliated with Proteobacteria and Bacteroidetes. Numerous bacteria present in the bioaerosols also emerged in water, indicating that the bacterial community in the bioaerosols was related to that of the aerosols’ sources. The forced aeration of rotating brushes brought about observably distinct bacterial communities between sampling sites situated before and after the rotating brush. Isolation sources of closest relatives in bioaerosols clone libraries were associated with the aqueous environment in the WWTP. Common potential pathogens in bioaerosols as well as those not reported in previous research were also analyzed in this study. Measures should be adopted to reduce the emission of bioaerosols and prevent their exposure to workers.  相似文献   

6.
A newly designed electric assisted micro-electrolysis filter(E-ME) was developed to investigate its degradation efficiency for coking wastewater and correlated characteristics. The performance of the E-ME system was compared with separate electrolysis(SE) and micro-electrolysis(ME) systems. The results showed a prominent synergistic effect on COD removal in E-ME systems. Gas chromatography/mass spectrometry(GC–MS) analysis confirmed that the applied electric field enhanced the degradation of phenolic compounds.Meanwhile, more biodegradable oxygen-bearing compounds were detected. SEM images of granular activated carbon(GAC) showed that inactivation and blocking were inhibited during the E-ME process. The effects of applied voltage and initial p H in E-ME systems were also studied. The best voltage value was 1 V, but synergistic effects existed even with lower applied voltage. E-ME systems exhibited some p H buffering capacity and attained the best efficiency in neutral media, which means that there is no need to adjust p H prior to or during the treatment process. Therefore, E-ME systems were confirmed as a promising technology for treatment of coking wastewater and other refractory wastewater.  相似文献   

7.
Combined flocculants with low ecological risk are urgently required in water supply and wastewater treatment in China. A novel flocculant was thus developed under the condition of low ecological risk( noted as CAS).The experiments to examine wastewater treatment performance of the new product showed that there was favourable performance in the flocculation process in contrast to commercial flocculants in treating kaolin suspensions, municipal effluent and domestic wastewater. Flocculation performance included the turbidity removal rate, sediment character and a decrease in COD(chemical oxygen demand). The sediment time of flocculation is short and the removal rate of turbidity treated by CAS is high compared with PAC(polyaluminum-chloride), PAM (polyacrylamide) and the combined addition of PAC and PAM. The optimal concentration required to affect flocculation processes is dependent on kaolin concentration and the character of the wastewater within the range examined. It also showed that CAS is effective to treat wastewater with high turbidity.  相似文献   

8.
This paper uses a prediction model of groundwater pollution based on the experiments in the laboratory and in field .The model, which was tested and calibrated by the field observated data ,satisfactorily simulated the field conditions in land treatment system of wastewater . Particularly , the model can provide the reliable pollution prediction of heavy metals , organisms and nitrogen . The model was used to predict the groundwater pollution caused by the land treatment system in the region of North China . The calibration of the model showed that correlation coefficients between the tested and predictive data of Cr6+. As3+, organism and NH4+ could reach 0.990, which proved that the model possessed the realistic instructive significance for design and use of wastewater land treatment systems .  相似文献   

9.
Bacterial diversity in soils around a lead and zinc mine   总被引:1,自引:0,他引:1  
Five samples of soil collected from a lead and zinc mine were used to assess the effect of combined contamination of heavy metals on soil bacterial communities using a polyphasic approach including characterization of isolates by culture method, community level catabolic profiling in BIOLOG GN microplates, and genetic community fingerprinting by denaturing gradient gel electrophoresis of 16S rDNA fragments amplified by PCR from community DNA (PCR-DGGE). The structure of the bacterial community was affected to a certain extent by heavy metals. The PCR-DGGE analysis of 16S rRNA genes showed that there were significant differences in the structure of the microbial community among the soil samples, which were related to the contamination levels. The number of bacteria and the number of denaturing gradient gel electrophoresis (DGGE) bands in the soils increased with increasing distance from the lead and zinc mine tailing, whereas the concentration of lead (Pb) and cadmium (Cd) was decreased. Heavily polluted soils could be characterized by a community that differs from those of lightly polluted soils in richness and structure of dominating bacterial populations. The clustering analysis of the DGGE profiles showed that the bacteria in all the five samples of soil belonged to three clusters. The data from the BIOLOG analysis also showed the same result. This study showed that heavy metal contamination decreased both the biomass and diversity of the bacterial community in soil.  相似文献   

10.
Microbial immigrants arriving with influent wastewater may influence activated sludge (AS) ecosystems. However, the extent to which immigration impacts AS communities is still debated. To explore the intensity of immigration impact, we used sequencing technology to track the raw wastewater and AS communities from a membrane bioreactor plant over a 12-month period. We first distinguished core populations from peripheral ones in both raw wastewater and AS based on their occurrence frequency and abundance. The results showed that core OTUs (≥ 80% occurrence frequency) made up a large fraction (> 90%) of total sequences, while peripheral OTUs composed the majority of all detected OTUs but merely occupied a few sequences. A significant difference in core communities between the influent and AS was found, as well as between the compositions of core and peripheral populations. Additionally, the persistent functional bacteria of AS, although not numerically dominant, accounted for 96.24% of the total sequences related to nutrient turnover, suggesting the presence of a small number of longstanding and core functional bacteria in the AS ecosystem. Importantly, 64% of the 5188 OTUs in AS, which accounted for 91.51% of the sequences, exhibited positive growth rates, which suggested that their apparent abundances were due to growth within the plant, not from immigration. Taken together, these results demonstrated that the impact of influent populations on core AS communities was limited. Overall, this work provides quantitative insights into the impact of immigration, which is expected to advance our understanding of the AS community assembly.  相似文献   

11.
污水处理工艺对氨氧化菌及细菌群落的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
采用针对氨氧化菌(AOB)功能基因氨单加氧酶(amoA)的末端限制性片段长度多态性技术(T-RFLP)、克隆测序等方法,研究了北京市2个污水处理厂的4个污水处理系统中AOB的群落结构,同时采用针对16S rRNA基因的T-RFLP技术分析了总细菌的群落结构.T-RFLP指纹图谱分析表明,4个污水处理系统中AOB的优势限制性片段(T-RF)均为291bp和354bp,细菌的优势T-RF为115,117,166,455,465, 468,471,482,800,893bp等.说明污水处理工艺对系统中AOB及细菌的群落结构影响很小.对功能基因amoA的系统发育分析表明,4个污水处理系统中优势AOB均属于Nitrosomonas europaea cluster和Nitrosomonas oligotropha culster.  相似文献   

12.
城市污水处理厂活性污泥中氨氧化菌群落结构研究   总被引:5,自引:2,他引:3  
为了解析污水处理厂中氨氧化菌(AOB)的群落结构,以及处理工艺、规模等参数对AOB群落结构的影响,采用针对AOB功能基因氨单加氧酶(amoA)的末端限制性片段长度多态性技术(T-RFLP)、克隆测序等方法,研究了北京市6个污水处理厂的9个污水处理系统中AOB的群落结构.T-RFLP指纹图谱表明不同污水处理系统中AOB的群落结构有所不同,主要的末端限制性片段(T-RF)为354、491和291 bp.T-RFLP指纹图谱及聚类分析表明,污水处理工艺对系统中AOB的群落结构影响较小,而处理规模对AOB的群落结构有一定的影响.对功能基因amoA的系统发育分析表明,污水处理系统中优势AOB均为Nitrosomonasspp.,而非Nitrosospiraspp..这可能是Nitrosomonasspp.的最大比增长速率(μmax)较高,使其更容易成为活性污泥系统中的优势AOB.  相似文献   

13.
To determine whether the functional stability of nitrification was correlated to a stable community structure of ammonia oxidizing bacteria (AOB) in a full-scale wastewater treatment plant, the AOB community dynamics in a wastewater treatment system was monitored over one year. The community dynamics were investigated using specific PCR followed by terminal restriction fragment length polymorphism (T-RFLP) analysis of the amoA gene. The T-RFLP results indicated that during the period of nitrification stability, the AOB community structure in the full-scale wastewater treatment system was relatively stable, and the average change rate every 15 d of the system was 6.6%±5.8%. The phylogenetic analysis of the cloned amoA gene showed clearly that the dominant AOB in the system was Nitrosomonas spp. The results of this study indicated that throughout the study period, the AOB community structure was relatively stable in the full-scale wastewater treatment system with functional stability of nitrification.  相似文献   

14.
污水处理系统中硝化菌的菌群结构和动态变化   总被引:3,自引:0,他引:3  
研究分析了4种不同工艺类型的城市污水处理厂中氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的丰度及菌群结构.实时定量PCR结果表明4种工艺中AOB菌群的丰度范围为8.56×106~4.46×107cells/gMLSS;NOB菌群的丰度为3.37×108~1.53×109cells/gMLSS.每个工艺中Nitrospira都是优势NOB,占NOB菌群的88% 以上. A2O工艺冬季AOB和Nitrospira丰度比夏季均有所降低,这是导致冬季生物脱氮效果变差的主要原因.基于 amoA基因的系统发育分析结果显示所有的序列属于Nitrosomonas,其中Nitrosomonas oligotropha cluster 占克隆文库的60.1%,是AOB 种群中的优势菌属,Nitrosomonas-like cluster和 Nitrosomonas europaea cluster次之,分别占克隆文库的29.6%和9.1%.N. europaea cluster只在A2O工艺中出现,且在A2O工艺夏季污泥样品克隆文库中达到44.7%.低DO运行使N. europaea cluster成为优势AOB是A2O工艺夏季出现较高亚硝酸盐积累率的主要原因.研究结果证实了城市污水处理厂中优势AOB和NOB分别为Nitrosomonas和Nitrospira,硝化菌群占总菌群的1%~7%,其丰度、相对含量和菌群结构是影响硝化效果的主要因素.  相似文献   

15.
北运河沉积物中氨氧化微生物的群落特征   总被引:4,自引:0,他引:4  
采用T-RFLP、RT-qPCR和克隆测序等分子生物学技术,以氨单加氧酶基因(amoA)为分子标记,研究了北运河表层沉积物中氨氧化古菌(AOA)和氨氧化细菌(AOB)的群落多样性、丰度、系统发育及其与环境因子的响应关系.结果表明,沉积物中AOB的群落多样性和丰度均高于AOA,是北运河沉积物中氨氧化过程的主要功能微生物.沉积物中氨氧化微生物群落结构沿干流和支流存在明显的空间分异,而AOA的种类组成空间差异较小;沉积物的氨氮(NH4+)和硝态氮(NO3﹣+NO2﹣)是影响氨氧化微生物群落特征的主要因子,AOB对环境变化的敏感性更高;AOA和AOB的amoA基因拷贝数分别为1.32×105~1.91×106copies/g、5.39×105~8.3×106copies/g.闸坝下游沉积物的氨氧化微生物丰度最高.系统发育分析表明,amoA基因序列多属于土壤/沉积物分支,较多AOB的克隆序列与土壤亚硝化螺菌属(Nitrosospira)的类群相似性可达98%.受污水处理厂退水的影响,部分amoA基因序列与污水处理厂废水和活性污泥中发现的类群同源性高.污染物质来源、支流汇入和闸坝拦截对河流沉积物氨氧化微生物的群落特征影响显著.  相似文献   

16.
不同好氧颗粒污泥中微生物群落结构特点   总被引:3,自引:0,他引:3  
为了探讨活性污泥好氧颗粒化过程对微生物种群的影响、不同底物及不同颗粒化方法培养的好氧颗粒污泥中微生物群落结构的差异,以接种污泥、模拟废水好氧颗粒污泥和分别投加粉末活性炭和硅藻土的实际生活污水好氧颗粒污泥为研究对象,利用PCR-DGGE对比分析了接种污泥和好氧颗粒污泥中的微生物群落结构.结果表明:活性污泥好氧颗粒化过程会减少微生物种群多样性,影响颗粒污泥稳定性的细菌被淘汰,而聚磷菌、反硝化菌、难降解有机物降解菌等污水处理功能微生物都在颗粒化过程中得到保留.活性污泥好氧颗粒化过程中能够实现亚硝化细菌(AOB)一定程度的富集.与接种活性污泥相比,好氧颗粒污泥中AOB的多样性指数与均匀性指数均有提高.好氧颗粒污泥中的优势菌群主要分布于变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和未培养菌(uncultured bacterium).其中AOB均属于β-Proteobacteria的亚硝化单胞菌属(Nitrosomonas).  相似文献   

17.
城市污水处理系统中氨氧化细菌种群结构研究   总被引:3,自引:1,他引:2  
利用PCR-DGGE(变性梯度凝胶电泳)技术对北京7个城市污水厂中10个处理系统的氨氧化细菌(AOB)种群结构进行了调查研究,发现城市污水厂的AOB种群多样性不高,除了硝化效果不好的一个污水厂外,其他9个污水处理系统中均检测到AOB的存在.切胶测序结果表明主要属于Nitrosomomu oligotropha/aestuarii-like cluster.  相似文献   

18.
为了解析DO浓度对附积床反应器脱氮系统中COD、NH4+-N、TN去除效率的影响,以及对氨氧化菌群(AOB)结构及多样性的影响,分析了DO分别为1.0~2.0,2.0~3.0,3.0~4.0mg/L时COD、NH4+-N、TN去除效率,并采用针对AOB功能基因氨单加氧酶(amoA)的限制性内切酶片段长度多态性技术(RFLP)分析了三组DO浓度下反应器中AOB的群落结构及多样性.结果表明,不同DO条件下,系统均取得较高的COD和NH4+-N的去除效果, NH4+-N的去除效率随着DO的增加而提高.不同DO浓度下反应器生物膜上AOB菌群多样性丰富,且与DO对AOB菌群的多样性影响较小相比,DO对AOB的菌群结构及种类的影响较大.  相似文献   

19.
Reclamation of domestic wastewater for agricultural irrigation is viewed as a sustainable option to create an alternative water source and address water scarcity. Free-living amoebae(FLA), which are amphizoic protozoa, are widely distributed in various environmental sources. The FLA could cause considerable environmental and health risks. However, little information is available on the risk of these protozoa. In this study, we evaluated the feasibility using rural domestic wastewater for agricultural irrigation, and analyzed dynamic changes of the microbial community structure and FLA populations in raw and treated wastewater, as well as the phyllosphere and rhizosphere of lettuce production sites that were irrigated with different water sources. The bacterial community dynamics were analyzed by terminal restriction fragment length polymorphism(T-RFLP). The bacterial community structures in the influent were similar to that in the effluent, while in some cases relative abundances varied significantly. The populations of Acanthamoeba spp. and Hartmannella vermiformis in the anaerobically treated wastewater were significantly higher than in the raw wastewater. The vegetables could harbor diverse amoebae, and the abundances of Acanthamoeba spp. and H. vermiformis in the rhizosphere were significantly higher than in the phyllosphere. Accordingly, our studies show insight into the distribution and dissemination of amoebae in wastewater treatment and irrigation practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号