首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
利用分子生物等技术确定活性污泥硝化细菌的衰减特征   总被引:1,自引:1,他引:0  
通过常规耗氧速率(OUR)测定方法、荧光原位杂交技术(FISH)和LIVE/DEAD细胞活性实验,分别研究了序批式反应器(SBR)硝化系统和生物营养物去除(BNR)系统中硝化细菌的好氧衰减特征.实验结果表明,SBR硝化系统中硝化细菌在衰减过程中由细胞死亡引起的衰减分别占细胞总衰减的33%(SRT=10 d)和50%(SRT=40 d);相应地,由活性降低引起的衰减分别占细胞总衰减的67%(SRT=10 d)和50%(SRT=40 d).长SRT可能会选择出能够更好地适应饥饿状态的硝化菌种,使细菌能够迅速地做出紧迫反应,从而降低其衰减速率.在BNR系统中(SRT=15 d),硝化细菌在衰减过程中由细胞死亡引起的衰减约占细胞总衰减的45%,由活性降低引起的衰减约占细胞总衰减的55%.两种系统中硝化细菌由细胞死亡引起的衰减比例不同是由于两种系统中不同微生物组成所致.  相似文献   

2.
聚磷菌富集实验及其内源特征探究   总被引:1,自引:0,他引:1  
通过磷酸盐释放速率(PRR)测定、荧光原位杂交技术(FISH)及LIVE/DEAD细胞染色技术,分别研究了生物营养物去除(BNR)系统与富集聚磷菌(PAOs)序批式反应器(SBR)系统中PAOs在好氧环境下的衰减特征.结果表明,当富集聚磷菌SBR系统进料中碳源(三水合乙酸钠和丙酸)是以36d为一个循环周期方式投加时,即三水合乙酸钠24d和丙酸12d,系统中PAOs富集比例可达91%.测定与计算结果表明,生物营养物去除(BNR)系统与富集聚磷菌SBR系统中PAOs衰减速率分别为0.113d-1和0.181d-1,死亡速率分别为0.048d-1和0.036d-1.这说明由细胞死亡引起的PAOs数量衰减在两个系统中分别占细胞总衰减的42%(BNR)和20%(SBR),而由细胞活性降低引起的活性衰减分别占细胞总衰减的58%(BNR)和80%(SBR).由此可见,PAOs数量衰减在其细胞总衰减中只占较小一部分,而绝大部分衰减是由活性衰减所引起.  相似文献   

3.
间歇曝气对硝化菌生长动力学影响及NO-2积累机制   总被引:2,自引:2,他引:0  
采用间歇曝气方法处理低氨氮浓度生活污水,在SRT 10、 5、 2.5和1.25 d条件下,SBR反应器出水中NO-2含量(以N计,下同)为18、 19、 14和5 mg/L,积累率达到73%、 85%、 91%和78%,而连续曝气SBR仅为14%、 21%、 31%和34%;同时氨氮去除率维持在97%、 95%、 76%和39%,与连续曝气SBR的92%、 97%、 71%和47%相当.对硝化菌的生长动力学分析表明,在间歇曝气硝化系统中,氨氧化菌(AOB)可以通过产率系数(YAOB)的增加来提高自身在反应器中的绝对生物量,并补偿因间歇曝气引起的比底物利用速率下降,从而使比增殖速率(μm)和NH+4的氧化速率不变.与此相反,亚硝酸盐氧化菌(NOB)却不具备这种补偿特性,导致其μm和对NO-2氧化速率降低,引起了NO-2在出水中积累.  相似文献   

4.
通过接种某城市污水处理厂好氧池生物膜,采用NH4+-N+NO2--N (SMBBR-1)和NH4+-N+NO3--N+HAc (SMBBR-2)两种进水基质启动厌氧氨氧化序批式移动床生物膜反应器(Sequencing Moving Bed Biofilm Reactor,SMBBR),研究不同基质条件下反应器的启动特性.结果表明,两反应器在运行100 d后均成功启动并稳定运行,在进水负荷分别为0.83和0.32 kg·m-3·d-1(以N计)的条件下,氮去除率分别达到81.82%±1.20%和66.35%±4.79%.活性测定结果显示,SMBBR-1和SMBBR-2中Anammox活性分别达到6448.32和1980.32 mg·m-2·d-1,表明Anammox菌被成功富集.高通量结果显示,SMBBR-1和SMBBR-2中启动成功后的Anammox菌由Ca.BrocadiaCa.Jettenia组成,其中,Ca.Brocadia占比分别为11.02%和7.57%,Ca.Jettenia占比分别为2.07%和0.56%.除Anammox菌外,SMBBR-2中还包括Thauera(2.84%)和Flavobacterium菌(0.66%),其为部分反硝化菌的主导菌属.本研究表明,虽然两种不同基质的启动办法各有利弊,但其均能实现厌氧氨氧化SMBBR的启动,可为主流系统内的Anammox菌快速富集培养提供技术支撑.  相似文献   

5.
港口区域因大气污染物排放量大且污染源复杂,已成为沿海城市大气污染防治的关键区域.为明确青岛港口区域PM2.5污染特征及主要贡献源类,于2019年在青岛市3个港口区域和1个背景点位采集了不同季节的环境PM2.5样品,并分析了其化学组分特征;同时,采用正定矩阵因子分析模型(PMF)和潜在源贡献函数(PSCF)分别分析了港口区域PM2.5的主要贡献源类及各源类潜在的影响区域.结果表明,2019年青岛港口区域ρ(PM2.5)年均值为64 μg·m-3,是我国空气质量二级标准的1.8倍,其中,董家口点位最高(74 μg·m-3),崂山点位最低(55 μg·m-3). NO3-、OC和SO42-是PM2.5的主导组分,其中,NO3-含量(13.1%)明显高于其它组分.董家口点位ρ(NO3-)、ρ(SO42-)、ρ(OC)和ρ(EC)(分别为13.0、7.09、8.98和2.91 μg·m-3)明显高于其它点位,燃煤、工业特别是钢铁企业及货车等影响可能较为明显.同时,冬季这些组分浓度也显著高于其它 季节,而夏季Na的浓度(0.96 μg·m-3)和占比(2.13%)明显较高;春季Si和Al的浓度(1.27和0.45 μg·m-3)和占比(2.79%和1.00%)明显高于其它季节.PMF源解析结果表明,二次硫酸盐和二次有机碳气溶胶(SOA)混合源(22.4%)及二次硝酸盐(20.1%)是港口区域PM2.5的主要贡献源类,其次为机动车源(16.7%)和扬尘源(14.6%),燃煤源的贡献率为13.8%,而海盐和船舶源的贡献为7.2%.从季节变化来看,春季扬尘贡献(32.1%)较高,夏季二次硫酸盐和二次有机碳气溶胶(SOA)混合源(31.6%)、海盐和船舶源(19.2%)贡献较高,而冬季燃煤(16.6%)、机动车(22.8%)、二次硝酸盐(23.9%)、钢铁及相关冶金源(3.2%)和建筑水泥尘(3.6%)贡献较高.河北省中南部及山东省中西部地区是青岛港口各 源类的主要潜在源区,黄海是船舶排放的主要潜在源区.  相似文献   

6.
四氯乙烯(PCE)和三氯乙烯(TCE)是地下水中典型的卤代有机化合物,严重威胁生态环境与人体健康.为获得氯代乙烯高效厌氧降解菌剂并探究其在污染地下水中的应用潜能,利用某工业污染场地的地下水,通过投喂PCE或TCE进行长期富集培养,获得了可将PCE和TCE完全脱氯成无毒乙烯的厌氧菌剂W-1.菌剂W-1的PCE和TCE脱氯速率分别是(120.1 ±4.9) μmol·(L·d)-1和(172.4 ±21.8) μmol·(L·d)-1.16S rRNA基因扩增子测序和qPCR结果表明,98.3 μmol PCE还原脱氯至顺-1,2-二氯乙烯(cis-1,2-DCE)时,Dehalobacter丰度从1.9%增长至57.1%,基因拷贝数每释放1 μmol Cl-增加1.7×107 copies;cis-1,2-DCE完全还原脱氯至乙烯时,Dehalococcoides丰度从1.1%增长至53.8%;PCE完全还原脱氯至乙烯过程中Dehalococcoides基因拷贝数每释放1 μmol Cl-增加1.7×108 copies.以上结果说明DehalobacterDehalococcoides协同互作实现PCE完全降解解毒.当菌群W-1以TCE为电子受体时,222.8 μmol TCE完全还原脱氯至乙烯时候,Dehalococcoides丰度从(29.1 ±2.4)%增长至(77.7 ±0.2)%,基因拷贝数每释放1 μmol Cl-增加(1.9 ±0.4)×108 copies.结合PCR和Sanger测序,获得了菌剂W-1中主要脱卤菌Dehalococcoides LWT1较完整的16S rRNA基因序列,其与D. mccartyi strain 195 16S rRNA基因序列相似度达100%.将菌群W-1添加至受TCE(418.7 μmol·L-1)污染的地下水中,28 d内实现了(69.2 ±9.8)%的TCE被完全脱毒至乙烯,TCE脱氯速率为(10.3 ±1.5) μmol·(L·d)-1.研究成果可为PCE或TCE污染地下水开展厌氧微生物修复提供菌剂资源和理论指导.  相似文献   

7.
为了研究挥发性有机物(VOCs)的污染特征,于2021年6月和12月在郑州市对两个污染过程中的VOCs进行了连续监测.结合气象条件,对比分析了VOCs冬夏季污染过程的污染特征、来源贡献和活性差异.结果显示,两个污染过程φ(VOCs)分别为(27.92±12.68)×10-9和(24.30±5.93)×10-9.冬季雾-霾污染过程相较于夏季O3污染过程,VOCs体积分数变化范围更大.冬季污染过程源解析结果:工业源(27.0%)、机动车源(22.5%)、燃烧源(20.1%)、溶剂使用源(16.3%)和油气挥发源(14.1%);夏季污染过程源解析结果:机动车源(24.8%)、工业源(24.1%)、溶剂使用源(17.4%)、油气挥发源(14.2%)、燃烧源(11.2%)和植物源(8.4%).光化学烟雾产量模型结果显示,两个污染过程中夏季臭氧生成处于VOCs控制区的天数占比(66.7%)小于冬季(100.0%).二次反应活性结果显示,冬季和夏季污染过程·OH自由基反应活性(L·OH)均值分别为4.12 s-1和4.76 s-1.夏季污染过程臭氧生成潜势(OFP)均值108.36 μg·m-3,L·OH和OFP贡献率排名前10名物种夏季污染过程以烯烃为主.郑州市冬季污染过程的总二次有机气溶胶生成潜势(SOAFP)为54.38 μg·m-3,冬季污染过程SOAFP贡献率前10名物种中芳香烃占9个.  相似文献   

8.
水力负荷对生物滤池中蚯蚓抗氧化酶和消化酶活性的影响   总被引:1,自引:0,他引:1  
通过工况试验考察了不同水力负荷条件对生物滤池中蚯蚓的抗氧化酶(超氧化物歧化酶、过氧化氢酶)和消化酶(纤维素酶、碱性磷酸酶)活性的影响.结果表明,蚯蚓体内抗氧化酶和消化酶活性对水力负荷胁迫的响应不同.在2.4~6.7 m3·(m2·d)-1的水力负荷条件下,蚯蚓体内的超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性随水力负荷的增大而增强,蚯蚓通过自身抗氧化系统的协调作用来抵御外界环境胁迫,在各工况条件下均能生存.蚯蚓体内消化酶活性和其消化能力、滤池污泥减量和稳定化效果具有很好的相关性(p<0.05).水力负荷为4.8 m3·(m2·d)-1时,蚯蚓具有较高的碱性磷酸酶(AKP)和纤维素酶(FP)活性,消化率(41.47%)显著高于其他工况,污泥减量率、污泥有机质分解率均达到最高值,分别为48.2%、 65.5%.高水力负荷[≥6.0 m3·(m2·d)-1]对蚯蚓体内AKP、FP活性抑制较显著,污泥的代谢水平受到影响,污泥减量率和有机质分解率均有一定程度下降,不利于蚯蚓生态功效的发挥.综合蚯蚓抗氧化酶及消化酶的响应结果,蚯蚓生物滤池运行水力负荷不宜超过6.0 m3·(m2·d)-1.  相似文献   

9.
选择5种基质,采用盆钵实验研究了不同基质对黄菖蒲光合速率、 蒸腾速率和SPAD值的影响及其与污水净化能力之间的相互关系.结果表明,不同基质影响了黄菖蒲的净光合速率与蒸腾速率,其中土壤上黄菖蒲的净光合速率与蒸腾速率最高,分别为11.67 μmol·(m2·s)-1和9.18 mmol·(m2·s)-1,而沙子上黄菖蒲的净光合速率与蒸腾速率最低,分别为8.38 μmol·(m2·s)-1和4.55 mmol·(m2·s)-1,且黄菖蒲的净光合速率、 蒸腾速率与高锰酸盐指数、NH+4-N和NO-3-N的去除率呈显著正相关(p﹤0.05).不同基质上黄菖蒲的SPAD值存在差异,以土壤上黄菖蒲的SPAD值最高(58.92),有机质+沙+土其次,而沙子上黄菖蒲的SPAD值最低(51.14);黄菖蒲的SPAD值与净光合速率和蒸腾速率呈显著正相关(p﹤0.05),且与NH+4-N的去除率也呈显著正相关(p﹤0.05).不同基质上黄菖蒲的SPAD值存在差异,可以用SPAD仪快速监控人工湿地氮的去除.  相似文献   

10.
有机负荷和温度波动对厌氧菌群及酶活影响   总被引:1,自引:0,他引:1  
于钦  冯磊  甄箫斐 《环境科学学报》2020,40(12):4358-4367
基于太阳能辅热厌氧消化反应器进行餐厨垃圾半连续发酵试验,探究了温度波动和有机负荷调控(OLR=2.0、4.0、6.0、7.0 kg·m-3·d-1)对甲烷产量、酶活性变化和微生物群落结构的影响.结果表明,反应器可以在OLR为2.0 kg·m-3·d-1下稳定运行并在6.0 kg·m-3·d-1时实现最佳甲烷生产效率,虽然太阳能组比电能组减少了4倍能耗,但热辐射不稳定导致太阳能组发酵温度波动,甲烷平均产量比电能组减少21%.此外,蛋白酶在温度波动环境下表现出较高活性,但脂肪酶和淀粉酶活性却受到抑制.高通测序结果表明,低OLR阶段乙酸型产甲烷菌Methanosaeta活性较强,随着OLR递增氢营养型产甲烷菌MethanoregulaMethanospirillum相对丰度逐渐提高,而试验全过程中水解细菌Firmicutes相对丰度维持在62%~95%,占据主导地位.  相似文献   

11.
污水生物处理系统细菌衰减特征的实验研究   总被引:3,自引:2,他引:1  
郝晓地  朱景义  曹秀芹  曹亚莉 《环境科学》2008,29(11):3104-3109
通过衰减速率测定实验和LIVE/DEAD细胞活性染色实验,分析了污水生物处理系统中细菌在好氧环境下的衰减状态.研究发现,细菌的衰减实质上是由生物量减少引起的数量衰减和由细胞活性降低引起的活性衰减两部分构成的.结果表明,硝化系统细菌在衰减过程中由细胞活性降低引起的衰减约占60%,由细胞死亡引起的衰减约占40%;而在异养系统中由活性降低引起的衰减和由细胞死亡引起的衰减分别为80%和20%.  相似文献   

12.
聚糖菌颗粒污泥基于胞内储存物质的同步硝化反硝化   总被引:15,自引:6,他引:9  
采用特殊运行方式的厌氧-好氧SBR系统(厌氧后排水),以乙酸钠为有机基质成功富集了聚糖菌颗粒污泥.聚糖菌颗粒污泥厌氧-好氧批式实验表明,聚糖菌颗粒污泥具有较强的SND能力,TOC/N分别为5.0,4.0,2.8时,SND效率分别96.4%、95.3%及96.2%,而周期总氮去除效率随着碳氮比降低而降低,分别为66.0%、61.2%及56.3%.通过对周期氨氮、亚硝酸盐氮、硝酸盐氮、TOC以及胞内糖原、PHB变化的测定分析,证明聚糖菌颗粒污泥SND过程中,污泥以厌氧阶段储存于胞内的多聚物PHB作为反硝化碳源,并且反硝化聚糖菌是系统中反硝化能力的来源.与溶解性基质相比,PHB的降解速率相对较低,因此在SND过程中,反硝化可以与硝化保持相近的速率,从而有助于获得良好的SND效果.  相似文献   

13.
为研究同步短程硝化内源反硝化除磷(SPNED-PR)系统的脱氮除磷特性及系统内聚磷菌(PAOs)和聚糖菌(GAOs)在氮磷去除的贡献和竞争关系,本研究以实际低C/N比(4左右)生活污水为处理对象,考察了不同浓度的溶解氧(DO)(0.5~2.0mg/L)、NO2--N(4.7~39.9mg/L)和NO3--N(5.0~40.0mg/L)对延时厌氧(150min)/低氧(180min,溶解氧0.5~0.7mg/L)运行的SPNED-PR系统氮磷去除特性和底物转化特性的影响.结果表明,DO浓度均不影响PAOs和GAOs的好氧代谢活性,且两者之间几乎不存在DO竞争.不同NO2--N浓度条件下,GAOs较PAOs更具竞争优势,NO2--N主要是通过GAOs去除的(约占58%);且GAOs所具有的高内源反硝化活性和亚硝耐受力,减弱了高NO2--N浓度(26.2~39.9mg/L)对PAOs反硝化吸磷的抑制,保证了系统的脱氮除磷性能.不同NO3--N浓度条件下,PAOs较GAOs处于竞争优势,其在NO3--N去除中的贡献比例达61.2%.此外,SPNED-PR系统的PURDO > PURnitrate > PURnitrite,PAOs对DO的优先利用保证了低氧条件下系统的高效除磷,且GAOs的内源短程反硝化特性保证了系统的高效脱氮.  相似文献   

14.
接种普通活性污泥,以乙酸盐为碳源,控制进水COD/P为150∶1,在A/O SBR反应器内富集培养了聚糖菌;采用逐渐提高SBR厌氧末硝酸盐投加浓度的方法,将聚糖菌驯化诱导为反硝化聚糖菌结果.SBR厌氧末排水中COD与缺氧末排水基本相同,COD平均去除率达到86.74%,总氮去除率达到98%以上.然后缩短SBR的厌氧及缺...  相似文献   

15.
硝化细菌AOB与NOB衰减速率实验测定   总被引:5,自引:2,他引:3  
污水生物处理过程中由于硝化反应分两步进行,因而对于硝化细菌的衰减速率也应该分别测定.通过实验测定了氨氮氧化细菌(AOB)和亚硝酸氮氧化细菌(NOB)在好氧饥饿状态下的衰减速率,实验结果显示,AOB和NOB具有不同的衰减特征.前者在衰减过程中其活性匀速下降,而后者的活性则是先迅速下降再平缓降低,通过对比分析还发现,SBR系统中AOB和NOB的衰减速率差异较大,而在常规活性污泥系统中AOB和NOB的衰减速率基本相当.  相似文献   

16.
IntroductionBiologicalphosphorusandnitrogenremovalprocesshasprovidedsignificantbenefitstoameliorateeutrophicationofsurfacewaterwithoutexacerbatingsalination .Recentresearchesonnitrogenremovalaremostlyeithertowardsimprovementofperformanceandenergysavingsintraditionalprocessesortowardsdevelopmentofnewprocesses microorganismsthatareabletoconvertammonium oxidatednitrogenintoharmlessforms.Shorternitrificationanddenitrification ,i.e .partialoxidationofNH 4toNO-2 andsubsequentreductionofthelatterto…  相似文献   

17.
杨庆娟  王淑莹  刘莹  袁志国  葛翀 《环境科学》2008,29(8):2249-2253
以实际生活污水为对象,研究了反硝化聚磷菌(DPB)的驯化培养以及A2N双污泥反硝化除磷系统的快速启动.采用先独立培养反硝化聚磷菌和好氧硝化生物膜再连续运行的方式成功地快速启动了A2N系统.采用污水处理厂除磷工艺中的活性污泥为种泥,在SBR系统中以先A/O(厌氧/好氧)后A/A(厌氧/缺氧)的方式运行,32 d成功地使反硝化聚磷菌成为优势菌属.在SBR反应器中,采用硝化效果较好的活性污泥为种泥,好氧硝化生物膜30 d挂膜成功,氨氮去除率稳定在99%以上.然后,A2N系统连续运行,11 d后系统反硝化除磷效果进入稳定状态,出水氨氮和正磷酸盐浓度均为0,硝态氮为10.26 mg/L ,出水COD为19.56 mg/L ,COD、氨氮、总氮和磷去除率分别为91%、100%、77%和100%,说明A2N系统具有很好的脱氮除磷效果,认为系统启动成功.  相似文献   

18.
左富民  郑蕊  隋倩雯  钟慧  陈彦霖  魏源送 《环境科学》2021,42(11):5472-5480
以两类中试反应器(SBR,116.6 m3,活性污泥法和SBBR,64.8 m3,泥膜法)为对象,接种猪场废水处理厂的活性污泥,通过控制DO、曝气方式为主和外加NaNO2为辅的亚硝酸盐调控策略,考察不同反应器在启动一体式短程硝化-厌氧氨氧化(combined partial nitritation and ANAMMOX,CPNA)工艺过程中NO2--N浓度对ANAMMOX菌的影响.结果表明,在相同运行条件下,泥膜共生的SBBR更适于短程硝化的快速启动.尽管受到NO2--N抑制(100~129 mg ·L-1,共计7 d),但SBR在第39 d成功启动了ANAMMOX工艺,其TNRR和TNRE分别为0.069 kg ·(m3 ·d)-1和23.3%,而长达17 d的NO2--N抑制(129~286 mg ·L-1)则对SBBR中ANAMMOX菌活性造成了难以恢复的影响.外加NaNO2后,SBR在第77 d成功启动了CPNA工艺,TNRR和TNRE分别从第51 d的0.070 kg ·(m3 ·d)-1和16.0%迅速提高至第77 d的0.336 kg ·(m3 ·d)-1和52.2%,ANAMMOX菌的活性也由最初的0.012 kg ·(kg ·d)-1快速升高至第77 d的0.307 kg ·(kg ·d)-1;SBR中AOB和ANAMMOX菌的基因拷贝数浓度由最初的8.06×106 copies ·mL-1和4.42×104 copies ·mL-1分别增长至第77 d的1.02×109 copies ·mL-1和1.77×107 copies ·mL-1,表明以调控DO和曝气方式为主,辅以外加NaNO2的亚硝酸盐调控策略可有效实现反应器中AOB和ANAMMOX菌的快速增长.合理的NO2--N调控是CPNA工艺快速启动的关键因素.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号