首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 267 毫秒
1.
Diphenylarsinic acid(DPAA) is formed during the leakage of aromatic arsenic chemical weapons in soils,is persistent in nature,and results in arsenic contamination in the field.The adsorption and desorption characteristics of DPAA were investigated in two typical Chinese soils,an Acrisol(a variable-charge soil) and a Phaeozem(a constant-charge soil).Their thermodynamics and some of the factors influencing them(i.e.,initial pH value,ionic strength and phosphate) were also evaluated using the batch method in order to understand the environmental fate of DPAA in soils.The results indicate that Acrisol had a stronger adsorption capacity for DPAA than Phaeozem.Soil DPAA adsorption was a spontaneous and endothermic process and the amount of DPAA adsorbed was affected significantly by variation in soil pH and phosphate.In contrast,soil organic matter and ionic strength had no significant effect on adsorption.This suggests that DPAA adsorption may be due to specific adsorption on soil mineral surfaces.Therefore,monitoring the fate of DPAA in soils is recommended in areas contaminated by leakage from chemical weapons.  相似文献   

2.
Adsorptionanddesorptionareimportantprocessesthataffectatrazinetransport,transformation,andbioavailabilityinsoils.Inthisstudy,theadsorption–desorptioncharacteristicsofatrazinein three soils (laterite, paddy soil and alluvial soil) were evaluated using the batch equilibrium method. The results showed that the kinetics of atrazine in soils was completed in two steps: a “fast” adsorption and a “slow” adsorption and could be well described by pseudo-second-order model.In addition,the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models. It was found that the adsorption data on laterite, and paddy soil were better fitted by the Freundlich model;as for alluvial soil,the Langmuir model described it better. The maximum atrazine sorption capacities ranked as follows: paddy soil > alluvial soil > laterite. Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic. The desorption data showed that negative hysteresis occurred. Furthermore, lower solution pH value was conducive to the adsorptionofatrazineinsoils.Theatrazineadsorptioninthesethreetestedsoilswascontrolled by physical adsorption, including partition and surface adsorption. At lower equilibrium concentration, the atrazine adsorption process in soils was dominated by surface adsorption;while with the increase of equilibrium concentration, partition was predominant.  相似文献   

3.
Adsorption and desorption are important processes that affect atrazine transport,transformation,and bioavailability in soils.In this study,the adsorption–desorption characteristics of atrazine in three soils(laterite,paddy soil and alluvial soil) were evaluated using the batch equilibrium method.The results showed that the kinetics of atrazine in soils was completed in two steps:a"fast" adsorption and a "slow" adsorption and could be well described by pseudo-second-order model.In addition,the adsorption equilibrium isotherms were nonlinear and were well fitted by Freundlich and Langmuir models.It was found that the adsorption data on laterite,and paddy soil were better fitted by the Freundlich model;as for alluvial soil,the Langmuir model described it better.The maximum atrazine sorption capacities ranked as follows:paddy soil alluvial soil laterite.Results of thermodynamic calculations indicated that atrazine adsorption on three tested soils was spontaneous and endothermic.The desorption data showed that negative hysteresis occurred.Furthermore,lower solution pH value was conducive to the adsorption of atrazine in soils.The atrazine adsorption in these three tested soils was controlled by physical adsorption,including partition and surface adsorption.At lower equilibrium concentration,the atrazine adsorption process in soils was dominated by surface adsorption;while with the increase of equilibrium concentration,partition was predominant.  相似文献   

4.
Glyphosate (GPS) is a non-selective, post-mergence herbicide that is widely used throughout the world. Due to the similar molecular structures of glyphosate and phosphate, adsorption of glyphosate on soil is easily affected by coexisting phosphate, especially when phosphate is applied at a significant rate in farmland. This paper studied the effects of phosphate on the adsorption of glyphosate on three different types of Chinese soils including two variable charge soils and one permanent charge soil. The results indicated that Freundlich equations used to simulate glyphosate adsorption isotherms gave high correlation coefficients(0.990-0.998) with K values of 2751, 2451 and 166 for the zhuanhong soil(ZH soil, Laterite), red soil( RS, Udic Ferrisol) and Wushan paddy soil(WS soil, Anthrosol), respectively. The more the soil iron and aluminum oxides and clay contained, the more glyphosate adsorbed. The presence of phosphate significantly decreased the adsorption of glyphosate to the soils by competing with glyphosate for adsorption sites of soils. Meanwhile, the effects of phosphate on adsorption of glyphosate on the two variable charge soils were more significant than that on the permanent charge soil. When phosphate and glyphosate were added in the soils in different orders, the adsorption quantities of glyphosate on the soils were different, which followed GPS-soil 〉 GPS-P-soil = GPS-Soil-P 〉 P-soil-GPS, meaning a complex interaction occurred among glyphosate, phosphate and the soils.  相似文献   

5.
The mesoporous Cu/Mg/Fe layered double hydroxide(Cu/Mg/Fe-LDH) with carbonate intercalation was synthesized and used for the removal of arsenate from aqueous solutions.The Cu/Mg/Fe-LDH was characterized by Fourier transform infrared spectrometry,X-ray diffraction crystallography,scanning electron microscopy,X-ray photoelectron spectroscopy and Brunauer-Emmett-Teller.Effects of various physico-chemical parameters such as pH,adsorbent dosage,contact time and initial arsenate concentration on the adsorption of arsenate onto Cu/Mg/Fe-LDH were investigated.Results showed that it was efficient for the removal of arsenate,and the removal efficiency of arsenate increased with the increment of the adsorbent dosage,while the arsenate adsorption capacity decreased with increase of initial pH from 3 to 11.The adsorption isotherms can be well described by the Langmuir model with R 2 > 0.99.Its adsorption kinetics followed the pseudo second-order kinetic model.Coexisting ions such as HPO42-,CO32-,SO42and NO3could compete with arsenate for adsorption sites on the Cu/Mg/Fe-LDH.The adsorption of arsenate on the adsorbent can be mainly attributed to the ion exchange process.It was found that the synthesized Cu/Mg/Fe-LDH can reduce the arsenate concentration down to a final level of < 10 μg/L under the experimental conditions,and makes it a potential material for the decontamination of arsenate polluted water.  相似文献   

6.
Oxidation of As(Ⅲ) by potassium permanganate   总被引:2,自引:1,他引:2  
The oxidation of As(Ⅲ) with potassium permanganate was studied under conditions including pH, initial As(Ⅲ) concentration and dosage of Mn(Ⅶ). The results have shown that potassium permanganate was an effective agent for oxidation of As(Ⅲ) in a wide pH range. The pH value of tested water was not a significant factor affecting the oxidation of As(Ⅲ) by Mn(Ⅲ). Although theoretical redox analyses suggest that Mn(Ⅶ) should have better performance in oxidization of As(Ⅲ) within lower pH ranges, the experimental results show that the oxidation efficiencies of As(Ⅲ) under basic and acidic conditions were similar, which may be due to the adsorption of As(Ⅲ) on the Mn(OH)2 and MnO2 resulting from the oxidation of As(Ⅲ).  相似文献   

7.
The study focused on the effect of several typical competing solutes on removal of arsenic with Fe_2O_3 and AL_2O_3.The test results indicate that chloride,nitrate and sulfate did not have detectable effects,and that selenium(Ⅳ)(Se(Ⅳ))and vanadium(Ⅴ)(V(Ⅴ)) showed slight effects on the adsorption of As(Ⅴ)with Fe_2O_3.The results also showed that adsorption of As(Ⅴ)on AL_2O_3 was not affected by chloride and nitrate anions,but slightly by Se(Ⅳ)and V(Ⅴ)ions.Unlike the adsorption of As(Ⅴ)with Fe_2O_3,that with Fe_2O_3 was affected by the presence of sulfate in water solutions.Both phosphate and silica have significant adverse effects on the adsorption of As(Ⅴ)adsorption with Fe_2O_3 and Al_2O_3.Compared to the other tested anions,phosphate anion was found to be the most prominent solute affecting the As(Ⅴ)adsorption with Fe_2O_3 and Al_2O_3.In general,Fe_2O_3 has a better performance than Al_2O_3 in removal of As(Ⅴ)within a water environment where multi competing solutes are present.  相似文献   

8.
The adsorption of Methyl Violet (MV) cationic dye from aqueous solution was carried out by using crosslinked poly (acrylic acid-co-acrylamide)/attapulgite (Poly(AA-co-AM)/ATP) composite as adsorbent. The factors influencing adsorption capacity of the composite such as pH, concentration of the dye, temperature, contact time, adsorbent dosage, ionic strength and surfactant were systematically investigated. The equilibrium data fitted very well to the Langmuir isotherm and the maximum adsorption capacity reached 1194 mg/g at 30°C. The thermodynamic parameters including G0, △H0 and △S 0 for the adsorption processes of MV on the composite were also calculated, and the negative △H0 and △G0 confirmed that the adsorption process was exothermic and spontaneous. The kinetic studies showed that the adsorption process was consistent with the pseudo second-order kinetic model and the desorption studies revealed that the regeneration of the composite adsorbent can be easily achieved.  相似文献   

9.
Insights from the adverse effect of humic acid(HA) on arsenate removal with hydrous ferric oxide(HFO) coprecipitation can further our understanding of the fate of As(V) in water treatment process. The motivation of our study is to explore the competitive adsorption mechanisms of humic acid and As(V) on HFO on the molecular scale. Multiple complementary techniques were used including macroscopic adsorption experiments, surface enhanced Raman scattering(SERS), extended X-ray absorption fine structure(EXAFS) spectroscopy, flow-cell attenuated total reflectance Fourier transform infrared(ATR-FTIR) measurement, and charge distribution multisite complexation(CDMUSIC) modeling. The As(V) removal efficiency was reduced from over 95% to about 10% with the increasing HA concentration to 25 times of As(V) mass concentration. The SERS analysis excluded the HA-As(V) complex formation. The EXAFS results indicate that As(V) formed bidentate binuclear surface complexes in the presence of HA as evidenced by an As-Fe distance of 3.26–3.31 ?. The in situ ATR-FTIR measurements show that As(V) replaces surface hydroxyl groups and forms innersphere complex. High concentrations of HA may physically block the surface sites and inhibit the As(V) access. The adsorption of As(V) and HA decreased the point of zero charge of HFO from 7.8 to 5.8 and 6.3, respectively. The CD-MUSIC model described the zeta potential curves and adsorption edges of As(V) and HA reasonably well.  相似文献   

10.
Competitive and cooperative adsorption of arsenate and citrate on goethite   总被引:1,自引:1,他引:0  
The fate of arsenic in natural environments is influenced by adsorption onto metal (hydr)oxides. The extent of arsenic adsorption is strongly a ected by coexisting dissolved natural organic acids. Recently, some studies reported that there existed competitive adsorption between arsenate and citrate on goethite. Humic acid is known to interact strongly with arsenate by forming complexes in aqueous solution, hence it is necessary to undertake a comprehensive study of the adsorption of arsenate/citrate onto goethite in the presence of one another. The results showed that at the arsenate concentrations used in this study (0.006–0.27 mmol/L), citrate decreased arsenate adsorption at acidic pH but no e ect was observed at alkaline pH. In comparison, citrate adsorption was inhibited at acidic pH, but enhanced at alkaline pH by arsenate. This was probably due to the formation of complex between arsenate and citrate like the case of arsenate with humic acid. These results implied that the mechanism of the adsorption of arsenate and citrate onto goethite in the presence of one another involved not only competition for binding sites, but the cooperation between the two species at the watergoethite interface as well.  相似文献   

11.
The study was to investigate the adsorption behavior of arsenite (As(III)) and arsenate (As(V)) on two variable charge soils, i.e., Haplic Acrisol and Rhodic Ferralsol at dierent ionic strengths and pH with batch methods. Results indicated that the amount of As(III) adsorbed by these two soils increased with increasing solution pH, whereas it decreased with increasing ionic strength under the acidic condition. This suggested that As(III) was mainly adsorbed on soil positive charge sites through electrostati...  相似文献   

12.
砷酸根对砖红壤中铜吸附和解吸影响的初步研究   总被引:9,自引:0,他引:9  
研究了加砷酸根对砖红壤吸附铜及随后吸附性铜的解吸的影响.结果表明,加砷后土壤对铜的吸附量和解吸量均增加.随砷加入量的增加,土壤对铜的吸附量和吸附性铜的解吸量均增加.在pH值为3 4至5 2范围内,砷对铜吸附的促进作用随pH值的增加而增加,约在pH值为4 5时达最大,然后逐渐减小.表面电荷的测定结果和铜的解吸实验结果均说明砷酸根主要通过自身的吸附来增加土壤的表面净负电荷,从而增加土壤对铜的吸附量.  相似文献   

13.
敌敌畏在土壤中吸附特性的研究   总被引:6,自引:3,他引:3  
研究了敌敌畏在2种土壤(东胜土壤和杭锦2#土)中的吸附特性,观察了土壤的性质如w(有机质),w(粘粒),CEC,pH和离子强度等因素对吸附的影响.结果表明:敌敌畏在2种土壤中的吸附过程符合一级动力学规律,可用线性等温式描述,分配常数Kd分别为0.119 0和0.369 3 mL/g;敌敌畏在杭锦2#土中的吸附量比较大,在东胜土壤中的吸附速率比较快.土壤性质与分配常数的相关分析发现:支配敌敌畏在土壤中吸附的主要因素是pH和离子强度,随着pH的增加和离子强度的降低,敌敌畏在2种土壤中的吸附量增大.   相似文献   

14.
除草剂草甘膦在土壤中的吸附行为   总被引:21,自引:4,他引:17  
研究了除草剂草甘膦在3种土壤中的吸附行为, 观察了pH和离子强度等因素对吸附的影响. 结果表明:草甘膦在3种土壤中的吸附过程均符合一级动力学规律, 吸附等温线均为直线,吸附常数Kd 2.2207~3.5280mL/g; 随着离子强度的降低, 草甘膦在3种土壤中的吸附量明显增大; 随着pH(9~3)逐渐减小, 草甘膦在呼和浩特特市土壤和东胜土壤中的吸附量增大, 在杭锦2号土中的吸附量先增大, 在pH=7时达到最大值, pH=5时开始下降, 下降到4时的吸附量与pH=9时的相等.  相似文献   

15.
用连二亚硫酸钠-柠檬酸钠-碳酸氢钠(DCB)法研究了去除土壤中的氧化铁后Al的吸附-解吸特征的变化情况.结果表明,在pH值<4.5条件下,去除氧化铁可使土壤对Al的吸附量有所增加,这种变化在赤红壤中尤为明显;而此后随pH值的升高,原土和去铁土对Al的吸附量基本相等.造成该现象的原因可归纳为去除氧化铁能降低土壤的电荷零点(ZPC)和增加土壤表面负电荷的数量,从而增强了土壤表面与离子之间的静电引力.另一方面,去除氧化铁后Al的解吸量也增加.其原因是与原土相比,去铁土吸附Al的机理中包含有部分静电吸附,这从离子强度对去铁土吸附Al的影响实验能得到较好的验证,因为在pH值<4.5时,提高离子强度将降低Al的吸附量,用高岭石做参考材料时也发现了类似的现象.  相似文献   

16.
The oxidation of As(Ⅲ) with potassium permanganate was studied under conditions including pH, initial As(Ⅲ) concentration and dosage of Mn(Ⅶ). The results have shown that potassium permanganate was an effective agent for oxidizing of As(Ⅲ) in a wide pH range. The pH value of tested water was not a significant factor affecting the oxidation of As(Ⅲ) by Mn(Ⅶ). Although theoretical redox analyses suggest that Mn(Ⅶ) should have better performance in oxidization of As(Ⅲ) within lower pH ranges, the experimental results show that the oxidation efficiencies of As(Ⅲ) under basic and acidic conditions were similar, which may be due to the adsorption of As(Ⅲ) on the Mn(OH)2 and MnO2 resulting from the oxidation of As(Ⅲ).  相似文献   

17.
雌酮(E1)在土壤中的吸附特性   总被引:2,自引:0,他引:2  
研究了平衡时间、温度、pH、离子强度和土壤粒径对E1(雌酮)在土壤中吸附特性的影响. 结果表明:E1在土壤中的等温吸附平衡时间约为0.5h;在温度为10、20和30℃条件下,土壤对E1的Kf(吸附系数)分别为24.72、14.18和9.39,Kd(分配系数)分别为34.79、24.15和13.51,表明随着温度的升高,土壤对E1的吸附量显著降低;土壤对E1的吸附量在pH由3.0增至6.0时呈降低趋势,在pH>6.0~9.0时保持稳定,然后随着pH进一步升高(>9.0~11.0)而继续降低;土壤对E1的吸附量在离子强度由0.005mol/L升至0.1mol/L时显著升高,在离子强度>0.1mol/L时保持稳定;砂粒、粉粒和黏粒对E1的Kf分别为5.17、12.79和25.22,Kd分别为6.80、16.11和39.95,即随着土壤粒径的减小,对于E1的吸附作用显著增加.   相似文献   

18.
为揭示绿藻对土壤-水稻系统砷形态转化的影响特征,系统分析了不同浓度小球藻共存条件下水稻土砷氧化还原与溶解释放行为的变化,并结合水稻培育试验,对小球藻影响水稻砷吸收与体内砷形态的发生机制进行探讨.试验设置对照组及小球藻浓度(以体积分数计)分别为1%、5%、10%的处理,研究了小球藻对溶液体系、淹水土壤体系和淹水土壤-水稻体系中砷的化学形态转化的作用.结果表明:加藻组使As(Ⅲ)溶液和淹水土壤Eh(氧化还原电位)与pH均普遍高于对照组.在As(Ⅲ)溶液体系中,加藻组As(Ⅲ)氧化转化率较对照组升高2.38%~4.95%,该作用在淹水土壤中得到印证,小球藻的共存使土壤孔隙水ρ[As(Ⅴ)]较对照组升高129.22%~221.41%,而ρ(甲基砷)出现显著下降(5.25%~53.31%).水稻栽培试验进一步发现,小球藻明显促进土壤中晶体态铁铝氧化物向弱结晶与无定形铁铝氧化物结合态砷等的转化,导致水稻幼苗对砷的吸收积累量增加-3.4%~23.11%,推测这与小球藻作用下土壤孔隙水ρ(DOC)的增加密切相关.研究显示,尽管小球藻有利于提高淹水土壤体系Eh并加速As(Ⅲ)的氧化转化,但小球藻可能通过有机酸等分泌物的竞争吸附作用促进铁铝氧化物结合态砷的溶解释放,从而增加水稻砷吸收;淡水藻类对土壤-水稻体系砷吸收积累的风险值得引起高度关注,并需要在大田试验中进一步加以验证.   相似文献   

19.
钛改性锰矿的除砷效果及机理研究   总被引:1,自引:0,他引:1  
天然锰矿是一种廉价、易得的除砷矿物材料,为了进一步提高天然锰矿的除砷效果和吸附容量,采用TiCl4对广西桂林天然锰矿进行改性,并对其改性的条件进行优化。实验结果表明最佳的改性条件为:TiCl4浓度为10 mg/L,浸泡时间为18 h,pH=3.05,振荡吸附时间为1 h。与天然锰矿的去除效率(82.95%和77.93%)相比,改性锰矿对As(Ⅲ)和As(Ⅴ)去除率分别可达94.87%和99.31%,相应的饱和吸附量分别为3.48 mg/g和3.27 mg/g,较天然锰矿各自提高了1.25 mg/g和1.21 mg/g。改性锰矿对As(Ⅲ)的吸附符合Freundlich等温吸附模型,对As(Ⅴ)的吸附更符合Langmuir等温吸附模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号