首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在中试条件下,以石英砂为载体,利用表面负载的铁锰复合氧化膜同步去除地表水中的氨氮和锰,考察了氨氮和锰的去除效能及动力学过程.结果表明,活性氧化膜对地表水中氨氮和锰的去除率可达到90%以上.滤料对氨氮和锰的去除符合拟一级动力学关系,但其动力学常数ka随进水污染物浓度范围的不同而变化.滤速在4~13m/h之间,出水氨氮和锰均可达标;滤速增大,单位体积滤料对氨氮和锰的去除能力提升,去除污染物所需滤层厚度与滤速符合幂函数关系.活性氧化膜对地表水低温条件具有一定的适应性,温度降低至10℃,进水氨氮浓度2.0mg/L,锰浓度0.9mg/L,出水达到我国饮用水水质标准限制.  相似文献   

2.
随着技术进步,地表水中的许多污染物可用快速测定仪测定.采用快速测定仪与实验室国标法测定地表水中氨氮的结果是否存在显著性差异,本文根据实际样品进行了比较和探讨.  相似文献   

3.
基于氮肥企业退役地块土壤、地下水、土壤气和室内空气中氨氮的实测数据,分析了氨氮在各地块中的污染水平和分布特征,评估了氨氮污染的人体健康风险,分析了氨挥发造成的刺激性异味风险和对室内空气质量的影响,及氨氮迁移转化对附近地表水和下游地下水水质的污染风险.分析发现,4个地块中土壤和地下水氨氮含量均表现较强的变异性,土壤中氨氮最高浓度分别高达12700.00,2420.00,2920.00,2370.00mg/kg,地下水中氨氮最高值分别高达7550.00,5100.00,847.00,3760.00mg/L.在平面分布上,4个地块中土壤和地下水较高浓度氨氮均主要分布在生产区和污水处理区,在垂向分布上4个地块间存在差异,氮肥厂I的土壤以黏土为主,多数点位氨氮含量随深度增加而递减,氮肥厂II、III和IV的土壤以粉土/粉砂或粉土夹粉黏为主,氨氮含量总体呈现随深度增加而增加的趋势.4个地块中,仅氮肥厂I在最保守条件下土壤中氨氮的最高危害熵(1.54)略超可接受风险水平(1.0).氮肥厂II和IV的土壤气和室内空气中检出氨浓度范围分别为≤ 9.88mg/m3和≤ 0.18mg/m3,对室内空气质量未产生不利影响.氮肥厂I和II紧邻河流监测井中的氨氮浓度超《地表水环境质量标准》中IV类(1.5mg/L)标准1.05~409.33倍,氮肥厂III和IV污染区地下水中氨氮浓度在至少4次监测结果中有轻微降低,且在下游监测井中发现硝态氮的积累.分析结果表明,4个地块在现状条件下土壤和地下水氨氮污染的人体健康风险较低,对室内空气质量影响较小.但地块地下水中氨氮是附近地表水和下游地下水环境的长期污染源,氨氮转化的硝态氮更易向下游迁移.建议今后处理氮肥企业退役地块氨氮污染时将其对地表水和下游地下水环境的污染风险纳入考虑.  相似文献   

4.
通过对北京市2015年3-9月共15场自然降雨中氨氮污染物浓度的检测,分析了自然降雨中氨氮污染特征,考察了厕所排气口氨气排放对降雨中氨氮污染的影响,阐述了氨氮污染物总量变化及其影响因素。研究结果表明:首场降雨氨氮平均浓度最高,达到20.5 mg/L,后续14场降雨氨氮平均浓度介于2.0~5.0 mg/L之间,14场自然降雨中氨氮浓度高于《地表水环境质量标准》(GB 3838-2002)的Ⅴ类标准(≤2 mg/L),是水体氨氮污染的重要来源。厕所排气口附近自然降雨pH值介于6.5~7.0之间,远高于大气降雨监测站所测pH值,且自然降雨中氨氮浓度随采样点距厕所排气口距离的增加呈现线性下降趋势,表明厕所排气口排放的氨气是城市大气氨氮污染的一个主要来源。自然降水中氨氮污染物总量的主要影响因素包括降雨强度、降雨历时和前期干旱天数,地表径流氨氮污染物总量小于自然降水中氨氮污染物总量。  相似文献   

5.
堤垸是滨湖、滨江低洼地带的一种重要景观,农业面源污染已成为其主要的环境问题之一.为解析堤垸地区地表水硝酸盐污染来源,以洞庭湖屈原垸平江河段为研究对象,采用稳定同位素及水化学分析方法定性识别污染来源,并结合MixSIAR模型量化不同污染源的贡献率.结果表明:(1)硝态氮和氨氮是屈原垸平江河段地表水无机氮的主要赋存形态,时间上,硝态氮浓度在丰、枯水期间无显著差异(p>0.05),而丰水期氨氮浓度平均值高于枯水期;空间上,垸内硝态氮浓度显著低于垸外(p<0.01),而氨氮浓度显著高于垸外(p<0.01).(2)MixSIAR模型结果表明,化肥、土壤有机氮、水产养殖废水、粪肥和污水是研究区地表水硝酸盐的主要来源,对丰水期地表水中硝酸盐的贡献率分别为33.0%、32.6%、19.4%和11.7%,对枯水期的贡献率分别为26.7%、31.2%、21.5%和16.9%,而大气沉降对地表水中硝酸盐来源贡献较小,仅为3.5%.(3)研究区地表水硝酸盐转化过程主要以硝化作用为主,未发生明显的反硝化过程.研究显示,研究区地表水硝酸盐污染主要受农业面源污染的影响,污染物主要来源于土壤有机氮、...  相似文献   

6.
该文讨论了实验室使用国产氨气敏电极测定圩区农田地表水氨氮的详细操作程序和关键要领,并与3种氨氮速测预制试剂盒的测定效果进行了比较分析。氨气敏电极法的73组标准曲线R2均值达到0.999 6,其中氮浓度0.1、1、10、50、100 mg/L标准溶液的电极电位均值分别为-57、-112、-170、-210、-228 mV;对0.1、1、5、10、50 mg/L标准溶液的多次测定误差在3.1%~17.5%之间,不同浓度农田水样测得的加标回收率平均110%。氨气敏电极、低和高量程水杨酸预制试剂,以及纳氏比色预制试剂法测定标准溶液误差在±10%以内的氮浓度范围分别为0~200、0.7~3.5、2.0~70和2.0~35 mg/L。低量程水杨酸预制试剂直接测定农田水氨氮误差大,另3种方法测定高氨氮浓度农田水样结果相近。对于浓度范围宽、成分复杂的水样,非考核认证性的实验室氨氮测试可优选采用氨气敏电极法,对浓度较高的样品可搭配纳氏比色和水杨酸预制试剂进行数据验证。  相似文献   

7.
在用Aqualab中性载体电极监测水体中的氨氮时,水体中的钠、镁、钙3种离子在离子浓度较大时会产生干扰,但一般地表水中浓度不高,可以忽略。而钾离子干扰较大,如水体中含钾离子,则要考虑消除干扰。  相似文献   

8.
地表水中氨氮和总氮的相关性分析   总被引:3,自引:0,他引:3  
为了解地表水中氨氮和总氮之间的相关关系,通过2010年濮阳市6个监测点位地表水的氨氮和总氮的监测数据,分析了氨氮和总氮之间的相关性,结果表明:地表水氨氮和总氮两个监测因子之间的相关关系为冬季最好R为0.9270,春、秋其次R分别为0.8980和0.8695,最后是夏季为0.6780。氨氮和总氮之间的比例系数波动范围较大为0.040~1.138,各不同季节的平均值为0.38。  相似文献   

9.
为提高生活污水处理厂氨氮去除效果,采用折点加氯法处理二级生化出水,通过试验分析了氨氮去除效果和主要研究因素。结果表明:在进水氨氮浓度5 mg/L、pH 5.5~6.7、反应时间30 min、次氯酸钠投加量59.3 mg/L的条件下,折点加氯法对氨氮的去除效果最好,出水氨氮浓度可稳定达到《地表水环境质量标准》Ⅲ类标准,次氯酸钠药剂成本为0.53元/t。  相似文献   

10.
气相分子吸收光谱法是测定水中氨氮的新方法。国标方法(HJ/T195-2005)采用次溴酸盐氧化剂将水中的氨氮氧化为亚硝酸盐进行测定,而这一过程需要30 min才能完成,且低温条件会影响其氧化程度和测定灵敏度。为了在低温条件下实现快速准确的测定,建立了盐酸-乙醇溶液预处理-高温氧化-气相分子吸收法测定水中氨氮的方法。即先在待测水样中加入1 mL盐酸-乙醇混合溶液并煮沸,以消除NO2-、SO32-、硫化物等干扰物质;待冷却至6070℃后迅速加入氧化剂混匀,定容后立即测定。改进后的方法不受环境温度的影响,约2 min即可完整分析一个样品,灵敏度提高了60%,标准溶液平行测定RSD=0.9%。改进后的校准曲线稳定,既可提前配制,又可在应急监测中直接调用。将该法用于地表水和各类废水中氨氮的测定中,样品回收率为97.5%70℃后迅速加入氧化剂混匀,定容后立即测定。改进后的方法不受环境温度的影响,约2 min即可完整分析一个样品,灵敏度提高了60%,标准溶液平行测定RSD=0.9%。改进后的校准曲线稳定,既可提前配制,又可在应急监测中直接调用。将该法用于地表水和各类废水中氨氮的测定中,样品回收率为97.5%104.4%,完全满足测定的要求。  相似文献   

11.
采用无人值守连续流动分析法对地表水和废水中氨氮进行检测,该方法在0.00~10.0 mg/L范围内线性良好,检出限为0.015 mg/L,相对标准偏差为0.6%~1.4%,实际样品加标回收率为95.0%~105%,精密度和准确度均满足地表水和废水中氨氮测定的要求,有较好的应用推广价值.无人值守连续流动分析法相对于传统的手工方法具有明显的优势:在线蒸馏装置可以完成对水中氨氮的蒸馏提取;节省时间,即使在夜间也能自动工作,分析完成样品后自动清洗管路并关机;试剂使用量少,降低了对环境和分析人员的危害.  相似文献   

12.
张浏  施超  丁芳芳  颜存奎  冯景伟  尹大强 《环境工程》2013,(Z1):251-254,280
分别对巢湖流域水田和旱田降雨径流和雨水淋溶污染情况进行了测定,测定结果表明:水田径流中氨氮、硝态氮、溶解磷和COD浓度明显高于旱田径流中相应污染物浓度值,水田径流中总磷浓度在部分测定时间相差不大,其余测点值均高于旱田径流中总磷浓度值。水田淋溶液中氨氮和硝态氮浓度同旱田淋溶液中相差不大,多数情况下水田淋溶液中溶解磷和总磷浓度同旱田淋溶液中相差不大;淋溶液中氨氮、硝态氮、溶解磷、总磷浓度均显著高于径流中;水田淋溶液中COD值略低于水田径流中COD值;旱田淋溶液中COD浓度均值与旱田径流中COD浓度均值相差不大。  相似文献   

13.
以西安市地表水环境为调查对象,通过对各河流常规监测断面水质监测结果的分析,指出西安市地表水水质变化规律及存在问题,提出防治对策.并通过各河流入渭口COD及氨氮浓度与标准浓度比对,测算出西安地区各河流主要断面功能区达标的目标减排量,其中,COD需削减2.977 7万吨,氨氮需削减0.664 9万吨.西安市在2012年-2015年通过实施全面减排,COD将削减纯量1.512 6万吨,氨氮将削减纯量0.248 2万吨,分别占地表水体功能区达标需削减量的51%及37%,因此本文预测至2015年西安市地表水体环境将得到整体改善.  相似文献   

14.
为掌握地表-地下联合系统中氨氮与铁锰共存条件下的转化规律,以石佛寺水库为例,通过在入库、出库监测断面布点采样并进行土柱模拟试验,对库区地表水中氨氮转化规律进行研究。结果表明:地表-地下联合系统中的库底土层对地表水中氨氮、铁、锰的去除均存在扩散-吸附-生物氧化3个阶段,且铁的去除要优先于氨氮和锰。对氨氮和铁的去除主要集中在0~40 cm,最大去除率分别为81.25%、60%;对总锰的去除则主要集中在25~45 cm,最大去除率为89.24%。通过对库区地表-地下联合系统中氮素以及铁锰转化相互影响的机理研究,掌握了在地表水至地下水的动态转化过程中,库区不同深度土层中氨氮与铁锰之间的相互作用,为实现氨氮与铁锰同时去除提供了思路。  相似文献   

15.
九龙江流域地表水中硝酸盐来源辨析   总被引:15,自引:6,他引:9  
从九龙江流域遴选出2个典型小流域--仙都和五川小流域作为研究区,于2005年春季运用15N同位素示踪法对其地表水中硝酸盐来源进行研究.结果表明,仙都小流域地表水中溶解态总氮、硝氮和氨氮的浓度范围(以N计,下同)分别为1.47~5.31 mg/L、0.83~4.05mg/L和0.21~0.36mg/L,硝酸盐的δ15N值(以样品相对于标准大气N2的15N和14N比值的千分偏差表示)范围在2.5460-7.92%之间;五川小流域地表水中溶解态总氮、硝氮和氨氮的浓度范围分别为1.14~5.56mg/L、0.96~1.46mg/L和0.12~1.28mg/L,硝酸盐的δ15N值范围在-0.19‰~5.89‰之间.对照不同来源的硝酸盐δ15N特征值,结合研究区的农作物种植和施肥状况,得出如下结论:仙都小流域地表水中硝酸盐主要来自无机化肥与土壤有机氮,有机肥有一定的贡献;五川小流域地表水中硝酸盐的来源以无机化肥与土壤有机氮为主,有机肥的贡献很小;2个小流域地表水中硝酸盐的来源随时空变化而有差异,与当地农作物种类及农田时令密切相关.  相似文献   

16.
地表水环境监测技术的应用可有效对水质内含有危害物质进行监测。本文对地表水环境监测技术进行概述,并对氨氮监测技术原理进行分析,其通过可见分光光度检测方法可有效对地表水的氨氮含量进行监测,确保水质环境良好。  相似文献   

17.
为了对地表水自动监测中电极法测定氨氮进行方法确认,采用性能试验、方法比对、使用标准物质测量的方法对该方法进行了验证。结果表明重复性误差、零点漂移、量程漂移、最低检出限、线性相关系数满足要求,和纳氏试剂分光光度法无显著差异,经氨氮有证标准样品测试验证,该方法无明显的系统误差。  相似文献   

18.
本文探讨本底对氨氮测定结果的影响。结果表明,在相当于氨氮浓度为0.010到0.400 mg/L的本底值范围内对氨氮测定结果仍然具有很好的精密度和准确度。  相似文献   

19.
ABB-8232型氨氮测定仪和Seres2000型TOC测定仪日常维护的两条成型经验:即降低氨氮测定仪工作液NaOH浓度至50%,提高EDTA浓度至3.57%;改变TOC测定一部分液路。实际应用之后能延长两仪器维护周期,大大降低维护成本。  相似文献   

20.
垃圾填埋场渗滤液成分复杂,其氨氮的测定干扰物质多,测定难度大.气相分子吸收光谱法是一种较为新兴的方法,通过对气相分子吸收光谱法和传统纳氏试剂分光光度法系统的比较,研究气相分子吸收光谱法测定垃圾填埋场渗滤液中氨氮的分析方法.结果表明,气相分子吸收光谱法测定垃圾填埋场渗滤液中氨氮操作便捷、干扰小、精密度好,中浓度与高浓度废水测定结果能较好的与纳氏试剂光度法测定结果法吻合,超低浓度废水的测定结果低于纳氏试剂分光光度法.为监测工作者分析方法的选择提供依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号