首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 401 毫秒
1.
在一个连续给煤不排料的实验室规模的流化床煤气化实验台上,对不同煤种、不同温度情况下主要污染物硫化氢、氨、氰化氢的产量进行了测量,分析了各种操作条件对污染物流量的影响,并通过平行实验的比较,考察了在水蒸汽存在的还原气氛中不同温度、不同钙硫比条件下石灰石的脱硫效率.  相似文献   

2.
活性碳纤维去除水中微污染物的研究   总被引:6,自引:0,他引:6  
研究了在不同温度、pH等条件下,活性碳纤维(ACF)对水中微污染苯酚和氮苯系列的吸附动力学。在碱性条件下由于活性炭纤维表面的弱极化作用,吸附容量有所加强,同时也随着环境温度的增加而增大。活性炭纤维对氮苯系列吸附容量的大小比较是:k六氧苯>k二氯苯>k;三氯苯>k氯零。通过对ACF与颗粒活性碳(GAC)吸附的QSAR推算和实测吸附容量进行比较,表明ACF的吸附容量要远大于GAC。  相似文献   

3.
应用野外实验池实测及模式模拟等实验与计算方法对松花江水中23种有机污染物的迁移转化行为进行了模拟研究,应用3个小型野外池于江边现场,经73h,3个不同实验条件的同时测定,得到各池条件下,每一化合物表观总一级动力学常数,由之估算了挥发性有机物的挥发速率常数,硝基芳烃的光解速率常数,建立了适于实验池及河流的箱式模型,应用箱式模型及所得上述参数,数学模拟了污染物在实验池及江水中变化规律,得到现实际符合的  相似文献   

4.
阳宗海中光合细菌对活性艳红X-3B脱色的研究   总被引:5,自引:0,他引:5  
从高原湖泊阳宗海中分离筛选出功能优秀的6株光合细菌,用海藻酸钠进行包埋。探讨了其自然细胞和固定化细胞在不同时间、不同温度、不同pH、不同菌体数量和不同染料浓度条件下对活性艳红X-3B的脱色效果。实验结果表明,2种细胞的最佳脱色时间为24h,最佳温度为25~45℃,最适pH为6~9,在最佳脱色条件下固定化细胞的脱色能力比自然细胞显著。  相似文献   

5.
基于一级动力学模型的潜流湿地污染物去除研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对北京市野生动物救护中心水平潜流人工湿地运行特征参数及进出水水质情况进行定期连续监测,研究了污染物去除的面积速率常数及背景浓度与进水污染负荷之间的相关关系,并依据出水浓度,通过Arrhenius方程对潜流湿地不同污染物背景浓度进行了估计,同时分析比较了不同温度条件下污染物背景浓度的变化特征及不同背景浓度条件下面积速率常数的季节性变化规律.结果表明:污染物出水浓度与温度之间存在一定的相关关系,其中总悬浮固体物(TSS)和化学需氧量(CODcr)与温度的相关系数分别为0.6293和0.6210;对全磷(TP)和全氮(TN)的比较发现,在估计背景浓度条件下,TP和TN的面积速率常数高于零背景值时的面积速率常数(P0.05);当污染负荷低于25mg/L时,潜流湿地对TSS去除的面积速率常数随进水污染负荷的升高而呈指数增加,而在高污染负荷时,面积速率常数出现较大波动;污染物背景浓度与进水污染负荷之间存在一定的线性相关性,其中TSS的背景浓度与进水污染负荷之间的拟合度最高(R2=0.8388);潜流湿地对污染物去除的面积速率常数存在较明显的季节性变化,秋季面积速率常数较高,而夏季和冬季较低  相似文献   

6.
袁琦  黄亚继  杨亚平  刘俊龙  赵通  王双群 《环境工程》2013,(Z1):329-332,353
在不同的温度和电压条件下,对自行开发的新型阴极分别在不同的介质中进行了静态和动态试验研究。研究发现,阴极的发射电流密度随着温度和电压的升高而增大;高压有利于动态条件下电子发射;在静态实验条件下的发射电流密度要比动态实验条件下大很多,这主要是由于阴极发生中毒以及离子迁移率的减小造成的,烟气中的粉尘也对阴极的电子发射有一定的影响。  相似文献   

7.
研究了金属硫蛋白基因工程菌对温度的耐受性,以及在一定温度条件下对Cd的去除率。通过10~50℃温度范围内的静态实验,表明枣金属硫蛋白基因工程菌的温度耐受范围为10~50℃,在工程菌的OD值能维持在2左右时,表明金属硫蛋白基因工程菌的最佳温度范围为25~45℃。通过陶瓷和活性炭两种填料的动态实验,考察了在不同温度条件下基因工程菌对Cd的富集情况,表明在陶瓷填料中基因工程菌下对Cd的去除率达到98.5%。  相似文献   

8.
不同气氛下燃煤SO2的排放规律研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在立式管状电加热炉上对合山高硫煤在不同的气氛、温度以及Ca/S比的条件下进行了动态燃烧实验,对收集的气体产物进行了红外光谱分析,并讨论了CO2浓度以及温度等因素对SO2释放的影响。结果表明:不同浓度的CO2气氛对煤燃烧过程中硫的释放以及石灰石的固硫效率有着不同的影响,在高于900℃以后,较之空气气氛下,无论是否存在钙基固硫剂,其它三种02/C02气氛下S02的排放量都比较低,且在不同C02浓度下,温度对S02的排放影响不一致。  相似文献   

9.
将蒸汽流化下煤气化污染物生成及脱硫这一复杂物理化学过程分解为3个基本过程;流态化过程,煤热解及污染物生成过程,焦气化及脱硫过程,并在已有的对单一过程研究的基础上建立起基于煤种和实验条件的综合过程模型;模型参数通过预测值与实验值的比较加以确定,将参数估计的结果应用于综合模型,预测值与实验数据基本符合。  相似文献   

10.
在试样质量及其他试验条件基本相同情况下,对不同温度下单一的煤、渣、11∶渣与煤的混料及其做成的有型燃料随温度变化污染物排放特性进行了研究,渣和煤混料或制成有型燃料燃烧能大大降低HCl、SO2和NO2气体排放。结果表明,混合燃烧盐酸水解残渣和煤的有型燃料,不仅解决了大量残渣给环境带来的固体废物污染,而且能综合利用废物和煤炭资源,降低锅炉燃烧中污染物的排放。  相似文献   

11.
The oxycoal process with cryogenic oxygen supply   总被引:1,自引:0,他引:1  
Due to its large reserves, coal is expected to continue to play an important role in the future. However, specific and absolute CO2 emissions are among the highest when burning coal for power generation. Therefore, the capture of CO2 from power plants may contribute significantly in reducing global CO2 emissions. This review deals with the oxyfuel process, where pure oxygen is used for burning coal, resulting in a flue gas with high CO2 concentrations. After further conditioning, the highly concentrated CO2 is compressed and transported in the liquid state to, for example, geological storages. The enormous oxygen demand is generated in an air-separation unit by a cryogenic process, which is the only available state-of-the-art technology. The generation of oxygen and the purification and liquefaction of the CO2-enriched flue gas consumes significant auxiliary power. Therefore, the overall net efficiency is expected to be lowered by 8 to 12 percentage points, corresponding to a 21 to 36% increase in fuel consumption. Oxygen combustion is associated with higher temperatures compared with conventional air combustion. Both the fuel properties as well as limitations of steam and metal temperatures of the various heat exchanger sections of the steam generator require a moderation of the temperatures during combustion and in the subsequent heat-transfer sections. This is done by means of flue gas recirculation. The interdependencies among fuel properties, the amount and the temperature of the recycled flue gas, and the resulting oxygen concentration in the combustion atmosphere are investigated. Expected effects of the modified flue gas composition in comparison with the air-fired case are studied theoretically and experimentally. The different atmosphere resulting from oxygen-fired combustion gives rise to various questions related to firing, in particular, with regard to the combustion mechanism, pollutant reduction, the risk of corrosion, and the properties of the fly ash or the deposits that form. In particular, detailed nitrogen and sulphur chemistry was investigated by combustion tests in a laboratory-scale facility. Oxidant staging, in order to reduce NO formation, turned out to work with similar effectiveness as for conventional air combustion. With regard to sulphur, a considerable increase in the SO2 concentration was found, as expected. However, the H2S concentration in the combustion atmosphere increased as well. Further results were achieved with a pilot-scale test facility, where acid dew points were measured and deposition probes were exposed to the combustion environment. Besides CO2 and water vapour, the flue gas contains impurities like sulphur species, nitrogen oxides, argon, nitrogen, and oxygen. The CO2 liquefaction is strongly affected by these impurities in terms of the auxiliary power requirement and the CO2 capture rate. Furthermore, the impurity of the liquefied CO2 is affected as well. Since the requirements on the liquid CO2 with regard to geological storage or enhanced oil recovery are currently undefined, the effects of possible flue gas treatment and the design of the liquefaction plant are studied over a wide range.  相似文献   

12.
生物滴滤塔净化多组分废气的研究   总被引:3,自引:3,他引:0  
通过生物滴滤塔(biotrickling filter,BTF)净化硫化氢(H2S)、四氢呋喃(THF)、二氯甲烷(DCM)混合废气,研究其挂膜启动和稳定运行条件下的降解性能.结果表明,混合废气H2S、THF、DCM浓度分别为200、100和100 mg·m-3,空床停留时间(empty bed retention time,EBRT)50~20 s的条件下,H2S和THF的去除率分别能够维持在99%和60%左右,而DCM的去除率随EBRT的缩短从90%逐渐降低至37%左右.利用Michaelis-Menten动力学模型分析得到,理论降解效果为H2S>THF>DCM.  相似文献   

13.

Biomass-based combined heat and power (CHP) generation with different carbon capture approaches is investigated in this study. Only direct carbon dioxide (CO2) emissions are considered. The selected processes are (i) a circulating fluidized bed boiler for wood chips connected to an extraction/condensation steam cycle CHP plant without carbon capture; (ii) plant (i), but with post-combustion CO2 capture; (iii) chemical looping combustion (CLC) of solid biomass connected to the steam cycle CHP plant; (iv) rotary kiln slow pyrolysis of biomass for biochar soil storage and direct combustion of volatiles supplying the steam cycle CHP plant with the CO2 from volatiles combustion escaping to the atmosphere; (v) case (iv) with additional post-combustion CO2 capture; and (vi) case (iv) with CLC of volatiles. Reasonable assumptions based on literature data are taken for the performance effects of the CO2 capture systems and the six process options are compared. CO2 compression to pipeline pressure is considered. The results show that both bioenergy with carbon capture and storage (BECCS) and biochar qualify as negative emission technologies (NETs) and that there is an energy-based performance advantage of BECCS over biochar because of the unreleased fuel energy in the biochar case. Additional aspects of biomass fuels (ash content and ash melting behavior) and sustainable soil management (nutrient cycles) for biomass production should be quantitatively considered in more detailed future assessments, as there may be certain biomass fuels, and environmental and economic settings where biochar application to soils is indicated rather than the full conversion of the biomass to energy and CO2.

  相似文献   

14.
脱水污泥/松木锯末水蒸气共气化研究   总被引:1,自引:1,他引:0  
以城市污水处理厂机械脱水后的污泥(含水率约为80%)和松木锯末的混合物为原料,进行了共气化制取富氢燃气的研究.同时,采用热重分析(TGA)研究了混合样品的热失重特性,并在固定床反应器上考察了不同掺混比对燃气成分、燃气产量和碳转化率的影响.TGA结果表明,随着锯末掺混比的增加,样品的失重量、最大失重率及挥发分析出特性指数增大.在固定床反应器中,脱水污泥中的水分在高温条件下形成蒸气气氛,与产生的半焦发生了蒸气气化反应.实验结果表明,最佳掺混比为40% ~ 60%,此时氢气含量、燃气产量、碳转化率分别为40%、0.70 m3· kg-1、64.1%.此外,借助BET和SEM对残余半焦的比表面积及表面形貌特征进行了分析.  相似文献   

15.
Numerous different bioreactor systems are applied for hydrogen production by dark fermentation. Thermophilic fermentations are gaining an increased interest due to the high hydrogen yields associated with them. In order to reach the best thermophilic fermentation system, 2 types of bioreactors, a trickling bed and a fluidized bed system, were constructed and operated under similar conditions. Both systems were designed to meet the requirements of thermophilic fermentations, such as reduction of hydrogen partial pressure, system immanence as its best as well as increasing cell densities. For comparing the 2 systems, the extreme thermophilic organism Caldicellulosiruptor owensensis OLT and a glucose-containing medium were employed. Parameters like hydraulic retention time, glucose concentration and stripping gas amount were varied. Each bioreactor system exhibited certain advantages; the trickling bed system enabled yields close to 3 mol-H2 (mol-glucose)?1 and productivities of 0.2 L L?1 h?1, but the application of stripping gas seemed to be obligatory. The fermentations in the fluidized bed system were characterized by slightly higher productivities (0.25 L L?1 h?1), but generally lower yields. However, operation of this system without stripping gas was possible.  相似文献   

16.
固定化微生物处理含H2S气体的试验研究   总被引:54,自引:3,他引:54  
研究海藻酸钠包理固定化微生物颗粒填充床去除气相H2S的过程,活性微生物为经S^2-加富驯化的污水水污泥。填充滴滤塔运行实验表明,除H2S外适宜的PH值和喷淋率分别为1.8-4.0和〉0.17m^3(m^3.d);  相似文献   

17.

Carbon capture and storage (CCS) is an economically attractive strategy for avoiding carbon dioxide (CO2) emissions from, e.g., power plants to the atmosphere. The combination of CCS and biomass combustion would result in a reduction of atmospheric CO2, or net negative emissions, as plant growth is a form of sequestration of atmospheric carbon. Carbon capture can be achieved in a variety of ways, one of which is chemical looping. Chemical-looping combustion (CLC) and chemical looping gasification (CLG) are two promising technologies for conversion of biomass to heat and power or syngas/methane with carbon capture. There have been significant advances made with respect to CLC in the last two decades for all types of fuel, with much less research on the gasification technology. CLG offers some interesting opportunities for production of biofuels together with carbon capture and may have several advantages with respect to the bench mark indirect gasification process or dual-bed fluidized bed (DFBG) in this respect. In CLG, an oxygen carrier is used as a bed material instead of sand, which is common in indirect gasification, and this could have several advantages: (i) all generated CO2 is present together with the syngas or methane in the fuel reactor outlet stream, thus in a concentrated stream, viable for separation and capture; (ii) the air reactor (or combustion chamber) should largely be free from trace impurities, thus preventing corrosion and fouling in this reactor; and (iii) the highly oxidizing conditions in the fuel reactor together with solid oxide surfaces should be advantageous with respect to limiting formation of tar species. In this study, two manganese ores and an iron-based waste material, LD slag, were investigated with respect to performance in these chemical-looping technologies. The materials were also impregnated with alkali (K) in order to gauge possible catalytic effects and also to establish a better understanding of the general behavior of oxygen carriers with alkali, an important component in biomass and biomass waste streams and often a precursor for high-temperature corrosion. The viability of the oxygen carriers was investigated using a synthetic biogas in a batch fluidized bed reactor. The conversion of CO, H2, CH4, and C2H4 was investigated in the temperature interval 800–950 °C. The reactivity, or oxygen transfer rate, was highest for the manganese ores, followed by the LD slag. The conversion of C2H4 was generally high but could largely be attributed to thermal decomposition. The K-impregnated samples showed enhanced reactivity during combustion conditions, and the Mangagran-K sample was able to achieve full conversion of benzene. The interaction of the solid material with alkali showed widely different behavior. The two manganese ores retained almost all alkali after redox testing, albeit exhibiting different migration patterns inside the particles. LD slag lost most alkali to the gas phase during testing, although some remained, possibly explaining a small difference in reactivity. In summary, the CLC and CLG processes could clearly be interesting for production of heat, power, or biofuel with negative CO2 emissions. Manganese ores are most promising from this study, as they could absorb alkali, giving a better conversion and perhaps also inhibiting or limiting corrosion mechanisms in a combustor or gasifier.

  相似文献   

18.
采用下吸式固定床气化炉,以煅烧白云石为催化剂水蒸气气化城市生活垃圾(MSW)有机组分,在气化温度为750~950℃,S/M(水蒸气和垃圾物料进料质量比)为0.57~1.28时,探讨了催化剂种类、气化温度和S/M等因素对富氢气体成分、产氢率、潜在产氢率、低位热值和碳转化率等的影响。较高气化温度有利于富氢气体的生成,增加碳转化率和产气率,但会降低富氢气体的热值;在实验条件下,富氢气体中H2体积分数最高达53.29%,产氢率达到7.13~46.52mol/kg,潜在产氢率为55.48~90.11mol/kg;镍基催化剂催化效果优于煅烧白云石,能大幅增加H2含量,使焦油在850℃以上完全分解。  相似文献   

19.
This work explored the influences of the drying and calcination temperatures on a Ce-Cu-Al trimetallic composite catalyst for the simultaneous removal of H2S and PH3. The effects of both temperatures on the structural features and activity were examined. The density functional theory method was used to calculate adsorption energies and further analyze their adsorption behavior on different slabs. Experiments revealed suitable drying and calcination temperatures to be 60 and 500°C, respectively. The capacity reached 323.8 and 288.1 mg/g. Adjusting drying temperature to 60°C is more inclined to form larger and structured grains of CuO. Rising calcinating temperature to 500°C could increase the grain size and redox capacity of CuO to promote performance. Higher temperatures would destroy the surface structure and lead to a crystal phase transformation, which was that the CuO and Al2O3 were gradually recombined into CuAl2O4 with a spinel structure. The exposed crystal planes of surficial CuO and CuAl2O4 were determined according to characterization results. Calculation results showed that, compared with CuO (111), H2S and PH3 have weaker adsorption strength on CuAl2O4 (100) which is not conducive to their adsorption and removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号