首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
四溴双酚A(TBBPA)降解是环境污染治理领域的研究热点。利用梧桐叶提取液介导合成的铁基纳米材料(T-Fe NPs)催化活化过硫酸盐(PS)降解土壤中TBBPA,优化了不同类型土壤(潮土、红壤、黄棕壤)对TBBPA的降解条件。采用Box-Behnken Design模型,分析不同因素(T-Fe NPs投加量、PS浓度、温度)及其交互作用对土壤TBBPA降解率的影响,得出不同土壤中TBBPA最佳降解条件。结果表明:1)T-Fe NPs能有效活化PS降解不同类型土壤中TBBPA,在红壤中降解效果较好。2)不同类型土壤中TBBPA的最佳降解条件存在差异,潮土中最优条件为:T-Fe NPs投加量6.39 g/kg, PS浓度31.26 mmol/L,温度20.73℃,降解率可达到71.72%;红壤中最佳条件为:T-Fe NPs投加量5.26 g/kg, PS浓度29.08 mmol/L,温度为49.80℃,降解率可达到87.87%;黄棕壤中最佳条件为:T-Fe NPs投加量3.42 g/kg, PS浓度15.77 mmol/L,温度11.83℃,降解率可达到54.22%。该研究结果可为TBBP...  相似文献   

2.
铁基催化剂具有优良的活化过硫酸盐的性能,且价廉易得,受到研究者的广泛关注,然而在现阶段研究铁基催化剂多为粉末材料,存在易团聚、回收困难等问题,制约其实际应用。以醋酸纤维素(CA)为载体,采用液滴微流控技术制备了一种具有较高催化活性的微球催化剂(CA-Fe微球)。采用扫描电镜-能谱仪(SEM-EDS)、傅里叶红外变换光谱仪(FTIR)和比表面积分析仪(BET)对催化剂的形貌、结构和组成进行分析。以CA-Fe微球为催化剂活化过二硫酸盐(PS)降解盐酸四环素(TCH)废水,考察初始TCH浓度、CA-Fe微球投加量和PS投加量等操作条件对TCH去除效果的影响。结果表明:CA-Fe微球对PS具有良好的活化性能,CA-Fe/PS体系能够有效去除TCH。在TCH初始浓度为20 mg/L、PS浓度为2 mmol/L、CA-Fe微球投加量为4 g/L条件下,TCH去除率在85%左右。自由基捕获(EPR)和自由基猝灭实验结果揭示,CA-Fe微球/PS体系中存在的活性自由基为·OH和SO-4·,且SO-4·在TCH降解中...  相似文献   

3.
利用紫外光(UV)激活过硫酸盐(PS)的高级氧化技术降解水中三氯生。研究了紫外光照强度、PS投加量、初始pH值、共存阴离子(Cl-、CO32-)和腐殖酸(HA)对三氯生降解效果的影响。实验结果表明:增强紫外光强度、提高PS投加量可提高TCS降解率;酸性条件有利于TCS降解;水中Cl-、CO32-和NOM的存在均对TCS的降解具有抑制作用。初始TCS浓度为5. 0mg/L,紫外光照强度I0=9. 94 m W/cm2,PS浓度为0. 6 mmol/L,初始p H值为7. 0,反应时间为120min时,TCS降解率达到96. 6%。  相似文献   

4.
采用硝酸氧化的颗粒活性炭浸渍制备Ag/GAC活化剂,利用N2吸附、SEM、FT-IR及XRD对Ag/GAC进行表征,得出Ag成功负载于颗粒活性炭上,并以Ag/GAC在常温常压下活化过硫酸钠(PS)产生硫酸根自由基(SO-4·)降解偶氮染料酸性橙7(AO7).考察了Ag负载量、PS浓度、Ag/GAC投加量、初始p H对AO7降解效果的影响.结果表明,当Ag负载量为12.7mg·g-1、n(PS)∶n(AO7)为120∶1、Ag/GAC投加量为1.0 g·L-1,降解180 min后AO7降解率达95.0%以上.初始p H对Ag/GAC活化PS降解AO7有较大影响,p H为5.0时降解效果最优.通过紫外可见光谱、气相色谱-质谱(GC/MS)对AO7降解过程进行了探讨,在降解过程中AO7的偶氮键和萘环结构均被破坏,并检测出主要降解产物有邻苯二甲酸和乙酰苯.  相似文献   

5.
过硫酸盐-石灰苏打处理印染反渗透浓水研究   总被引:5,自引:3,他引:2       下载免费PDF全文
本文通过热活化过硫酸盐(PS)氧化印染反渗透浓水(ROC)中的难降解有机物,并辅以石灰苏打软水技术降低其硬度,以期实现印染ROC的回用.PS氧化研究表明,酸性条件相对于中性和碱性条件更有利于反应的进行,适宜的初始PS浓度为1000 mg·L~(-1),经济有效的活化温度为75℃.PS氧化降解ROC中难降解有机物的过程符合一级降解动力学模型.经PS氧化处理后,ROC中SO2-4浓度由9600 mg·L~(-1)上升到10350 mg·L~(-1),节省了回用时印染助剂的投加;TOC浓度1.0 mg·L~(-1),表明ROC中难降解有机物已基本矿化.石灰苏打脱除印染ROC中硬度的研究表明,150 mg·L~(-1)的石灰和800 mg·L~(-1)的苏打投加量是降低硬度的最为适宜的药剂组合方式.PS-石灰苏打处理印染ROC可稳定实现出水COD21.5 mg·L~(-1),硬度17.5 mg·L~(-1),满足印染废水回用要求.  相似文献   

6.
采用羟胺(HA)强化Fe~(2+)/过硫酸盐(PS)体系降解对乙酰氨基酚(ACT),考察了Fe~(2+)、PS、HA投加浓度以及反应初始pH值对ACT降解效果的影响.结果表明,在反应时间为30 min,亚铁浓度为0.05 mmol·L~(-1), PS浓度为0.8 mmol·L~(-1)和初始pH为3.0的条件下,0.5 mmol·L~(-1) HA可将ACT的去除率从13%提高到90%.适量增加Fe~(2+)或HA浓度可以提高ACT的降解率,但是过高的Fe~(2+)和HA浓度会抑制ACT的降解.ACT的降解率随着PS浓度升高而提升,当PS浓度达到1.2 mmol·L~(-1)时,30 min内ACT几乎可以完全降解.ACT的降解效果随着pH的升高而降低.EPR实验表明Fe~(2+)/PS/HA体系中主要的自由基是SO■和HO~·.Na_2SO_3、NaNO_2和Na_2S_2O_3等常见的还原剂均能够强化Fe~(2+)/PS体系对ACT的降解效果,但是其对Fe~(2+)/PS体系的强化效果均比HA低.  相似文献   

7.
采用紫外活化过硫酸钠(UV/PS)降解三氯卡班(TCC).考察了UV、PS和UV/PS联用工艺去除TCC的效果,研究了PS投加量、反应初始p H值和腐殖酸(HA)等因素对UV/PS降解TCC的影响,推测了UV/PS工艺中TCC可能的降解途径,并对比了UV/PS和UV/H2O2工艺对TCC的去除效果和经济性.研究表明:UV与PS联用能够高效去除TCC,其降解过程符合拟一级动力学模型(R~2≥0.95);拟一级反应速率常数k随着PS投加量的增加先增大再减小,在PS投加量为250μmol/L时,k达到最大值0.0810min~(-1);偏酸性条件(p H=6.0)有利于TCC的降解;HA对TCC的降解有抑制作用,抑制作用与HA的浓度呈正相关;GC/MS鉴定表明,TCC降解过程中主要的中间产物有异氰酸4-氯苯酯和对氯苯胺,其可能的降解途径为TCC分子结构中与酮羰基相连的C-N键断裂,脱氯,经过一系列的反应形成对氯苯胺和异氰酸4-氯苯酯;UV/PS降解TCC过程中溶液中脱氯反应导致Cl~-浓度增加;与UV/H_2O_2工艺相比,相同条件下UV/PS工艺中k值增大了96.65%,单位电能消耗量提高了97%.  相似文献   

8.
文章通过化学浸制和高温碳化法制备出负载铜的丝瓜络生物炭(Cu-LBC)复合材料,用于活化过硫酸盐(PS)降解四环素(TC)。研究表明在反应温度为25℃,初始pH为7,PS、Cu-LBC投加量分别为0.2 g/L和0.6 g/L时,40 min内对TC去除率可达87.26%±3.36%。该催化体系pH可适性广,共存阴离子对降解性能几乎没有影响;该体系高效的催化降解能力是由于催化剂大大降低了反应的活化能(Ea=4.51 kJ/mol)。催化剂对于实际水体中TC的降解表明Cu-LBC对TC依然具有较强的去除能力。自由基淬灭实验和电子顺磁共振(EPR)分析表明体系中起主导作用的自由基为SO4·-和·OH。红外光谱和X射线衍射表明复合材料中铜主要以Cu+的形式存在,Cu-LBC表面的官能团决定了其高效的催化性能。  相似文献   

9.
《环境科学与技术》2021,44(8):75-81
该文采用共沉淀法成功制备了非均相催化剂膨润土@Fe_3O_4,用于活化过硫酸盐(PS)降解罗丹明B(RhB)染料废水。使用扫描电子显微镜、能谱分析仪、X射线单晶衍射仪、X射线光电子能谱对该催化剂进行了表征。对比了不同体系下对RhB的降解效果,结果表明,膨润土@Fe_3O_4/PS体系具有最好的处理效果。探究了膨润土@Fe_3O_4投加量、PS浓度、初始pH对RhB降解的影响,得到了最佳反应条件为:初始pH为3.3,膨润土@Fe_3O_4的投加量为1.5 g/L,PS的浓度为1 g/L。在该最佳反应条件下反应60 min后RhB的去除率为85.11%,总有机碳去除率达77.67%。最后,对反应过程进行了综合分析,提出了膨润土@Fe_3O_4活化PS降解RhB的可能机理。  相似文献   

10.
应用热激活过硫酸盐降解水中双酚A(BPA)并分析初始底物浓度、过硫酸盐投加量、温度、初始pH以及常见的过渡金属物质(Ni_2O_3、Fe~0、Fe~(2+))对降解效果的影响.结果表明:热激活过硫酸盐降解双酚A符合拟一级反应动力学(R~20.96)和符合阿伦尼乌斯模型(R~20.95);表观速率常数k_(obs)与初始底物浓度呈负相关,与过硫酸盐投加量、温度、初始pH呈正相关,计算出的反应活化能为146.64kJ/mol;过渡金属物质的投加可以大幅促进双酚A的降解,[Fe~x]_0(Fe~(2+)、Fe~0):[PS]_0=1:2时,降解效果最佳.  相似文献   

11.
Soil contaminated with heavy metals cadmium(Cd)and lead(Pb)is hard to be remediated.Phytoremediation may be a feasible method to remove toxic metals from soil,but there are few suitable plants which can hyperaccumulate metals.In this study,Cd and Pb accumulation by four plants including sunflower(Helianthus annuus L.),mustard(Brassica juncea L.),alfalfa(Medicago sativa L.), ricinus(Ricinus communis L.)in hydroponic cultures was compared.Results showed that these plants could phytocxtract heavy metals, the ability of accumulation differed with species,concentrations and categories of heavy metals.Values of BCF(bioconcentration factor)and TF(translocation factor)indicated that four species had dissimilar abilities of phytoextraction and transportation of heavy metals.Changes on the biomass of plants,pH and Eh at different treatments revealed that these four plants had distinct responses to Cd and Pb in cultures.Measurements should be taken to improve the phytoremediation of sites contaminated with heavy metals,such as pH and Eh regulations,and so forth.  相似文献   

12.
The oxidation of As(Ⅲ) with potassium permanganate was studied under conditions including pH, initial As(Ⅲ) concentration and dosage of Mn(Ⅶ). The results have shown that potassium permanganate was an effective agent for oxidizing of As(Ⅲ) in a wide pH range. The pH value of tested water was not a significant factor affecting the oxidation of As(Ⅲ) by Mn(Ⅶ). Although theoretical redox analyses suggest that Mn(Ⅶ) should have better performance in oxidization of As(Ⅲ) within lower pH ranges, the experimental results show that the oxidation efficiencies of As(Ⅲ) under basic and acidic conditions were similar, which may be due to the adsorption of As(Ⅲ) on the Mn(OH)2 and MnO2 resulting from the oxidation of As(Ⅲ).  相似文献   

13.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

14.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

15.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

16.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

17.
The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentration and distribution of chlorobenzenes (CBs) in both water and waterweeds collected from 4 stations in the Xijiang River (Gangdong section) of the Pearl River in April and November were determined. The result showed that nearly every congener of CBs was detected. The total contents of CBs (∑CBs) in the river water ranged from 111.1 to 360.0 ng/L in April and from 151.9 to 481.7 ng/L in November, respectively. The pollution level of CBs in the water in April was higher than that in November. The contents of ∑ CBs in waterweeds ranged from 13.53×102 μg/g to 38.27×102μg/g dry weight (dw). There was no significant difference between April and November in waterweeds. The distribution of CBs in roots, caulis, and leaves of Vallisneria spiralis L. showed different patterns. The leaves mainly contained low-molecular-weight CBs(DCBs), whereas the roots accumulated more PCBs and HCBs. The average lgBCFlip (bioconcentration factor) of CBs ranged from 0.64 to 3.57 in the waterweeds. The spatial distribution character of CBs in the Xijiang River was: Fengkai County < Yunan County <Yun'an County < Gaoyao County according to the ∑CBs, and the pollution deteriorated from the upstream to the downstream of the Xijiang River. Further analysis demonstrated that the discharge of waste containing CBs may be the main source of CBs pollution in the Xijiang River.  相似文献   

18.
Degradation of 2,4-dichlorophenol(2,4-DCP)was studied in a novel three-electrode photoelectrocatalytic(PEC)integrative oxidation process,and the factors influencing the degradation rate,such as applied current,flow speed of O_2,pH,adscititious voltage and initial 2,4-DCP concentration were investigated and optimized.H_2O_2 was produced nearby cathode and Fe~(2 )continuously generated from Fe anode in solution when current and O_2 were applied,so,main reactions,H_2O_2-assisted TiO_2 PEC oxidation and E-Fenton reaction,occurred during degradation of 2,4-DCP in this integrative system.The degradation ratio of 2,4-DCP was 93% in this integrative oxidation process,while it was only 31% in E-Fenton process and 46% in H_2O_2-assisted TiO_2 PEC process.So,it revealed that the degradation of 2,4-DCP was improved greatly by photoelectrical cooperation effect.By the investigation of pH,it showed that this integrative process could work well in a wide pH range from pH 3 to pH 9.  相似文献   

19.
The influence of coexisting copper (Cu) ion on the degradation of pesticides pyrethroid cypermethrin and cyhalothrin in soil and photodegradation in water system were studied.Serial concentrations of the pesticides with the addition of copper ion were spiked in the soil and incubated for a regular period of time,the analysis of the extracts from the soil was carried out using gas chromatography (GC).The photodegradation of pyrethroids in water system was conducted under UV irradiation.The effect of Cu~(2 ) on the pesticides degradation was measured with half life (t_(0.5)) of degradation.It was found that a negative correlation between the degradation of the pyrethroid pesticides in soil and Cu addition was observed.But Cu~(2 ) could accelerate photodegradation of the pyrethroids in water.The t_(0.5) for cyhalothrin extended from 6.7 to 6.8 d while for cypermethrin extended from 8.1 to 10.9 d with the presence of copper ion in soil.As for photodegradation,t_(0.5) for cyhalothrin reduced from 173.3 to 115.5 rain and for cypermethrin from 115.5 to 99.0 min.The results suggested that copper influenced the degradation of the pesticides in soil by affecting the activity of microorganisms.However, it had catalyst tendency for photodegradation in water system.The difference for the degradation efficiency of pyrethroid isomers in soil was also observed.Copper could obviously accelerate the degradation of some special isomers.  相似文献   

20.
以三峡大学的校园河道求索溪为研究对象,利用综合水质标识指数法确定求索溪水质类别,分析其水质时空变化规律,并利用对应分析法得出求索溪中不同监测点的主要污染因子.研究结果表明:求索溪整体的综合水质标识指数为7.423,整体水质为劣V类(地表水环境质量标准GB 3838-2002)且黑臭.从时间变化来看,求索溪4月份的水质最差,5月份次之,4、5月份所有监测点的水质都劣于V类且黑臭;8月份水质最好,水质为Ⅳ类;从空间分布来看,8个监测点综合水质标识指数均超过6.0,水质为劣V类,其中6号监测点的水质相对最好,监测点3号的水质相对最差;对应分析法得出求索溪的整体水体污染程度受总氮因子的影响最大,其次为总磷.该研究拟为求索溪及类似校园河道的水环境治理研究提供基础依据和参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号