首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dry wire electrical discharge machining (WEDM) is an environmentally friendly modification of the oil WEDM process in which liquid dielectric is replaced by a gaseous medium. In the present work, parametric analysis has been fulfilled while dry WEDM of Al–SiC metal matrix composite. Experiments were designed and conducted based on L27 Taguchi's orthogonal array to study the effect of pulse on time, pulse off time, gap voltage, discharge current, wire tension and wire feed on cutting velocity (CV) and surface roughness (SR). Firstly, a series of exploratory experiments has been conducted to identify appropriate gas and wire material based on the values of cutting velocity. After selection of best gas and best wire, they were used for later stage of experiments. Analysis of variances (ANOVA) has been performed to identify significant factors. In order to correlate relationship between process inputs and responses, an adaptive neuro-fuzzy inference system (ANFIS) has been employed to predict the process characteristics based on experimental observation. At the end, an artificial bee colony (ABC) algorithm has been associated with ANFIS models to maximize CV and minimize SR, simultaneously. Then the optimal solutions that obtained through ANFIS-ABC technique have been compared with numbers of confirmatory experiments. Results indicated that oxygen gas and brass wire guarantee superior cutting velocity. Also, according to ANOVA, pulse on time and discharge current were found to have significant effect on CV and SR. In modeling of CV and SR by ANFIS, it was resulted that the proposed method has superiority in prediction of them in the ranges of factors beyond the training condition. Also, association of ANFIS with ABC can find the optimal combination of process parameters accurately according to the confirmatory experiments.  相似文献   

2.
A mathematical model was developed to estimate the weight percent of diamond abrasive particles incorporated in nickel binder matrix during abrasive microtool fabrication by pulse-plating process. The proposed model is based on the hypothesis that, embedment of an inert micro abrasive diamond particle on the substrate will only occur when a few nickel ions from the adsorbed ionic cloud are chemically reduced at the cathode by hydrogen ions present in the diffusion layer. Experimental verification of the model developed was performed by pulse electroplating of diamond abrasive particles on tungsten micro tool shank using an in-house built experimental setup. The predictive model developed was found to estimate diamond abrasive content in nickel binder matrix within 1–7 wt% of experimental results for different pulse-plating conditions.  相似文献   

3.
应用机器学习方法解析区域土壤-小麦系统镉(Cd)富集特征有助于风险决策的准确性和科学性.基于区域调查,构建了Freundlich-type转移方程、随机森林(RF)模型和神经网络(BPNN)模型对小麦Cd富集因子(BCF-Cd)进行预测,验证不同模型的预测精度并评估其不确定性.结果表明,RF(R2=0.583)和BPNN(R2=0.490)模型预测性能均优于Freundlich转移方程(R2=0.410).重复训练结果显示RF和BPNN平均绝对误差(MAE)和均方根误差(RMSE)较为接近,但RF(R2为0.527~0.601)较BPNN(R2为0.432~0.661)模型精度和稳定性更高.特征变量重要性分析显示多重因素的共同作用导致小麦BCF-Cd的异质性,其中土壤磷(P)和锌(Zn)是影响小麦BCF-Cd变化的关键变量.参数优化可进一步提高模型精度、稳定性和泛化能力.  相似文献   

4.
张长胜  韩涛  钱斌  胡蓉  田海湧  毛辉  王卓 《中国环境科学》2021,41(10):4616-4623
本文给出一种量子粒子群(QPSO)算法、改进菌群觅食(IBFO)算法优化反向传播神经网络(BPNN)的混凝投药预测模型,利用量子粒子群的个体极值与群体极值更新细菌觅食算法趋化过程中细菌位置;通过细菌协同改进趋化算子提高优化精度,结合差分算法改进繁殖算子解决部分维度退化问题,加入轮盘赌方法作为选择机制改进迁移算子来克服优化过程中优秀解消失的缺陷;进而优化BP神经网络的权值、阈值以此预测混凝剂投药量.对云南某自来水厂的数据进行离线训练和模型测试,结果表明,所提算法预测结果的均方误差(MSE)达0.0116mg/L,平均绝对误差百分比(MAPE)达1.36%,在预测精度和稳定性上优于BFO-BPNN、PSO-BPNN等模型.  相似文献   

5.
An experimental program of a novel wire manufacturing process known as dieless drawing has been conducted. The process has the capability to effect a reduction in the diameter of a wire without the use of conventional wire drawing dies. Reduction in diameter is achieved by heating the wire, which is mechanically loaded parallel to its longitudinal axis, to a temperature that initiates plastic deformation. Both mathematical and finite element (FE) modeling of the process have been undertaken. An analysis of the wire deformation is presented and discussed. The maximum reduction in diameter achieved, effect of drawing velocity, temperature, and uniformity of resulting wire diameter are investigated. The mechanics and operational features of the experimental machine manufactured to facilitate the experimental program of dieless drawing are described. The mathematical model presented can be used to describe the occurrence of deformation during the process. This model has been validated by experiments carried out on the wire drawing machine. The primary observation from the experimental program was that uniformity of wire diameter after dieless drawing decreased with an increase in reduction ratio. Results obtained from the experimental work confirm that a complicated interdependence of the process parameters exists during the dieless drawing process.  相似文献   

6.
This work deals with the application of mass integration to the Kraft process in an effort to minimize the fresh water usage. Due to the recycle and reuse of various aqueous streams present in the given process, there is a build-up of non-process elements (or NPEs) which has to be addressed. The approach consists of gaining process insights from the flow sheet via a graphical solution strategy followed by mathematical optimization. A targeting approach is described. The source sink diagram and path diagram are included in the analysis. A rule based on the lever arm and material balance is used to determine the sequence of steps at fresh water minimization. The graphical approach is easy to apply and allows the user to determine initial solutions to the problem. This is followed by a detailed mathematical optimization formulation for the problem and the solution strategy to be used to converge on the final solution. A case study dealing with the Kraft process, and chloride being the targeted NPE, is considered to demonstrate the potential benefits of the approach. Significant reductions in fresh water demands and wastewater discharges are observed for the Kraft process along with the allocation of NPEs. Any build-up of NPEs due to the recycle and reuse of various aqueous effluent streams to replace fresh water is accounted for via the inclusion of path diagram equations in the mathematical optimization. The principles developed are generic in nature and can easily be extended to other pulp processes as well.  相似文献   

7.
The attractive combination of high mechanical strength, good corrosion resistance and relatively low cost has contributed to making duplex stainless steels (DSSs) one of the fastest growing groups of stainless steels. As the importance of DSSs is increasing, practical information about their successful machining is expected to be crucial. To address this industrial need, standard EN 1.4462 and super EN 1.4410 DSSs are machined under constant cutting speed multi-pass facing operations. A systematic approach which employs different modeling and optimization tools under a three phase investigation scheme has been adopted. In phase I, the effect of design variables such as cutting parameters, cutting fluids and axial length of cuts are investigated using the D-Optimal method. The mathematical models for performance characteristics such as; percentage increase in radial cutting force (%Fr), effective cutting power (Pe), maximum tool flank wear (VBmax) and chip volume ratio (R) are developed using response surface methodology (RSM). The adequacy of derived models for each cutting scenario is checked using analysis of variance (ANOVA). Parametric meta-heuristic optimization using Cuckoo search (CS) algorithm is then performed to determine the optimum design variable set for each performance. In the phase II, comprehensive experiment-based production cost and production rate models are developed. To overcome the conflict between the desire of minimizing the production cost and maximizing the production rate, compromise solutions are suggested using Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The alternatives are ranked according to their relative closeness to the ideal solution. In the phase III, expert systems based on fuzzy rule modeling approach are adopted to derive measures of machining operational sustainability called operational sustainability index (OSI). Artificial neural network (ANN) based models are developed to study the effect of design variables on computed OSIs. Cuckoo search neural network systems (CSNNS) are finally utilized to constrainedly optimize the cutting process per each cutting scenario. The most appropriate cutting setup to ensure successful turning of standard EN 1.4462 and super EN 1.4410 for each scenario is selected in accordance with conditions which give the maximum OSI.  相似文献   

8.
Soil tillage and straw management are both known to affect soil organic matter dynamics. However, it is still unclear whether, or how, these two practices interact to affect soil C storage, and data from long term studies are scarce. Soil C models may help to overcome some of these problems. Here we compare direct measurements of soil C contents from a 9 year old tillage experiment to predictions made by RothC and a cohort model. Soil samples were collected from plots in an Irish winter wheat field that were exposed to either conventional (CT) or shallow non-inversion tillage (RT). Crop residue was removed from half of the RT and CT plots after harvest, allowing us to test for interactive effects between tillage practices and straw management. Within the 0–30 cm layer, soil C contents were significantly increased both by straw retention and by RT. Tillage and straw management did not interact to determine the total amount of soil C in this layer. The highest average soil C contents (68.9 ± 2.8 Mg C ha?1) were found for the combination of RT with straw incorporation, whereas the lowest average soil C contents (57.3 ± 2.3 Mg C ha?1) were found for CT with straw removal. We found no significant treatment effects on soil C contents at lower depths. Both models suggest that at our site, RT stimulates soil C storage largely by decreasing the decomposition of old soil C. Extrapolating our findings to the rest of Ireland, we estimate that RT will lead to C mitigation ranging from 0.18 to 1.0 Mg C ha?1 y?1 relative to CT, with the mitigation rate depending on the initial SOC level. However, on-farm assessments are still needed to determine whether RT management practices can be adopted under Irish conditions without detrimental effects on crop yield.  相似文献   

9.
Coexisting arsenic (As) and antimony (Sb) in mining wastewater is a common and great concern. On-site simultaneous removal of As and Sb from mining wastewater was achieved by using a reusable granular TiO2 column in this study. To evaluate the accuracy of the scale-up procedure, As and Sb adsorption from wastewater was studied in both large (600 g TiO2) and small columns (12 g TiO2) based on the proportional diffusivity rapid small-scale column tests (PD-RSSCTs) design. The comparable As and Sb breakthrough curves obtained from small and large columns confirmed the accuracy of the PD-RSSCT theory in the design of large-scale columns. Meanwhile, the consistent As and Sb adsorption results from batch and column experiments suggested that TiO2 adsorption for As and Sb can be predicted from bench-scale tests. Charge distribution multi-site complexation (CD-MUSIC) and one-dimensional transport modeling integrated in the PHREEQC program were performed to study the adsorption behaviors of As and Sb on the TiO2 surface. Coexisting ions, such as Ca2 +, Mg2 +, and Si4 +, play an important role in As and Sb adsorption, and the breakthrough curves were well simulated after considering the compound ion effects. The results from this study highlight the surface reactions of As and Sb on TiO2 and provide a practical way for on-site remediation of industrial wastewater.  相似文献   

10.
Stellite alloys, which have been widely used in the aerospace, automotive and chemical industries, are hard-to-cut cobalt-based materials. This study investigates the machinability of stellite 12 alloys with uncoated carbide cutting tool grades YG610 (K01-K10) and YT726 (K05-K10/M20) and SANDVIK coated carbide tool SNMG150612-SM1105 under dry cutting conditions. Both wear mechanisms and failure modes of the uncoated and coated tools were investigated with turning experiments. The results show that the coated tool SM1105 remarkably outperforms the uncoated tools; and the cutting tool YG610 generally outperforms YT726 under all cutting conditions. Built-up edge was found with YG610 in some cutting conditions and with SM1105 at cutting speed of 16 m/min. Tool surface burning marks were observed on YT726 at relatively higher cutting speeds. Wear develops slowly with coated tools SM1105 until VB reaches 0.2 mm at most conditions (except at v = 43 m/min, f = 0.25 mm/r). Excessive tool flank typically resulted in tool breakage at the cutting edge for uncoated tools. Abrasive and adhesive wear of cutting tools were observed at low cutting speeds while diffusion and chemical wear occurred at higher cutting speeds.  相似文献   

11.
The temperature distribution and residual stresses for a GTAW circumferential butt joint of AISI 304 stainless steel using numerical simulation have been evaluated. For evaluation of weld induced residual stresses, the analysis of heat source fitting was carried out with heat inputs ranging from 200 to 500 J/mm to arrive at optimal heat input for obtaining proper weld penetration and heat affected zone (HAZ). For this chosen heat input, the influence of different weld speeds and powers on the temperature distribution and the residual stresses is studied. The heat source analysis revealed the best choice of heat input as 300 J/mm. The residual stresses on the inner and outer surfaces, and along the radial direction were computed. Increase in temperature distribution as well as longitudinal and circumferential residual stresses was observed with the increase in weld speed and power. The validity of the results obtained from numerical simulation is demonstrated with full scale shop floor welding experiments.  相似文献   

12.
Attributes related to the dimensional quality of hot rolled steels are very important in commercial sectors that make direct use of this product, because delay or equipment damage can be avoided when forming in downstream operations. In this research, the steel sheet edge trimming process and its relationship with the defect known as broken edge is experimental and numerically studied. The type of material, horizontal clearance between knives and the energy spent during the cutting process are analyzed in detail. A metal-mechanical study is carried out for obtaining a microstructural hardness and flow stress characterization. Consequently, the edge trimming process is FEM simulated and its results in relation to knife penetration and shear stress lead to determining the energy spent during the cutting process. A mathematical model is determined under the consideration that minimum energy gives the optimum cutting conditions. The model proposes a reliable value for the horizontal clearance (Hc), between knives, taking as the principal factors: energy consumed during the edge trimming process, sheet thickness (Th), carbon content (C) and/or its ultimate tensile strength, expressed as: Hc = α + βTh  γC. A comparison of the recommended numerical results with the best practical conditions is carried out and a high coincidence is successfully found. This model is expected to be easily adopted as a tool where operators can adjust and control the parameters of process, and then, as a result, produce a sheet without edge trimming defects as well as a reduction in efficiency costs.  相似文献   

13.
Nitrous oxide (N2O) emissions from agriculture are currently estimated from N inputs using emission factors, and little is known about the importance of regional or management-related differences. This paper summarizes the results of a study in which N2O emission rates were recorded on 15–26 occasions during a 12-month period in organic and conventional dairy crop rotations in five European countries (Austria, Denmark, Finland, Italy, UK). A common methodology based on static chambers was used for N2O flux measurements, and N2O data were compiled together with information about N inputs (from fertilizers, N2 fixation, atmospheric deposition and excretal returns), crop rotations and soil properties. Organic rotations received only manure as N fertilizer, while manure accounted for 0–100% of fertilizer N in conventional rotations. A linear regression model was used to examine effects of location, system and crop category on N2O emissions, while a second model examined effects of soil properties. Nitrous oxide emissions were higher from conventional than from organic crop rotations except in Austria and, according to the statistical analysis, the differences between locations and crop categories were significant. Ammonium was significantly related to N2O emissions, although this effect was dominated by observations from a grazing system. Despite the limited number of samplings, annual emissions were estimated by interpolation. Across the two systems and five locations there was a significant relationship between total N inputs and N2O emissions at the crop rotation level which indicated that annually 1.6 ± 0.2% (mean ± standard error) of total N inputs were lost as N2O, while there was a background emission of 1.4 ± 0.3 kg N2O-N ha−1 year−1. Although this measurement program emphasized system effects at the expense of high temporal resolution, the results indicate that N input is a significant determinant for N2O emissions from agricultural soils.  相似文献   

14.
为了深入了解地面PM2.5的空间分布,以山东省为研究区,利用2019年的PM2.5站点实测数据,结合中分辨率成像光谱仪(MODIS)的L3级别的MCD19A2气溶胶光学厚度产品,充分考虑人口、地形、气象等因素,使用RF、SVR、BPNN、DNN等4种机器学习算法对山东省2019年逐日PM2.5进行了模拟.结果表明:随机森林模型(RF)的RMSE和MAE的值分别为12.67和6.62,优于BPNN、SVR和DNN模型.随机森林模型(RF)最适合山东省的日PM2.5模拟.  相似文献   

15.
Nitrous oxide (N2O) and ammonia (NH3) emissions from surface applied high (HN) and low (LN) nitrogen pig manures were measured under field conditions. Manures were band-spread to a winter wheat crop at three growth stages—mid-tillering, stem elongation and flag leaf emergence. The N2O flux rates were measured using the static chamber technique while NH3 volatilisation was assessed using a micrometeorological mass balance technique with passive flux samplers. The N2O emissions were episodic in nature with flux rates observed ranging from 2.8 to 31.5 g N2O–N ha?1 day?1 (P < 0.001). Higher N2O emissions generally occurred after rainfall events. Highest N2O losses were observed from the HN treatment with LN manure use decreasing emissions by 18% (P < 0.03). The NH3 volatilisation rates were highest within 1 h of manure application with 95% of emissions occurring within 24 h (P < 0.001). Cumulative N loss was highest at mid-tillering as low crop canopy cover and increased wind-speeds enhanced NH3 loss (P < 0.001). Highest emissions were measured from the HN manure (P < 0.03). Total ammoniacal N loss ranged from 6 to 11%. Crop N uptake and grain yield were unaffected by application timing or manure type. Therefore, the use of LN manures decreased gaseous emissions of N2O and NH3 without any adverse effects on crop performance.  相似文献   

16.
Using the life cycle assessment (LCA) method, we analyzed the effects of different cropping systems (sole maize (CK), maize + soybean (CST) and maize + groundnut (CGT)) on the environment. The comprehensive index of environmental impacts varied in the order, sole maize > maize + groundnut > maize + soybean, with corresponding intercropping values of 0.1295, 0.1229 and 0.0945, respectively. The results showed that intercropping maize with suitable plants (e.g., groundnut and soybean) could reduce the adverse effects of over-application of nitrogen fertilizer on the environment. The study further showed that the LCA method may be a convenient and effective approach for analyzing the environmental impact of fertilizer management in agricultural fields.  相似文献   

17.
This paper presents environmental impact of a fluorescent lamp (a long straight tube 36 watts, 200 g and 13,600 h for mean time before failure) when considering different disposal methods (recycle and non-recycle) of its spent fluorescent lamp (SFL). The study was applied for the case in Thailand using life cycle assessment (LCA) as a tool. All materials, energy use, and pollutant emissions to the environment from each related process were identified and analyzed. Impact assessment was conducted for 10 environmental impact potentials: carcinogens, respiratory organics, respiratory inorganics, climate change, radiation, ozone layer, ecotoxicity, acidification/eutrophication, land use and minerals. The analysis followed Eco-Indicator 99 method, individualist version 2.1. The main focus of the study was to compare the impact of SFL recycling with non-recycling before landfilling. The impact intermittent activities, production of raw material and energy used in all the concerned processes were taken into account. However, transportation activities were excluded. The results showed that for all recycling rates, cement production is the main contributor to the environmental impacts, while sodium sulfide production is second and electrical production, the third. Mercury vapor emission showed a small contribution in carcinogens and ecotoxicity. The impacts are reduced when recycling rate is increased. The reduction of cement consumption in disposal processes or the process improvement of cement production may also help to reduce environmental impacts.  相似文献   

18.
Evaluation of adaptive management options is very crucial for successfully dealing with negative climate change impacts. Research objectives of this study were (1) to determine the proper N application rate for current practice, (2) to select a range of synthetic wheat (Triticum aestivum L.) cultivars to expand the existing wheat cultivar pool for adaptation purpose, (3) to quantify the potential impacts of climate change on wheat grain yield and (4) to evaluate the effectiveness of three common management options such as early sowing, changing N application rate and use of different wheat cultivars derived in (2) and given in the APSIM-Wheat model package in dealing with the projected negative impacts for Keith, South Australia. The APSIM-Wheat model was used to achieve these objectives. It was found that 75 kg ha?1 N application at sowing for current situation is appropriate for the study location. This provided a non-limiting N supply condition for climate change impact and adaptation evaluation. Negative impacts of climate change on wheat grain yield were projected under both high (?15%) and low (?10%) plant available water capacity conditions. Neither changes in N application level nor in wheat cultivar alone nor their synergistic effects could offset the negative climate change impact. It was found that early sowing is an effective adaptation strategy when initial soil water was reset at 25 mm at sowing but this may be hard to realise especially since a drier environment is projected.  相似文献   

19.
The influences of spatial scale, local conditions, and small vertebrate preferences on post-dispersal predation of weed seeds were tested in agricultural ecosystems of the Southern Pampas Region of Argentina. Seeds from different weed species were offered through exclusion experiments at different distances from the weedy field borders, inside maize (2005) and wheat (2006) stubbles with contrasting land use in the neighbor fields (annual crop fields vs. seminatural grasslands), and inside seminatural grasslands adjacent to stubbles. Canopy structure was characterized inside the wheat stubbles, and small mammals were sampled in both stubble crops and grasslands. All weed species were predated in both 2005 and 2006 trials, but predation ratios varied among weed species, partly due to their seed size, with larger ones being more preferred. While in the maize stubbles no distance or neighbor field land use effects, or interactions between the different factors were detected, in the wheat stubbles, influence of neighbor field land use on weed species predation varied according to distance from field border and the height of the stubble canopy. In wheat stubbles adjacent to annual crop fields, predation increased with canopy height at every different distance from the field borders (5 m, 30 m and 60 m). The opposite was found in wheat stubbles adjacent to seminatural grasslands, where seed predation sharply decreased with canopy height, except for the farthest distance to the border. Capture results suggest a predominance of Calomys spp. populations in crop areas (stubbles adjacent to annual crops) which contrasted with the more diverse small mammal’s community of the grasslands. Based on these data, we provide an insight into the hierarchical nature of factors affecting the predation of weed seeds and discuss some implications of land use patterns on the regulation of weed populations by small vertebrates.  相似文献   

20.
Dietary adjustments have been suggested as a means to reduce N losses from dairy systems. Differences in fertilizing value of dairy slurry as a result of dietary adjustments were evaluated in a 1-year grassland experiment and by long-term modelling. Slurry composition of non-lactating dairy cows was manipulated by feeding diets with extreme high and low levels of dietary protein and energy. C:Ntotal ratio of the produced slurries ranged from 5.1 to 11.4. To evaluate their short-term fertilizer N value, the experimental slurries (n = 8) and slurries from commercial farms with variable composition (n = 4), were slit-injected in two grassland fields on the same sandy soil series in the north of The Netherlands (53°10′N, 6°04′E), with differences in sward age and ground water level. The recently established grassland field (NEW) was characterized by lower soil OM, N and moisture contents, less herbs and more modern grass varieties compared to the older grassland field (OLD). Slurry was applied in spring (100 kg N ha−1) and after the first cut (80 kg N ha−1) while in total four cuts were harvested. Artificial fertilizer N treatments were included in the experiment to calculate the mineral fertilizer equivalent (MFE) of slurry N. The OLD field showed a higher total N uptake whereas DM yields were similar for the two fields. Average MFE of the slurries on the OLD field (47%) was lower than on the NEW field (56%), probably as a result of denitrification of slurry N during wet conditions in spring. Slurries from high crude protein diets showed a significantly higher MFE (P < 0.05) compared to low crude protein diets. No significant differences in MFE were observed between slurries from high and low energy diets. On both fields, MFE appeared to be positively related to the ammonium content (P < 0.001) and negatively to the C:Ntotal ratio of the slurry DM (P = 0.001). Simulation of the effect of long-term annual application of 180 kg N ha−1 with highest and lowest C:Ntotal ratio suggested that both slurries would lead to an increase in annual soil N mineralization. Both soil N mineralization and SOC appeared to be substantially higher in equilibrium state for the slurry with the highest C:Ntotal ratio. It is concluded that in a situation with slit-injection, the reduced first-year N availability of slurry with a high C:Ntotal ratio as observed in the grassland experiment will only be compensated for by soil N mineralization on the very long term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号