首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 156 毫秒
1.
不同碳源对EBPR启动期聚磷菌的影响研究   总被引:1,自引:0,他引:1  
杨敏  卢龙  冯涌  张强 《环境工程》2013,31(1):39-42
以实验室序批式反应器(SBR)为强化生物除磷工艺(EBPR)载体,接种具有初步除磷功能的污泥后,以乙酸∶丙酸=1∶1(按各自折算的COD计)为混合碳源(以下简称混酸),厌氧初始pH 7.6±0.1,富集聚磷菌(PAO)。启动30 d后,EBPR反应器中为PAO和聚糖菌(GAO)的混合菌属,此时从反应器中取泥样进行批式试验,分别考察乙酸、丙酸及混酸对聚磷菌的富集和厌氧释磷的影响。结果表明:在EBPR启动期内,乙酸作为单一碳源时释磷量最大,但混酸碳源释磷效率最高,最有利于PAO富集;丙酸作为单一碳源时降解率最大而释磷量最小,不适合EBPR启动期的PAO富集。  相似文献   

2.
EBPR中两类细菌PAOs和GAOs竞争的研究进展   总被引:1,自引:0,他引:1  
强化生物除磷(EBPR)工艺可以获取高效的除磷效果,已在很多污水处理厂得到广泛应用。但是大型污水处理厂在相当多的条件下,EBPR工艺也会出现周期性除磷效果的波动和不充分。针对这一难题,研究者试图采用许多手段来研究工艺中的主要微生物。文章针对典型的EBPR工艺和碳源、pH值、温度等因素对EBPR工艺中两类细菌聚磷菌(PAOs)和聚糖菌(GAOs)竞争的研究进展进行了论述,并展望了未来的研究方向。  相似文献   

3.
郑少奎  罗焇湝 《环境科学研究》2022,35(10):2338-2347
自1970年代研究者发现聚磷菌(polyphosphate accumulating organism, PAO)并提出经典的强化生物除磷(enhanced biological phosphorus removal, EBPR)工艺“厌氧释磷-好氧摄磷”机理以来,随着EBPR工艺中PAO新菌株的不断发现和生理生化特征研究的不断深入,研究者们对EBPR机理的认识一直在不断更新. 及时总结近40年来EBPR机理的研究进展,基于活性污泥中PAO菌株信息全面归纳PAO多样性特征,以此为依据客观评价目前活性污泥中PAO除磷潜力评价方法的不足并展望未来重点研究方向,对于推动EBPR工艺优化升级将具有非常重要的理论与实际意义. 本文全面调研了1980—2021年国际期刊相关文献,发现传统EBPR机理中厌氧内碳源合成、厌氧释磷意义等受到了较多质疑,反硝化聚磷新机理已获得广泛认同;活性污泥中PAO具有异常丰富的多样性,包含Acinetobacter(29%)、Pseudomonas(15%)、Tetrasphaera(4%)、Alcaligenes(4%)等42个菌属,部分PAO具有反硝化聚磷和异养硝化能力. 在目前主流的活性污泥PAO除磷潜力评价方法中,荧光原位杂交和定量PCR技术只以Accumulibacter或Acinetobacter属PAO为检测对象,高通量测序和变性梯度凝胶电泳技术基于片面的PAO多样性信息作为分析依据,在此基础上PAO丰度所反映的PAO除磷潜力的准确性尚存在疑问,未来需要加强面向活性污泥PAO多样性的探针或特异性引物的研发. 与传统方法相比,EDTA法胞内多聚磷酸盐颗粒含量检测技术较为先进,但需要以PAO和非PAO菌株为参照深入阐明检测结果的边界.   相似文献   

4.
乙酸丙酸比例对富集聚磷菌生物除磷系统影响研究   总被引:7,自引:0,他引:7  
刘燕  陈银广  郑弘  周琪 《环境科学学报》2006,26(8):1278-1283
通过丙酸/乙酸(以C计)比例为0.1、0.5、1、2、10的合成废水,在SBR反应器(1#~5#)中长期驯化聚磷菌(PAO)富集的污泥,研究了丙酸/乙酸比例对增强生物除磷系统(EBPR)中短链脂肪酸(SCFA)降解、溶解性正磷(SOP)的释放/吸收及其去除率的影响.结果表明,PAO对SCFA的利用符合一级动力学过程,PAO对丙酸的利用速率较乙酸快,因此,增加丙酸/乙酸比例有助于EBPR系统的稳定性.随丙酸/乙酸比例增加,SOP的释放与吸收量减少,SOP的代谢速率降低,但SOP的去除率明显增加.因此,增加丙酸/乙酸比例有助于提高EBPR系统除磷效率.  相似文献   

5.
张超  陈银广 《环境科学》2013,34(3):1004-1007
采用基于SCFAs代谢的动力学模型,模拟了不同碳源类型和不同m(P)/m(COD)对聚磷菌(PAO)和聚糖菌(GAO)竞争的影响.结果表明,以乙酸作为唯一碳源时,EBPR中的微生物种群结构基本保持反应器初始状态的生物组成,PAO或GAO都无法取得明显的竞争优势.但是,在进水中添加丙酸有利于PAO成为优势微生物,当丙酸占总酸的质量分数达到33%以上时,EBPR趋于稳定.当m(P)/m(COD)<0.01时,即使丙酸作为EBPR的碳源,GAO仍占(PAO+GAO)总量的95%以上.为了使PAO占有优势,进水m(P)/m(COD)应该控制在0.04~0.10之间.  相似文献   

6.
蒋涛  孙培德  金均 《环境科学学报》2012,32(11):2763-2769
在SBR反应器中接种富含聚磷菌的活性污泥,采用一系列不同丙酸/乙酸比例混合的碳源进行EBPR系统污泥的颗粒化培养,并考察了颗粒化进程中的系统菌群结构变化,以及不同混合碳源条件对系统功能菌种竞争的影响.结果表明,污泥颗粒化过程对EBPR系统菌群结构产生了较大的筛选作用.原本在系统中占优势的一类Uncultured bacterium被迅速淘汰;Uncultured Rhodocyclaceae bacterium、部分Candidatus Competibacter phosphatis、部分Denitrifying bacterium、Acinetobacter及部分Uncultured alpha proteobacterium分别逐渐被淘汰.在各个成熟的颗粒化EBPR系统中,除磷微生物主要为Uncultured Chlorobi bacterium与Uncultured alpha proteobacterium.不同混合碳源条件培养的颗粒化EBPR系统菌群结构差异主要表现为Candidatus Competibacter phosphatis(聚糖菌)与Uncultured Chlorobi bacterium(聚磷菌)菌群数量的不同.混合碳源中乙酸比例的提高可造成颗粒化EBPR系统中Candidatus Competibacter phosphatis的增长,使系统的除磷效率下降.而碳源中丙酸比例相对较高的条件有利于Uncultured Chlorobi bacterium增长,从而有助于颗粒化EBPR系统维持较好的除磷效率.  相似文献   

7.
水温变化对EBPR系统除磷效果响应机制的数值模拟研究   总被引:3,自引:0,他引:3  
大量研究表明,水温变化会影响聚磷菌和聚糖菌之间的竞争关系,是造成EBPR系统除磷效果波动的重要因素.温度的逐步升高导致聚磷菌在强化生物除磷(EBPR)系统中逐渐失去优势直至系统崩溃.然而,有关如何利用物理模拟和数值模拟手段恢复升温破坏后的EBPR系统除磷效果及其响应机制的研究甚少.本文基于全耦合活性污泥数学模型(FCASM3),对EBPR系统进行数值建模和模拟试验,研究温度变化对EBPR系统的影响,旨在用模型预测及验证水温变化对EBPR系统除磷效果响应机制及适宜聚磷菌生存的极限条件,通过升温破坏及温度恢复的试验与模拟研究,进一步分析不同温度对EBPR系统中聚磷菌和聚糖菌的影响.通过对比FCASM3与国际水协的除磷代谢模型ASM2d在不同运行温度(20℃,25℃,30℃,35℃)下,对EBPR系统出水COD、PO43--P等污染物质的模拟变化趋势,结果表明FCASM3能更好地模拟EBPR系统中聚磷菌和聚糖菌的行为,且随着温度的升高,EBPR的除磷效率下降.在水温升高和恢复的过程中发现,温度升高到35℃,会导致EBPR的崩溃,短时间内不能恢复升温前的除磷效率.  相似文献   

8.
系列混合碳源在EBPR系统颗粒化进程中的影响研究   总被引:1,自引:0,他引:1  
蒋涛  孙培德  徐少娟 《环境科学》2012,33(7):2451-2457
在SBR反应器中接种富含聚磷菌的活性污泥,以一系列不同比例的丙酸与乙酸混合为碳源条件,进行了EBPR系统颗粒化培养,考察了混合碳源中丙酸所占质量分数(以COD质量浓度计)的提高对EBPR系统颗粒化进程中颗粒粒径生长、污泥沉降性能、系统除磷效率等宏观特性的影响规律.结果表明,EBPR系统污泥颗粒生长速率随碳源中丙酸所占质量分数的增加而提高;碳源中丙酸所占质量分数较高的反应器污泥SVI值相对较高.经90 d培养,碳源中丙酸所占质量分数分别为0%、25%、50%、75%及100%的系统中成熟颗粒体积平均粒径分别为550.64、599.41、642.38、680.99和745.08μm,污泥SVI值分别稳定在30、40、50、60及75 mL.g-1左右.在相同的磷处理负荷下,各试验系统除磷性能产生了显著性差异.0%、25%、50%、75%及100%丙酸碳源系统平均净除磷能力(以MLSS计)分别为0.78、2.29、2.96、3.23及3.77 mg.g-1,平均除磷效率分别为31.5%、56.5%、77.4%、85.9%及97.0%.  相似文献   

9.
从系统内碳源有效利用出发,将兼氧区混合液分流至缺氧区,利用PAO(聚磷菌)储存的内碳源PHA(聚羟基链烷酸)作为缺氧区碳源,开发出新型后置反硝化除磷AOA工艺。本文系统研究了污泥回流比(R)、混合液分流比(F)等对脱氮除磷效果的影响,探讨了新型AOA工艺脱氮除磷的过程特征,测定了污泥的吸磷速率,分析了系统内碳源转化、利用和氮磷平衡,结果表明,新型AOA工艺具有较好的除磷脱氮功能。  相似文献   

10.
采用脉冲进水缺好氧交替工艺(SAOSBR)处理低C/N实际生活污水,考察了短程脱氮对于低碳源生活污水同步脱氮除磷效果的强化作用,并分析了短程脱氮强化生物除磷的机理.结果表明,通过短时的饥饿处理配合缺好氧交替的运行方式实现了系统的短程硝化,亚硝酸盐积累率稳定在95%以上.短程的实现还强化了系统的同步脱氮除磷效果,总氮和磷的平均去除率相比于全程脱氮过程分别提高了约6%和36%.分析表明短程强化生物除磷的原因主要是由于残留的NO2-对聚磷菌厌氧释磷的影响较小.静态试验也证实,在碳源不足的条件下,以NO2-为电子受体的反硝化作用相比于NO3-可以减弱反硝化菌与聚磷菌之间的碳源竞争,从而提高聚磷菌的厌氧释磷量和聚羟基烷酸(PHA)的合成量.因此,在处理低C/N生活污水时,短程脱氮的实现更有利于系统的生物除磷.  相似文献   

11.
聚烃基烷酸转化对强化生物除磷影响研究   总被引:9,自引:5,他引:4  
刘燕  行智强  陈银广  周琪 《环境科学》2006,27(6):1103-1106
通过丙酸和乙酸C-mol比为0.5和2的合成废水驯化微生物的SBR反应器(SBR1和SBR2)批式实验,研究了强化生物除磷系统中聚烃基丁酸(PHB)和聚烃基戊酸(PHV)的转化对磷吸收/释放及去除率的影响.结果显示,磷的释放/吸收和去除率与PHB和PHV的转化有很好的相关性(R2>0.90).回归系数表明,特定废水驯化的污泥,磷的吸收和释放主要受PHB转化的影响,但磷的去除率却主要依赖于PHV的合成与降解;对于不同比例丙酸/乙酸废水驯化污泥,SBR2比SBR1污泥的PHB合成和降解能力增强,PHV合成和降解能力减小,生物除磷效果平均增加16.69%.因此,进水丙酸/乙酸比例及驯化影响聚磷微生物的PHB/PHV转化量,进而影响对磷的吸收/释放和除磷效果,PHB与PHV的转化量应作为生物除磷系统的关键调控因素考虑.  相似文献   

12.
污泥厌氧产酸发酵液作碳源强化污水脱氮除磷中试研究   总被引:7,自引:6,他引:1  
为研究城市污泥厌氧产酸发酵液作为补充碳源强化生活污水脱氮除磷系统的效果和可行性,建造了一个总有效体积为4 660 L的A2/O中试反应系统,以实际城市污水为研究对象,考察了添加污泥产酸发酵液后的污水脱氮除磷效果并和单纯添加乙酸作碳源的效果进行了比较.结果表明,在进水COD为243.7 mg·L-1、NH+4-N为30.9 mg·L-1、TN为42.9 mg·L-1、TP为2.8 mg·L-1、硝化液回流比为200%和污泥回流比为100%的条件下,向缺氧池中投加乙酸能增强系统脱氮除磷效果,反应器的最佳进水流量和投加碳源SCOD增量分别为7 500 L·d-1和50 mg·L-1.污泥发酵液代替乙酸作为外加碳源时的平均出水COD、NH+4-N、TN和TP去除率分别为81.60%、88.91%、64.86%和87.61%,相对应的出水浓度分别为42.18、2.77、11.92和0.19 mg·L-1,满足我国《城镇污水处理厂污染物排放标准》GB 18918-2002所规定的一级A标准.结果表明,投加污泥产酸发酵液作为脱氮除磷碳源可达到和乙酸同样的效果,具有实际可行性,这为城市污泥处理处置实现资源化提供了一条新的可行途径.  相似文献   

13.
市政污水处理厂生物除磷运行效能与机理分析   总被引:5,自引:1,他引:4       下载免费PDF全文
选取浙江北部10个污水处理厂,调研污水厂生物除磷的运行效能并开展污泥活性以及微生物分布特征及其除磷机理的研究.通过活性污泥批试验表明,厌氧释磷率和好氧聚磷率(以P计)平均为2.4mg/(g·h)和2.2mg/(g·h);反硝化聚磷菌(DPAOs)占聚磷菌(PAOs)的比例为0.0%~80.1%.荧光原位杂交法(FISH)对活性污泥微生物群落结构分析表明,聚磷菌(PAOs)比例为2.0%~8.7%,聚糖菌(GAOs)比例为1.3%~22.4%.根据调查结果和生物除磷性能研究,可通过调整污水营养成分和设置独立前置反硝化池等方法改善除磷效果.  相似文献   

14.
同步反硝化聚磷的试验研究   总被引:11,自引:3,他引:8  
采用SBR反应器和人工合成废水研究了同步反硝化聚磷的条件和影响因素.试验结果表明,厌氧/好氧方式下驯养的生物除磷污泥,在厌氧期之后供给硝酸盐,则污泥可以很快实现同步反硝化聚磷.聚磷前厌氧阶段的存在是实现反硝化聚磷必不可少的重要前提.在没有NO3-干扰而且乙酸钠为唯一碳源下,最佳厌氧时间为60min.先于缺氧期微生物接触硝酸盐,会使反硝化聚磷减弱甚至丧失.缺氧段NO3--浓度是影响反硝化聚磷效果的因素之一.在厌氧(2h)-缺氧(1h)-好氧(2h)的试验条件下,当NO3--N浓度由5mg/L上升至20mg/L时,其反硝化聚磷效率由11.9%上升至48.7%.但NO3--N浓度提高到了20mg/L以上时,其效率提高得不很明显.好氧段的存在不会使诱导形成的反硝化聚磷消失,但缩短好氧时间有助于提高DNPA在除磷中的比例.  相似文献   

15.
采用SBR反应器,分别以乙酸钠、甘油、丙酸钠为单一碳源,在严格厌氧/缺氧条件下驯化培养反硝化除磷污泥,考察不同碳源对反硝化除磷效果的影响,并采用高通量测序技术研究了不同碳源除磷污泥的菌群结构,分析其中除磷菌所占比例. 结果表明,以乙酸钠、甘油、丙酸钠为碳源的各系统出水中,ρ(TP)平均值分别为0.79、0.98、0.29 mg/L,TP去除率分别为82.5%、79.2%、93.4%. 取自污水厂的种泥微生物多样性最高;其次为以甘油驯化的污泥和以乙酸钠与丙酸钠培养的污泥,二者表现出相似的多样性与菌群结构. 各反应器中的污泥在“纲”与“目”分类级别上分别均以β-Proteobacteria与Rhodocyclales占主导. 稳定期乙酸钠、甘油、丙酸钠为碳源的系统中的除磷菌所占比例分别为9.5%、8.0%、41.5%,以丙酸钠为碳源的系统中除磷菌所占比例最高. 对于厌氧/缺氧系统,与以乙酸钠、甘油相比,丙酸钠为碳源时系统的除磷效果更好,并且有利于除磷菌的富集.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号