首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
钦州湾叶绿素a和初级生产力时空变化及其影响因素   总被引:7,自引:0,他引:7  
于2009年1—11月对广西钦州典型养殖海湾——钦州湾海域水体中叶绿素a(Chl-a)浓度和初级生产力进行了4个季节航次的调查,分析了该海湾Chl-a和初级生产力的时空变化特征并探讨其影响因素.结果表明,钦州湾表层海水Chl-a浓度周年变化在0.83~32.5 mg·m-3之间,平均为5.39 mg·m-3;Chl-a浓度季节性变化表现为夏季春季冬季秋季.初级生产力变化范围是92.3~1494.5 mg·m-2·d-1(以C计,下同),平均为425.1 mg·m-2·d-1;初级生产力季节变化特征呈现夏季冬季秋季春季.钦州湾Chl-a浓度和初级生产力在春、夏、冬季呈现内湾和三娘湾海区高、钦州港海区低的分布特征,秋季出现相反的特征.相关分析显示,钦州湾Chl-a与水温、盐度和氨氮之间存在密切的相关关系.总体来看,陆源输入的营养盐及贝类养殖活动是影响Chl-a和初级生产力时空变化的重要因素.  相似文献   

2.
有机氯农药污染场地挖掘过程中污染物的分布及健康风险   总被引:2,自引:0,他引:2  
分析了某污染场地挖掘过程中场地内及其周边空气中HCHs和DDTs的污染物分布特征;应用健康风险评价模型研究了挖掘场地附近居民区经呼吸暴露途径的致癌和非致癌风险.结果表明,挖掘区附近居民区空气中HCHs和DDTs呈现出明显的季节分布特征,秋冬季节浓度高,春夏季节浓度较低.ΣHCHs冬季浓度在5.65~133 ng·m-3之间,均值为28.6 ng·m-3;ΣDDTs冬季浓度在4.48~2 800 ng·m-3之间,均值为457.3 ng·m-3.ΣHCHs春季浓度在6.23~26.4 ng·m-3之间,均值为15.1 ng·m-3;ΣDDTs夏季浓度在3.17~8.1 ng·m-3之间,均值为6.1 ng·m-3,春夏季节施工可减少二次污染产生.居民区空气中HCHs和DDTs浓度与离地面高度呈显著负相关(P0.05,n=33).挖掘区附近成人居民经呼吸暴露产生的致癌风险及非致癌风险在可接受风险范围内,但挖掘过程对幼年居民产生一定的致癌及非致癌风险.因此,该类污染场地挖掘过程中应采取措施抑制挖掘区污染物向空气扩散,以降低风险.  相似文献   

3.
广州某工业区大气中PCDD/Fs含量水平及其季节性变化特征   总被引:2,自引:1,他引:1  
青宪  苏原  苏青  张素坤  任明忠 《环境科学》2014,35(2):464-469
通过对广州某工业区大气中2,3,7,8-PCDD/Fs的季节性监测,并对大气中PCDD/Fs的浓度与季节性变化进行了分析.结果表明,该工业区大气中PCDD/Fs的浓度范围为2.33~75.4 pg·m-3,平均值为23.2 pg·m-3,毒性当量浓度I-TEQ范围为0.229~10.7 pg·m-3,平均值为2.00 pg·m-3,高于日本环境空气质量标准推荐年均值0.6 pg·m-3.该工业区PCDD/Fs浓度季节性变化明显,最高的季节为春季(37.8 pg·m-3),浓度最低的季节为夏季(13.5 pg·m-3),其次为秋季(22.3 pg·m-3)和冬季(19.1 pg·m-3);毒性当量浓度变化高低顺序为:春季(5.58 pg·m-3)>夏季(1.06 pg·m-3)>秋季(0.839 pg·m-3)>冬季(0.525 pg·m-3).降雨、季风的季节性变化可能是引起大气中PCDD/Fs浓度季节性变化的原因.  相似文献   

4.
北京市大气中CO的浓度变化监测分析   总被引:18,自引:5,他引:13  
薛敏  王跃思  孙扬  胡波  王明星 《环境科学》2006,27(2):200-206
CO是城市大气中一种重要的污染物,在城市和区域的光化学反应中起着重要的作用.用装配氢火焰离子化检测器(FID)的HP5890II气相色谱(GC)方法,以每10min的采样频率,在北京中科院大气物理研究所325m气象环境观测铁塔上(39°9′N,116°4′E),对北京城市大气CO浓度进行了连续监测,时间为2004-01~2004-12.结果显示北京城市大气CO浓度日变化呈双峰型,1d之中出现2个高峰期,早晨07:00~08:00和夜晚22:00~23:00,最高浓度值分别达到13.8mg·m-3,17.1mg·m-3.不同季节CO的日变化存在差异:冬季、秋季的日变化幅度大,而夏季、春季的日变化幅度小.秋季、冬季早晨上班高峰期后CO浓度下降快,春季、夏季上班高峰期后CO浓度下降慢.CO的这种日变化是由地表排放源和气象条件共同决定的.另外,CO存在明显的季节变化,总的表现为浓度最高值出现在冬季12月份(4.0±3.4)mg·m-3,浓度最低值出现在5月份(1.7±0.7)mg·m-3.整个观测期间1a的平均浓度为(2.6±1.9)mg·m-3,采暖期平均浓度为(3.5±2.6)mg·m-3,非采暖期平均浓度为(2.2±1.2)mg·m-3.  相似文献   

5.
民勤近地面沙尘暴气溶胶浓度变化特征初探   总被引:2,自引:0,他引:2  
借助近地面沙尘暴监测系统对民勤沙尘源区不同沙尘天气的气溶胶浓度进行了监测,初步分析了民勤近地面沙尘暴气溶胶浓度的变化特征.结果表明:沙尘暴气溶胶浓度春季最高,为14.61 mg·m-3;夏季逐渐降低,为12.49 mg·m-3;秋季无沙尘暴出现,气溶胶浓度最小;冬季趋于回升,可达9.82 mg·m-3,沙尘暴气溶胶浓度季节变化与沙尘暴发生频率相一致.不同沙尘天气条件下沙尘气溶胶浓度表现为强沙尘暴最大,为18.80 mg·m-3;中沙尘暴次之,为13.56 mg·m-3;扬沙浮沉天气较小,只有3.07 mg·m一.随着沙漠向绿洲的过渡,沙尘暴气溶胶浓度明显降低,沙漠、绿洲边缘、绿洲3个下垫面条件下沙尘暴气溶胶浓度依次为21.07 mg·m-3、12.09 mg·m-3、6.49 mg·m-3.沙尘暴气溶胶浓度随观测高度变化遵循幂函数规律,浓度梯度变幅表现为沙尘暴高发季节大于低峰季节,沙尘暴天气大于扬沙浮尘天气,沙漠下垫面大于绿洲下垫面;不同下垫面条件下沙尘暴气溶胶浓度在41 m高度处趋于一致,表明沙尘源区的沙尘浓度在约40 m范围内受地面影响较为显著.  相似文献   

6.
沧州市大气污染特征观测研究   总被引:1,自引:1,他引:1  
王永宏  胡波  王跃思  刘伟  张武 《环境科学》2012,33(11):3705-3711
利用沧州2009年7月~2011年7月的NOx(NOx=NO+NO2)、O3、SO2以及PM10的观测数据,分析了沧州市大气污染物的日变化、月平均变化、年变化以及季节平均变化特征.结果表明,NOx、PM10日变化为双峰型,O3为单峰.SO2日变化也呈现为双峰型,但是其变化幅度较平缓.NO、NO2、NOx、SO2有较相同的季节变化趋势.NO、NO2、NOx、SO2及PM10冬季值最大,分别为(30.0±18.9)μg·m-3、(50.5±19.8)μg·m-3、(80.5±38.7)μg·m-3、(62.1±34.7)μg·m-3、(201.6±98.5)μg·m-3.臭氧夏季浓度最高,其月均值为(88.0±22.3)μg·m-3.NO、NO2、NOx、O3、SO2及PM10年均值分别为(18.9±14.5)μg·m-3、(37.6±13.0)μg·m-3、(56.5±27.5)μg·m-3、(49.9±16.3)μg·m-3、(31.6±19.5)μg·m-3、(156.7±79.1)μg·m-3.秋冬季污染物主要为NOx(NOx=NO+NO2)、SO2以及PM10,夏季污染物主要为O3.  相似文献   

7.
悬浮颗粒物对有机污染物的吸附降低了其表观生物富集系数,这一过程是否同时能够减弱有机污染物对水生生物的毒性却少有报道.因此,本研究选取海河干流二道闸沉积物为悬浮颗粒物,以阿特拉津为目标污染物,斑马鱼为目标生物,进行急性毒性试验.结果表明,无悬浮颗粒物时,阿特拉津对斑马鱼的96 h半致死浓度(96h-LC50)为29.06 mg·L-1,95%置信区间为24.41~40.70 mg·L-1,悬浮颗粒物浓度为7500mg·L-1和15000 mg·L-1时这一指标分别为30.74 mg·L-1和39.51 mg·L-1,对应的95%置信区间分别为27.17~40.91 mg·L-1和30.43~126.93 mg·L-1.并且无悬浮颗粒物、7500 mg·L-1悬浮颗粒物、15000 mg·L-1悬浮颗粒物3组染毒系列中出现的最大无效应浓度分别为3、9和15 mg·L-1.研究表明,悬浮颗粒物的存在降低了阿特拉津对斑马鱼的急性毒性.  相似文献   

8.
基于PCR-TGGE技术的餐厨垃圾厌氧消化微生物群落结构解析   总被引:1,自引:0,他引:1  
为了解不同负荷下单相餐厨垃圾厌氧消化反应器内微生物群落结构演替特征,在单相厌氧消化反应器负荷为2.0~8.5kg·m-·3d-1(以VS计)的不同负荷条件下取样,运用16SrDNA的PCR-TGGE技术对反应器内微生物进行动态追踪.同时,运用Dice系统和NMDS软件对PCR-TGGE图谱进行分析.结果表明,负荷为4.0~6.0kg·m-·3d-1时,微生物群落结构变化不大;负荷为6.0~7.0kg·m-·3d-1时,微生物群落结构变化较为明显;负荷分别为7.0~8.0kg·m-·3d-1及8.5kg·m-·3d-1时,微生物群落结构变化最为明显.纵观整个过程,在餐厨垃圾厌氧消化反应器有机负荷在2.0~8.5kg·m-·3d-1下厌氧反应器内的微生物群落结构存在明显的阶段性演替;负荷为7.0kg·m-·3d-1时微生物群落结构的丰富度最好.  相似文献   

9.
三峡库区水体中可溶性C、N变化及影响因素   总被引:3,自引:3,他引:0  
为了解三峡库区水体中可溶性C、N的变化,本研究于2011年3月至2012年8月在三峡水库涪陵段进行了每周一次的水样采集,分析其中可溶性C、N成分的变化及其来源特征.结果表明,库区水中DOC浓度范围为0.64~9.07 mg·L~(-1),且有明显的季节变化,表现为:夏季春季、秋季冬季,DOC年入库总量为1.78×109kg,入库量具有与浓度相似的季节变化趋势;DTN的浓度范围为2.59~4.35 mg·L~(-1),春季冬季夏季秋季,年入库总量为1.32×109kg,入库量的季节变化特征:夏季秋季春季冬季,其中DON、NO-3-N分别占DTN的30.35%~63.45%、35.87%~67.72%.DOC受降水和温度的影响明显,水中DOC主要来自外源输入,春季、夏季降雨径流其外源输入量增加,而秋季、冬季则内源贡献有所增加;DTN受人为排放和水体稀释的影响相对较大.相关分析表明,DOC与DON呈显著负相关(P0.05),通常以DOC/DON比值反映水中DOM的来源,库区DOC/DON范围为0.35~7.28,DOM来源具有明显的季节特征.夏季DOC/DON较高,DOM主要来自流域侵蚀;冬季DOC/DON较低,DOM主要来自生活污水排放和内源现场产生;春季、秋季DOC/DON介于两者之间,DOM来源包括流域侵蚀、生活污水排放及现场产生等.  相似文献   

10.
水力停留时间和溶解氧对陶粒CANON反应器的影响   总被引:2,自引:2,他引:0  
王会芳  付昆明  左早荣  仇付国 《环境科学》2015,36(11):4161-4167
以人工配制无机高氨氮废水为进水,通过接种CANON污泥,以陶粒作为填料,研究了HRT和DO对生物膜CANON反应器的影响.试验过程中,控制进水氨氮浓度基本不变,依次控制反应器的HRT为9、7、5 h,同时控制DO的范围为1.16~3.20 mg·L-1.研究发现:1当DO为1.20~1.75 mg·L-1时,尽管提高DO有利于提高AOB的活性和系统内基质的传质效果,但是CANON反应器的NH+4-N、TN去除效果依然随着HRT的缩短而下降,尤其当DO超过2.50 mg·L-1时,TN去除效果大幅度下降;2当DO为1.20~1.75 mg·L-1时,随着HRT的缩短,CANON反应器的短程硝化性能趋于稳定,而当DO超过1.75 mg·L-1时,即使缩短HRT,其短程硝化性能依然遭到严重破坏;3CANON反应器中短程硝化稳定性能和去除效果较佳的条件是HRT为7 h,且DO控制在1.20~1.75 mg·L-1之间.HRT和DO是废水生物处理的重要运行参数,直接影响到生物处理的效果和出水水质,协调控制两者的变化范围,对提高CANON工艺对高氨氮废水的处理效果非常重要.  相似文献   

11.
王凡  陆明羽  殷记强  李祥  黄勇 《环境科学》2018,39(8):3782-3788
本研究在一体式分区反应器中接种成熟的厌氧氨氧化污泥和亚硝化污泥,通过与反硝化反应器串联,研究了前置反硝化与短程硝化-厌氧氨氧化串联工艺处理晚期垃圾渗滤液的脱氮除碳性能.结果表明,未串联反硝化之前,短程硝化-厌氧氨氧化反应器在进水氨氮浓度为600 mg·L~(-1),COD浓度483 mg·L~(-1)时,总氮去除速率(NRR)可达1.88 kg·(m3·d)-1,总氮去除率(NRE)可达90.3%;而在进水COD浓度483 mg·L~(-1),即C/N0.8时,短程硝化-厌氧氨氧化反应器的NRR下降至1.50 kg·(m3·d)-1.通过前置反硝化反应器可以迅速缓解有机物对厌氧氨氧化的不利影响;反硝化与短程硝化-厌氧氨氧化串联反应器在进水NH+4-N浓度为1 100 mg·L~(-1),COD浓度1 150 mg·L~(-1)时,仍可稳定高效运行,整体NRR可达1.37kg·(m3·d)-1,厌氧区NRRana高达15.6 kg·(m3·d)-1,平均NRE可达98.6%,在仅利用原水中有机碳源的情况下实现了垃圾渗滤液的高效深度脱氮.此工艺晚期处理垃圾渗滤液可去除大部分易生物降解有机物.  相似文献   

12.
为揭示白洋淀夏季入淀区上覆水-间隙水氮磷营养盐相互作用,本研究于2019年7月对白洋淀主要6条入淀河流取样,通过分析上覆水、间隙水水质特征以及营养盐在沉积物-水界面的扩散通量,评估了营养盐扩散对沉积物与上覆水的影响.结果表明白洋淀水质呈弱碱性;溶解氧(DO)含量较低,为沉积物内源污染物的释放提供了厌氧环境;氨氮(NH4+-N)浓度在0.35~1.76mg·L-1,作为主要给水来源的潴龙河淀区最高;硝氮(NO3--N)浓度在0.75~1.97mg·L-1;溶解性总氮(TDN)浓度在0.99~2.70mg·L-1,位于自然区的S2瀑河含量最高;溶解性总磷(TDP)浓度在0.03~0.15mg·L-1,靠近居民区的白沟引河含量最高.间隙水氨氮浓度在5.24~10.64mg·L-1,是上覆水体的10倍,内源污染严重;硝氮浓度在0.36~0.79mg·L-1;溶解性总氮浓度在5.36~12.02mg·L-1,是上覆水体的5倍;溶解性总磷浓度在0.03~0.3mg·L-1.应用综合污染指数法对水质进行评价发现间隙水污染程度远高于上覆水,各采样点呈现出严重污染状态.对NH4+-N、TDN和TDP进行交换通量分析显示,NH4+-N的扩散通量在1.71~7.43mg·(m2·d)-1,作为保定市纳污河流的府河采样点内源氨氮向上覆水扩散速率最快;TDN的扩散通量除白沟引河较低,其余5个采样点均值达到9.11mg·(m2·d)-1,夏季水体中溶解氧含量较低且沉积物-水界面TDN浓度差较大,导致沉积物中含氮营养盐在厌氧条件下大量释放到上覆水中,对水质造成严重污染;萍河采样点TDP的扩散通量是负值表示上覆水体的磷污染物向沉积物聚集的状态,剩余5个采样点的扩散通量范围在0.03~0.16mg·(m2·d)-1,表现出磷营养盐向上覆水释放的状态.扩散通量显示内源污染物是上覆水污染物的重要来源,为有效治理入淀区水质,沉积物氮磷营养盐的清淤处理迫在眉睫.  相似文献   

13.
制革废水的厌氧氨氧化ABR脱氮工艺研究   总被引:4,自引:4,他引:0  
曾国驱  贾晓珊 《环境科学》2014,35(12):4618-4626
采用小试规模的厌氧折流板反应器(ABR)研究制革废水的厌氧氨氧化脱氮.结果表明,ABR可作为实现厌氧氨氧化的良好反应器,厌氧氨氧化ABR反应器能有效和稳定地处理制革废水.当进水NH+4-N为25.0~76.2 mg·L-1、COD为131~237 mg·L-1,NH+4-N容积负荷为0.05~0.15 kg·(m3·d)-1时,出水NH+4-N为0.20~7.12 mg·L-1、COD为35.1~69.2mg·L-1,去除率分别达到90.8%~99.6%和66.9%~74.7%.此外,厌氧氨氧化ABR反应器污泥在驯化和运行过程中形成了棕红色、棕黄色和红色的颗粒污泥.电镜扫描观察证实在厌氧氨氧化ABR反应器的4个隔室的颗粒污泥中均存在厌氧氨氧化菌.荧光原位杂交(FISH)检测结果显示厌氧氨氧化菌在驯化和运行过程中出现不同程度的增殖,厌氧氨氧化ABR反应器4个隔室的污泥中厌氧氨氧化菌所占比率分别由4%增加到9%、8%、12%和30%,呈现出前段隔室少、后段隔室多的分布规律.  相似文献   

14.
娘子关泉群水化学特征及成因   总被引:5,自引:1,他引:4  
娘子关泉群流量7.19m3·s-1,提水量约1.7 m3·s-1,其是阳泉市区和平定县城主要供水水源.查明其泉群水化学特征及成因,对合理利用水资源与污染防治具有重要意义.以娘子关泉域岩溶大泉为研究对象,通过样品采集和水化学同位素,以地球科学系统理论为指导综合运用地质构造、水化学监测和同位素方法分析娘子关泉群水化学特征及成因.娘子关泉群其pH值7.2~7.5.钙离子112.1~135.2 mg·L-1.硫酸根离子185.6~271.8 mg·L-1.水化学类型为HCO3·SO4-Ca·Mg.泉群水化学特征总体表现为高Ca2+、Mg2+和SO42-,低Na+、K+和Cl-.城西泉的补给路径较短,其次是五龙泉.其余5组泉补给路径较远.娘子关泉群水化学特征表现为:煤矿酸性排水的污染有加剧趋势,生活污水的污染有减缓趋势.环境同位素示踪显示城西泉的SO42-主要来源于大气降水和石膏溶解.五龙泉的SO42-值增加,其变化主要受煤矿酸性水污染量的影响.  相似文献   

15.
合流制排水管道雨季出流污染负荷研究   总被引:5,自引:0,他引:5  
针对北京城区合流制排水管道雨季溢流及雨后河道水质恶化等问题,研究了3场降雨期间合流制排水系统不同来源的污染物特性及污染贡献.通过对2012年雨季几场降雨的降雨量数据监测与统计发现,护城河沿岸合流制排水系统累积雨量约10 mm时发生溢流.特大暴雨情况下,溢流水质的污染物平均浓度高于排水系统旱流污水的污染物浓度,溢流水质差,污染物浓度范围为:TN 5.11 ~ 16.36 mg·L-1,TP 4.34 ~10.52 mg·L-1,氨氮1.88~12.73 mg·L-1,COD 134~250 mg·L-1,SS 120 ~155 mg·L-1.管道沉积物在降雨期间对出流水质的污染贡献率分别为:TN 20.9% ~44.6%,TP 35.76%~47.3%,COD 46.2% ~48.8%,SS 35.7% ~79.7%.控制合流制排水管道沉积物的沉积和冲刷对排水系统的正常运行及削减雨季出流污染负荷具有重要意义.  相似文献   

16.
厌氧铁氨氧化处理模拟垃圾渗滤液的影响因素研究   总被引:2,自引:0,他引:2  
厌氧条件下,微生物将NH~+_4-N氧化和Fe~(3+)还原的反应称为厌氧铁氨氧化(Feammox).试验以处理垃圾渗滤液的厌氧氨氧化污泥(ANAMMOX)为接种污泥驯化Feammox污泥,研究了不同NH~+_4-N及Fe~(3+)浓度对Feammox系统的影响,并采用扫描电镜(SEM)分析了Feammox系统不同运行阶段的污泥形态特征.结果表明:在厌氧序批式反应器中,在常温条件下控制进水NH~+_4-N浓度为50 mg·L~(-1)、pH在7.4~7.6之间,经过88 d厌氧富集培养后NH~+_4-N最大转化率达到52.73%,最大转化量为28.37 mg·L~(-1),出水Fe~(2+)浓度随着运行时间的增加逐渐增加,最高浓度为2.87 mg·L~(-1).高浓度NH~+_4-N(400 mg·L~(-1))和Fe~(3+)(500 mg·L~(-1))条件下,氨氮转化量分别达到了40.69 mg·L~(-1)和29.23 mg·L~(-1),说明高进水基质条件下仍然有Feammox反应发生.低浓度NH~+_4-N(100 mg·L~(-1))和Fe~(3+)(50 mg·L~(-1))条件下,NH~+_4-N转化量与Fe~(2+)生成量的线性关系较强,R~2分别为0.86544和0.86034.通过SEM分析可得,Feammox污泥表面附着有不规则矿物,这些矿物沉积在微生物细胞表面阻碍传质,从而降低微生物代谢效率.  相似文献   

17.
生活污水预沉淀-SNAD颗粒污泥工艺小试   总被引:1,自引:1,他引:0  
李冬  崔雅倩  赵世勋  刘志诚  张杰 《环境科学》2019,40(4):1871-1877
采用人工配水,在SBR反应器中启动同步短程硝化、厌氧氨氧化耦合反硝化(SNAD)颗粒污泥工艺,随后逐渐降低进水氨氮浓度,低氨氮稳定运行一段时间后通入预沉淀后生活污水,考察SNAD颗粒污泥工艺处理生活污水的脱氮性能及稳定性.结果表明,SNAD工艺启动成功后,氨氮去除率大于98%,总氮去除率在89%左右,随着进水氨氮浓度逐渐降低,亚硝酸盐氧化菌(NOB)活性升高,总氮去除率逐渐下降至75%左右.通入预沉淀生活污水(NH4+-N 52~63 mg·L-1,COD 99~123 mg·L-1)后,平均总氮去除率为73.2%,出水COD浓度在35 mg·L-1以下,最大出水氨氮和总氮浓度为0.7 mg·L-1和12.8 mg·L-1,连续30d以上出水氨氮和总氮浓度达到《城镇污水处理厂污染物排放标准》一级A排放标准,实现了生活污水碳氮同步高效去除的目的.  相似文献   

18.
珠江三角洲典型集约化猪场废水污染特征及风险评价   总被引:4,自引:1,他引:3  
根据2009年3月~2011年11月废水水质调查监测数据,运用《畜禽场环境质量评价准则》中单项污染指数、综合污染指数等方法,研究珠江三角洲典型集约化猪场厌氧发酵处理过程中各工艺阶段废水污染特征,并对其潜在生态风险进行综合评价.监测结果表明,所有监测值中,除pH和重金属外,其它污染因子含量普遍超过排放及农田灌溉水质标准,猪粪水中主要污染因子为粪大肠菌群(FC)、总磷(TP)、化学需氧量(COD)和生化需氧量(BOD),其平均质量浓度分别为1.98×109个·L-1、158.61 mg·L-1、5 608.68 mg·L-1和1 984.34 mg·L-1,猪场沼液中主要污染因子为粪大肠菌群、总磷、氨氮(NH+4-N)和悬浮物(SS),其平均质量浓度分别为8.10×106个·L-1、81.76 mg·L-1、476.24 mg·L-1和464.58 mg·L-1.生态风险评价表明,高值区主要出现在固液分离后的高浓度废水,其分布呈现从分离后废水>冲栏废水>沼液递减的趋势特征,其综合污染指数分别为11.41、6.91、5.27,均达到重度污染级.因此,分离前后猪场废水属高浓度、高风险废水,绝对不可直接排放和农田灌溉,经厌氧处理后的猪场沼液中粪大肠菌群、总磷、氨氮和悬浮物是潜在的强生态风险元素,在长期直接排放或农田灌溉过程中仍存在一定的生态风险,有进一步深度处理的必要性.  相似文献   

19.
比较研究了H103树脂、活性炭、沸石、硅藻土和膨润土等5种吸附剂对土壤淋洗液中TX-100与PAHs的吸附性能.批实验结果表明,H103树脂、活性炭、沸石、硅藻土和膨润土吸附后,淋洗液中T-PAHs及TX-100浓度分别为0.03和0 mg·L~(-1)、0.16和3623 mg·L~(-1)、15.21和6175 mg·L~(-1)、15.98和6555 mg·L~(-1)、9.49和4332 mg·L~(-1),选择性吸附系数排序依次为活性炭膨润土沸石硅藻土H103树脂.其中,活性炭能够去除淋洗液中99%的PAHs,同时保留51.33%的TX-100回收再利用,选择吸附系数达到109.5.活性炭固定床实验中,由淋洗液溶质的穿透曲线计算出物质的吸附容量.当空隙体积为2.5-7PV时,活性炭能够去除淋洗液中72%的PAHs,同时保留81%的TX-100,平均选择吸附系数为10.08.由此可见,活性炭固定床可有效处理含表面活性剂土壤淋洗液中的多环芳烃,同时实现表面活性剂的回收再利用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号