首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
黄石市夏季昼间大气PM10与PM2.5中有机碳、元素碳污染特征   总被引:3,自引:0,他引:3  
2012年7月,对黄石市城区夏季昼间大气颗粒物PM10与PM2.5样品进行采集,并用热/光反射法(TOR)分析其中的有机碳(OC)、元素碳(EC).结果显示,新老城区PM10中OC平均含量分别为14.60μg·m-3和18.70μg·m-3,EC平均含量分别为4.70μg·m-3和11.02μg·m-3;PM2.5中OC平均含量分别为11.89μg·m-3和13.66μg·m-3,EC平均含量分别为2.28μg·m-3和4.96μg·m-3.研究结果表明,夏季昼间黄石市新老城区大气PM10与PM2.5中碳组分浓度变化趋势相同,且老城区大气PM10、PM2.5中的OC和EC含量普遍要比新城区高,且PM10中OC、EC在总碳(TC)的质量分数均高于在PM2.5中,说明黄石市老城区碳污染状况较新城区要严重,其夏季昼间大气粗颗粒物中碳的含量更高.通过对OC/EC及8个碳组分进行探讨,发现黄石市大气颗粒物中OC易形成二次污染,而EC排放以烟炱为主,夏季燃煤和机动车尾气是黄石碳污染的重要污染源,生物质燃烧也具有一定影响.  相似文献   

2.
武汉市洪山区春季PM2.5浓度及多环芳烃组成特征   总被引:2,自引:0,他引:2  
分析了武汉市洪山区2014年春季PM2.5的浓度,并利用气相色谱/质谱(GC/MS)测定了多环芳烃(PAHs)的组成.结果表明,PM2.5的质量浓度为47.99~195.87μg/m3,平均质量浓度为(101.34±32.49)μg/m3,超标天数占总监测天数的81.82%;PM2.5质量浓度与各气象要素间的相关性不显著.PM2.5中PAHs日均浓度变化范围为8.44~34.45ng/m3,平均浓度为21.48±7.03ng/m3,其中4环PAHs的含量最高,达到11.72ng/m3,占总PAHs浓度的54.56%,结合典型污染来源中PAHs的特征比值和数学统计中主成分分析法,判断出其主要污染来源为车辆排放、燃烧源和燃煤源;PAHs日均总毒性当量(∑BaPeq)浓度范围为1.10~5.46ng/m3,平均值为2.99ng/m3,日均超标率达到60.61%.  相似文献   

3.
我国大气背景点颗粒物PAHs分布特征及毒性评估   总被引:2,自引:0,他引:2  
选择我国自北向南4个国家大气背景监测站(吉林长白山、山西庞泉沟、湖北神农架和广东南岭),于2013年4个季度采集了环境空气PM2.5和PM10样品,采用超声波乙腈萃取-超高压液相色谱分析16种多环芳烃.结果表明,4个大气背景点的PM2.5和PM10中∑PAHs浓度分别为0.09~25.42ng/m3和0.13~30.16ng/m3,与国内外大气背景点基本处于同一浓度水平,空间分布特点为庞泉沟>长白山>神农架>南岭,季节分布特点为庞泉沟和神农架春季、冬季,长白山的春季,以及南岭冬季明显高于所在背景点的其他季节.PM2.5和PM10中BaP和∑PAHs在低浓度范围内均呈现显著的线性相关性.除了长白山冬季和南岭夏季的3环PAHs比例较高外,其余季节的背景点以4环和5环PAHs为主,主要为荧蒽、芘、苯并(a)荧蒽.通过BaP当量进行了致癌性和致突变性评价,结果显示庞泉沟春季和冬季颗粒物的∑BaPTEF和∑BaPMEF相对较高,分别为1.81~2.74ng/m3和2.92~4.36ng/m3, 对所在区域的PAH污染状况需要关注.  相似文献   

4.
南京冬季雾天颗粒物中PAHs分布与气象条件的关系   总被引:9,自引:1,他引:8       下载免费PDF全文
为研究南京冬季雾天PM10、PM2.5中PAHs的分布特征以及雾天气条件对其影响,2007年11月15日至12月30日分别于雾天和晴天采集了大气气溶胶PM10分级样品,测定了样品中的16种优控PAHs.结果表明,雾天PM10和PM2.5中Σ16PAHs质量浓度较晴天分别高出34.72,35.35ng/m3,且昼夜变化没有晴天明显.低环PAHs在所在粒径段内占有比例逐渐递减,而高环PAHs逐渐增大.雾天苯并(a)芘(BaP)等效质量浓度(BaPE)超出BaP居民区标准(5.0ng/m3)1.48ng/m3.分析气象条件看出,雾天逆温层结稳定、相对湿度较大,且0.65~2.10μm粒子中PAHs质量浓度有增加的趋势,呈现出积聚模态颗粒物富集;雾天有东南暖湿气流和西南气流存在,为雾的发展提供了丰富水汽来源,带来的污染颗粒充当雾凝结核;同时弱风条件使上下层空气发生交换,雾体变厚,维持雾发展,加重了PAHs污染.  相似文献   

5.
2011年1-12月在新疆科学院设置采样点,采集大气可吸入颗粒物。并利用气相色谱-质谱联用仪(GC-MS)对可吸入颗粒物中的多环芳烃进行了定量分析。采样期间细粒子(PM2.5)和粗粒子(PM2.5-10)的质量浓度范围分别为10.30~559.00μg/m3和16.70~218.80μg/m3;美国EPA优控的16种多环芳烃中由于萘(Nap)、苊烯(Acp)和苊(Acey)的浓度低于检测线未被检出之外,其余13种化合物均被检出。在PM2.5和PM2.5-10中这13种多环芳烃的总浓度范围分别为:1.18~2 504.72 ng/m3和1.14~519.87 ng/m3;采用SPSS软件对颗粒物浓度与气象参数之间相关性分析表明,颗粒物浓度与温度及风速在P0.05水平上显著负相关,与相对湿度在P0.01水平上显著正相关;采用多元线性回归对PM2.5-ΣPAHs、PM2.5-10-ΣPAHs浓度与气象参数之间建立预测模型,决定系数R2分别为0.689、0.557。  相似文献   

6.
对福州市4个不同功能区秋季、冬季和春季大气中PM10的浓度以及PM10中多环芳烃(PAHs)的含量进行了分析,结果表明,不同季节大气中PM10及PM10中PAHs的平均含量均为工业区>交通干道>住宅区>公园,且不同功能区均为冬季>春季>秋季。3个季节中,整个福州市PM10质量浓度在0.02~0.26 mg/m3之间,平均值为0.1 mg/m3,处于空气环境质量标准的二级标准内。PM10中∑PAHs质量浓度范围为未检出~33.1 ng/m3之间,平均值为10.4 ng/m3。PAHs组成中以高环为主,低环含量较低或低于检测限。PAHs主要来源于汽油的燃烧。  相似文献   

7.
以夏、秋、冬三个季节合肥大气颗粒物PM10和PM2.5中PAHs为研究对象,通过采样、测定与分析,得出如下结论:合肥市大气PM10和PM2.5中PAHs的浓度季节变化特征明显,冬季秋季夏季。夏季PM10中不同环数PAHs的分布规律与该季PM2.5不同,而秋冬季则相同,分布规律都是5~6环4环2~3环。通过采用BaP毒性当量法对PAHs进行健康风险评估,发现合肥大气PM10和PM2.5中PAHs的BEQ值除了夏季低于国家标准限值外,秋、冬季节均高于国家标准限值和国际标准限值。  相似文献   

8.
成都市PM10中多环芳烃来源识别及毒性评估   总被引:1,自引:0,他引:1  
对成都市2009年冬夏两季可吸入颗粒物(PM10)中16种多环芳烃(PAHs)含量进行了研究,并进一步分析其空间分布、组成特征及来源.结果表明,16种PAHs中15种被普遍检出(Nap未检出),冬季和夏季的ΣPAHs浓度范围分别为40.25~150.68ng/m3和44.51~71.16ng/m3,平均浓度分别为88.36ng/m3和64.21ng/m3.空间分析表明,PAHs浓度在工业区较高,背景点较低.从PAHs组分分析结果显示,低环含量较低,4~6环所占比例较大,其比例范围为86.7%~96.1%.各组分含量季节差异不明显.利用特征化合物比值法、等级聚类法、PCA解析法分析了污染源类型,结果表明成都市PM10中PAHs的主要来源是机动车尾气排放源,以及煤与木材燃烧源.通过BaP当量(BaPE)进行了毒性评估,结果显示成都市冬夏两季的BaPE均值分别为13.41ng/m3和9.54ng/m3.  相似文献   

9.
本研究对太原市采暖期PM2.5中多环芳烃(PAHs)的污染水平、组成特征、健康风险以及来源进行了分析。结果表明,太原市采暖期PM2.5的日均浓度水平为70.7~274.2μg/m3,90%的样品超过了我国《环境空气质量标准》(GB 3095-2012)中PM2.5的二级标准限值(75μg/m3)。PM2.5中16种PAHs的浓度水平为282.7~1 398.6ng/m3,平均值为915.7ng/m3。荧蒽(Fla)是浓度最高的单体,占PAHs总浓度的20.4%,其次是芘(Pry)和菲(Phe),分别占14.5%和13.2%。不同环数的PAHs质量浓度为4环5~6环2~3环。以苯并(a)芘(Bap)为参照对象的昼夜毒性当量浓度Bapeq分别为75.5和100.0ng/m3,高于我国和WHO对Bap的规定值(分别为2.5和1ng/m3),对人体健康存在潜在危害。根据PAHs环数分布及特征比值法判断PAHs的主要来源是煤燃烧,同时也存在一定的生物质燃烧和少部分石油燃烧。  相似文献   

10.
京津冀地区城市空气颗粒物中多环芳烃的污染特征及来源   总被引:5,自引:0,他引:5  
在2013年4个季节,同步采集了京津冀地区3个典型城市(北京市、天津市和石家庄市)空气PM2.5和PM10样品,采用乙腈超声提取-超高压液相色谱法分析了16种多环芳烃(PAHs).结果表明,京津冀地区城市空气PM2.5和PM10中总PAHs的浓度分别为6.3~251.4ng/m3和7.0~285.5ng/m3,呈现冬季>春季>秋季>夏季的季节变化特点和石家庄>北京>天津的空间分布特点.PAHs环数分布以4、5和6环为主,比例分别为25.0%~45.1%、31.7%~40.1%、15.1%~28.2%,2和3环比例之和小于10.3%;与非采暖季相比,采暖季中4环PAHs比例显著增加,5和6环PAHs比例明显下降.PAHs比值法显示,京津冀地区城市空气颗粒物PAHs的来源呈现明显季节性变化特点,燃煤和机动车排放是2个重要的PAHs排放源,在采暖季燃煤来源的比例较大,在非采暖季以机动车排放的来源为主.  相似文献   

11.
2007年春节期间北京大气颗粒物中多环芳烃的污染特征   总被引:13,自引:3,他引:10  
利用大流量颗粒物采样器分昼夜采集了2007年春节前后大气气溶胶中PM10和PM2.5样品,并采用气相色谱-质谱技术对PM2 5样品中的多环芳烃进行了检测.春节期间大气颗粒物中PM10和PM2 5夜间平均质量浓度为232 ug·m-3和132 ug·m-3,分别高于白天的PM10(194ug·m-3)和PM2.5(107ug·m-3);除夕后颗粒物日平均质量浓度为252.3 ug·m-3(PM10)和123.8ug·m-3 (PM2.5),分别高于除夕前的166.7 ug·m-3(PM10)和106.8 ug·m-3(PM2.5);同时夜间PM2.5中多17种多环芳烃(PAHs)的总浓度都高于相应白天的总浓度,且除夕前多环芳烃日均总浓度为95.9 ng·m-3,高于除夕后的58.9 ng·m-3.结果表明,除了受一定的气象条件的影响外,大量燃放烟花爆竹会对大气颗粒物浓度有影响.但对大气中的多环芳烃影响不大,而春节期间工业及交通污染排放的减少削减了排放到大气中的PAHs.根据荧蒽/芘等比值指标判别北京PAHs主要以燃煤为主、交通为次的混合局地源污染.  相似文献   

12.
成都市冬季PM2.5中多环芳烃的源解析与毒性源解析   总被引:1,自引:0,他引:1  
对成都市2010~2011年住宅区冬季PM2.5中16种多环芳烃(PAHs)进行了来源解析、毒性评估以及毒性源解析研究.结果表明,16种PAHs普遍检出,成都市冬季PM2.5中的ΣPAHs浓度范围为22.79~215.82ng/m3,平均浓度为71.38ng/m3.PAHs组分分析结果显示,低环(2~3环)PAHs含量较低,高环(4~6环)所占比例较大,其比例范围为75.95%~99.52%.利用EPA PMF5.0解析PAHs污染源类型,结果表明成都市冬季PM2.5中PAHs的主要来源是煤和木材燃烧源、柴油燃烧源和汽油燃烧源,其分担率分别是14.88%、31.34%和54.08%.等效因子(TEF)毒性评估表明,成都市冬季的TEQ均值为16.82ng/m3.此外,运用PMF-TEF耦合模型对PAHs进行了毒性源解析,结果表明煤和木材燃烧、柴油燃烧和汽油燃烧的毒性分担率分别是12.39%、24.78%、62.83%.  相似文献   

13.
使用中流量颗粒物采样器采集台州市2015—2016年大气PM_(2.5)样品,利用气相色谱-质谱仪对样品中16种多环芳烃(PAHs)进行分析,研究PAHs的污染特征及可能来源。结果显示:PAHs总浓度为(20.69±4.84)ng/m3,浓度季节变化大小顺序依次为冬季>春季>秋季>夏季,空间变化为商住区>工业区>背景点。PM_(2.5)中PAHs以高环为主(≥4环),占86%。不同季节商住区和工业区PAHs(4环)含量均略高于背景点,PAHs(5~6环)的含量商住区略高于工业区和背景点。PAHs环数分布和比值法结果表明台州市大气PM_(2.5)中PAHs的主要来源是机动车尾气和燃煤。成年人和儿童的终生超额致癌风险(ILCR)分别为8.02×10-7和5.61×10-7,表明台州市PM_(2.5)中PAHs对人体健康影响在可接受范围内。  相似文献   

14.
从乌鲁木齐工业区、交通区、生活区、风景对照区4个典型区域入手,利用崂应2050型大气自动采样器及TSP/PM10/PM5/PM2.5/切割头对大气中TSP、PM10、PM5、PM2.5进行同步采集,并采用火焰原子吸收分光光度法及石墨炉原子吸收分光光度法对TSP、PM10、PM5、PM2.5中的6种重金属Cd、Pb、Cu、Ni、Zn、Mn的含量进行了测定。测定结果为:Cd的浓度为0.52~10.72 ng/m3;Pb的浓度为25.66~356.87 ng/m3;Cu的浓度为12.57~173.93 ng/m3;Ni的浓度为1.85~78.22 ng/m3;Zn的浓度为67.58~431.49 ng/m3;Mn的浓度为18.87~310.20 ng/m3。大气颗粒物中各重金属之间存在一定的相关性,重金属的分布与风力也有一定的关系。  相似文献   

15.
按非采暖季和采暖季2个时段采集徐州市不同环境质量功能区的大气中可吸入颗粒物(PM10)样品,对EPA优先控制的16种多环芳烃(PAHs)进行了分析研究.研究表明:徐州市区PM10中的PAHs质量浓度均值为164.6 ng/m3.其中苯并(α)芘(BaP)年质量浓度均值为10.83 ng/m3,平均BEQ质量浓度值为24.51 ng/m3,PAHs组成以高环为主,污染水平较高,对人体健康的威胁比较严重.利用特征比值法和化学质量平衡模型对徐州市PM10中的PAHs进行来源识别和解析,得出一致的结果为:燃煤是徐州市PM10中的PAHs的主要来源.  相似文献   

16.
龙岩大气颗粒物中多环芳烃源识别及污染评价   总被引:2,自引:0,他引:2  
采用恒能量同步荧光法,研究了龙岩市区不同功能区冬、春季大气颗粒物中多环芳烃(PAHs)的污染状况和污染来源,并对不同功能区的PAHs含量进行了评价. 结果表明:龙岩市区各功能区大气颗粒物中ρ(PAHs)为278.95~ 718.25 ng/m3,且冬季高于春季. 根据PAHs中一些特征标志物的比值,可判断冬、春季市区内PAHs主要来源于汽车尾气和燃煤污染. 采用苯并[a]芘(BaP)及苯并[a]芘等效致癌浓度(BaPE)来评价3个功能区大气颗粒物中PAHs的污染状况显示,冬季3个功能区苯并[a]芘含量(ρ(BaP))均超过国家标准(10 ng/m3),且ρ(PAHs)均严重超标.   相似文献   

17.
选取天津市37户家庭,分别在2009年(8、9月)非采暖期和2009年(11、12月)采暖期采集室内PM10并对PM10载带的18种多环芳烃(PAHs)的含量进行测定,分析其浓度特征.结果表明,采暖季的总PAHs的浓度高于非采暖季总PAHs的浓度,采暖季和非采暖季室内PM10载带的多环芳烃以4环和5环为主,占PAHs总含量的60%以上,18种多环芳烃的平均浓度为190ng/m3,其中BaP的浓度为12ng/m3,超过了国家标准(1ng/m3),根据特征比值法初步判断室内PAHs的来源为烹调,吸烟,燃煤,交通,PAHs的毒性等效因子浓度(c-BaPeq)为22.65ng/m3,根据多环芳烃增量终身致癌风险估算,预计天津市老年人潜在致癌风险为5×10-6,超过了可接受水平.  相似文献   

18.
北京市2009年8月大气颗粒物污染特征   总被引:11,自引:1,他引:10       下载免费PDF全文
为研究2008年8月北京奥运会1a之后北京市大气颗粒物的污染特征,于2009年8月对北京市大气颗粒物PM10、PM2.5样品进行采集,测量其质量浓度并对其中的水溶性离子组分进行分析.研究发现2009年8月北京市大气颗粒物PM10、PM2.5质量浓度日均值分别为176.9μg/m3和102.5μg/m3.PM10质量浓度比2008年观测值上升了180%,比2007年降低了10%; PM2.5质量浓度比2008年观测值上升了126%,比2007年上升了31%.水溶性离子是大气颗粒物的重要组分,分别占PM10和PM2.5质量浓度的43%和61%.对比发现,污染天气条件下PM2.5/PM10和NO3-/SO42-比值升高,移动源是北京地区主要的污染物来源.风向风速和降水等天气条件对颗粒物质量浓度有很大影响,其中0.5~1.0m/s的东南风条件下大气颗粒物污染最为严重.  相似文献   

19.
近年来,大气颗粒态汞对人体健康的危害逐渐凸显。济南是山东省的省会城市,能源消耗量大,工业园区集中。文章以济南市不同功能区域的大气颗粒物为研究对象,对其中的汞含量进行测定。结果表明,监测期间所有供试点中TSP、PM10、PM2.5超标率分别为(GB 3095-2012二级标准):27.8%、38.9%、55.6%,PM2.5超标比率较高,细颗粒物在大气总悬浮颗粒物中占比较高,工业区对颗粒物排放贡献较大。不同颗径颗粒态汞含量不同,TSP汞含量为0.353±0.081ng/m3,PM10汞含量为0.279±0.071 ng/m3,PM2.5汞含量为0.223±0.053 ng/m3。颗粒物中汞的含量比值,PM10占TSP的比值为0.79±0.14,PM2.5占PM10的比为0.81±0.10,颗粒态汞主要存在于细颗粒物中。同时研究还表明,颗粒态汞的质量浓度与颗粒物的质量浓度呈正相关关系,大气颗粒态汞(可吸入颗粒物PM10)的危险系数HQ均小于1。  相似文献   

20.
运用连续颗粒物采样仪(URG Model 2000-01J)对贵阳市城区大气颗粒物PM2.5进行了连续3个月(9~11月)的采集与分析,探讨了PM2.5的浓度分布特征、气象条件的影响。结果显示,贵阳市大气颗粒物PM2.5的平均质量浓度为53±27μg/m3,变化范围为3.7~186μg/m3;初步推断大气颗粒物PM2.5的污染来源主要是燃料燃烧、生物质燃烧、汽车尾气等人为源;相对湿度、风速、风向、温度等气象条件是影响大气颗粒物浓度及分布的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号