首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
于2017年1月1日—12月31日对南京市城区大气细粒子(PM2.5)化学组分(元素、水溶性离子和碳质组分)的小时质量浓度进行连续观测,采用正矩阵因子分析(Positive Matrix Factorization,PMF)模型分别基于全年观测数据(PMF全年)和逐月观测数据(PMF月份)进行源解析,比较不同观测周期源解析结果的差异以及对PM2.5各组分浓度估算的准确性.结果表明:不同观测周期下,PMF源解析结果中因子类型未发生改变,但因子组成和贡献分布存在较大差异.由于PMF模型假设同一观测周期内源成分谱不发生变化,只有基于逐月观测数据的PMF源解析才能体现全年范围内因子组成和贡献分布的变化.尽管PMF全年和PMF月份的分析结果均能准确估算PM2.5组分的月均浓度,但PMF月份结果对各组分小时浓度的估算值和观测值在时间变化上更一致.这是因为PMF模型要求对各组分浓度的平均值进行拟合,易低估(或高估)PM2.5组分在观测周期内的极大(或极小)值.因此,基于短期(例如,月份)高分辨观测数据的PMF分析...  相似文献   

2.
正定因子矩阵分解(PMF)是目前污染源解析领域应用最为广泛的受体模型之一,其不确定性研究一直是源解析研究的前沿和热点.利用拔靴法(BS)、替换法(DISP)和拔靴-替换法(BS-DISP)3种不确定性分析方法探讨了PMF模型应用于土壤重金属源解析的不确定性,并以德兴铜矿周边土壤重金属为对象开展案例研究.结果表明,6因子情景是PMF模型最佳运行结果;在6因子情景的源成分谱中,除Cr和Ti外,DISP和BS不确定性区间均处于标识元素基本值的0.6~1.5倍之间,BS-DISP不确定性区间处于基本值的0.6~1.6倍之间;模型结果的不确定性更多源于因子旋转误差.通过这3种不确定性分析方法可以获得PMF模型运算中的随机误差和因子旋转误差.其中,BS-DISP法和BS法得到的结果能够辅助判断因子数是否过拟合,并有助于理解源谱的不确定性,而DISP法能够用于理解旋转的不确定性,可作为评价旋转过程可行性的方法.  相似文献   

3.
基于PMF模型的土壤重金属源解析中变量敏感性研究   总被引:2,自引:0,他引:2  
为探究应用受体模型对土壤污染物进行源解析,输入变量对模型运行及其结果的影响,以乐安河中上游地区土壤重金属调查数据作为典型受体模型(PMF模型)的输入数据集,并在PMF模型基础方案运行结果的基础上,采用局部敏感性分析法来探讨输入变量变化对模型诊断及源识别结果的影响.结果表明:6因子数情景是研究区土壤重金属源解析PMF模型最佳运行结果;土壤中Cu、Mo、Na2O、As、Mn和Cd等参数属于敏感变量,这些变量均为每个因子中的主要载荷元素,即每个源的特征污染物;不同变量的敏感性有较大差异,Cu、Mo的总敏感性最大,分别为12.1,8.2,大于其他输入变量的敏感性.因此,在应用PMF模型进行源解析时,特征污染物是敏感性较强的变量,其数据质量的优劣是影响源解析结果可靠性的重要因素.  相似文献   

4.
吴焕波  陈强  景毅  王芳 《环境科学学报》2015,35(11):3479-3485
本文对包含污染源或气象条件等发生剧烈变化且数据量小的实测受体数据进行了正态扩展,得到扩展数据.同时,利用PMF和PCA模型验证了扩展方法得到的数据量是否能满足模型的要求.结果表明,扩展范围和扩展受体成分谱个数是两个影响扩展数据合理性的主要因素,最佳扩展条件为:扩展范围取标准差的0.5倍,扩展受体成分谱个数为6个.通过53 h算法标记出每个化学成分时间序列中能够代表污染源或气象条件等发生剧烈变化的值并给出对应的估计值.将与估计值的相对误差(RE)超过80%的被标记的值剔除,其余的替换成估计值,发现扩展后PCA解析结果与原始数据处理后数据解析结果基本一致,能够得到主要贡献的污染源及贡献率;若将被标记的值全部剔除后,则不适合做PCA解析;仅通过PMF验证,且扩展数据与原始数据的解析结果中污染源类的判断一致.将受体数据各化学成分的时间序列中代表污染源或气象条件等发生剧烈变化的值替换成53 h算法给出的估计值,对于受体数据量小且用无源成分谱的多元统计方法解析无法给出结果的情况下的源解析有更大价值.  相似文献   

5.
于2019年11月至2020年12月期间在典型工业城市太原市开展了降尘采样和降尘化学组分分析.采样期间,太原市平均降尘量约为7.9t/(km2·30d),并呈现在4~6月较高.在选取的8个监测区域中,清徐和巨轮的平均降尘量较高,分别为10.7t/(km2·30d)和10.6t/(km2·30d).降尘化学组分质量中地壳元素(Ca、Si、Al)占比较高,巨轮和桃园监测区域的降尘中Fe元素的质量显著高于其他监测区域.将降尘量和化学组分分析结果分别纳入正定矩阵因子分解(PMF)和偏目标转换-正定矩阵分解(PTT-PMF)两种受体模型中对太原市降尘进行了定量来源解析.通过比较两种受体模型的拟合性能和解析的因子谱发现:PTT-PMF受体模型相较于PMF能够更好地区分出降尘中城市扬尘源和建筑尘源这两类相似的尘源.结果表明,太原市降尘主要有六种来源:城市扬尘源(PMF:35%,PTT-PMF:35%)、建筑尘源(PMF:29%,PTT-PMF:28%)、钢铁工业源(PMF:14%,PTT-PMF:14%)、燃煤源(PMF:13%,PTT-PMF:12%)、二次无机盐(PMF:5%,PTT-PMF:6%)、机动车尾气排放源(PMF:4%,PTT-PMF:5%).两种受体模型得到的平均来源贡献结果相似,而建筑尘源和钢铁工业源的季节变化趋势则有一定的差异.粗粒径源类(城市扬尘源和建筑尘源)是太原市降尘的主要来源,两者对降尘的贡献率超过了60%,并在春季贡献率(4~6月)较高.  相似文献   

6.
周敏 《环境科学》2020,41(5):1997-2005
于2014年12月2~24日在上海市城区对大气中细粒子及其化学组分进行了在线连续观测,基于在线数据运用正定矩阵因子分析法(PMF)、化学质量平衡法(CMB)和多元线性模型(ME2)这3种受体模型开展颗粒物源解析并进行相互验证.结果显示,基于在线数据共获得了8类污染源,包括二次硝酸盐、二次硫酸盐、二次有机碳、重油燃烧源、工业源、移动源、扬尘源和燃煤源.其中二次硝酸盐、二次硫酸盐、二次有机碳等二次污染源(44.9%~64.8%)对PM_(2.5)的贡献最大,移动源(16.8%~24.8%)和燃煤源(5.6%~14.9%)的贡献次之,其他源类的贡献相对较小. 3种模型获得的污染源特征组分和来源结果对比表明, 3种模型获得的二次硫酸盐、二次硝酸盐、二次有机碳、移动源的源解析结果较接近,说明模型对这4类源的模拟较好.ME2和PMF模型对燃煤源、扬尘源的拟合结果要好于CMB;工业源则是CMB的结果更好.  相似文献   

7.
香港地区2005—2010年VOCs污染来源解析及特征研究   总被引:10,自引:3,他引:7  
利用香港地区2005-2010年连续实时监测的挥发性有机污染物(VOCs)组分浓度数据,运用CMB和UNMIX受体模型综合分析了香港地区VOCs主要污染来源及年变化趋势和季节变化规律.结果表明:溶剂使用、机动车尾气排放和液化石油气(LPG)是香港地区主要的VOCs污染源.在2005-2010年间,机动车尾气排放对VOCs贡献呈缓慢增加趋势,溶剂使用的贡献率逐渐降低,天然源的贡献率基本稳定.溶剂使用、机动车尾气和LPG源冬季贡献最大,夏季最低,天然源则在夏季贡献最大.两种模型解析结果有一定的差异,显示源解析结果受较多因素影响.为确保结果的准确性,建议采用两种或以上的模型对受体点数据进行污染来源解析.  相似文献   

8.
为了解多种新型受体模型的适用性,利用正定矩阵分解/多元线性引擎2-物种比值(PMF/ME2-SR)、偏目标转换-正定矩阵分解(PTT-PMF)、正定矩阵分解(PMF)和化学质量平衡(CMB)这4种受体模型对我国北方典型城市细颗粒物(PM2.5)数据进行同步解析并互相验证.结果发现,燃煤源(25%~26%)、扬尘源(19%~21%)、二次硝酸盐(17%~19%)、二次硫酸盐(16%)、机动车源(13%~15%)、生物质燃烧源(4%~7%)和钢铁源(1%~2%)这7种主要污染源对研究地区PM2.5有贡献.通过比较不同模型获得的源成分谱和源贡献以及计算各源的差异系数(CD)和平均绝对误差(AAE),发现4种模型的解析结果具有较高的一致性(平均CD值在0.6~0.7之间),但不同模型对各污染源中组分的识别存在差异.相比于传统PMF模型,PMF/ME2-SR模型由于纳入一次源类的特征比值,能够更好地区分源谱特征较为相似的源类,如扬尘源的CD和AAE分别比PMF模型低15%和54%; PTT-PMF模型以实测一次源谱和虚拟二次源谱为约束目标,计算的二次硫...  相似文献   

9.
大气羰基化合物在对流层大气化学中发挥着重要作用,其受到直接排放和二次生成的共同影响,来源研究面临挑战.本研究基于2017年3月在南京市开展的羰基化合物观测,分别利用源示踪物比例法(STR)和正交矩阵因子模型(PMF)对羰基化合物进行来源解析,并将二者结果进行比较,以探讨导致来源解析不确定性的因素.本研究共检测出11种羰基化合物,总体积分数范围为2.57×10-9~22.83×10-9,其中甲醛、乙醛和丙酮是主要组分,分别占羰基化合物总平均体积分数的36.8%、21.6%和18.5%.通过比较乙炔和甲苯作为示踪物时,以及第5和第10百分数作为背景体积分数时解析结果的差异,探讨了示踪物选取和背景体积分数对STR解析结果的影响.PMF解析出了交通排放源、石化化工源、涂料与溶剂使用源、二次生成及背景源和化工源这5类源.二次生成及背景源是羰基化合物最主要的来源,对甲醛、乙醛和丙酮的贡献分别为56.4%、48.2%和58.3%.STR和PMF解析结果的比较发现,STR法依赖于示踪物的选取,在VOCs来源复杂地区应用时需要进行严格评估.  相似文献   

10.
随着环境监测数据空间分辨率的提高,越来越多研究人员选择将大气颗粒物多点位数据合并进行解析.本文通过模拟试验的方法,共设定了三大类八小类情景评估了不同条件下将多点位受体(大气颗粒物)进行解析的结果,同时结合合肥市2014年PM2.5数据进一步验证多点位数据合并解析的适用性.结果表明:各点位间源贡献时间趋势完全一致时,多点位合并解析并不会使PMF模型的结果变好.各点位间源贡献时间趋势差异明显时,多点位合并解析更易解析出结果.各点位间源贡献时间趋势部分相同时,多点位合并解析的结果整体趋于变好,但是对某些源类的解析可能更差.  相似文献   

11.
为探讨ME-2模型控制旋转对传统PMF模型源解析效果的提升作用,于2017年9月10日~2018年8月29日在深圳北部某工业区开展PM2.5采样,共获得153套样品.对PM2.5中31种化学组分进行了分析,筛选出17个物种输入模型运算.2018年深圳北部工业区大气PM2.5年均浓度为32.3 μg/m3,利用PMF模型初步识别出9个因子,分别为二次硫酸盐、二次硝酸盐、老化海盐、土壤扬尘、工业排放、燃煤、生物质燃烧、船舶排放和机动车,PMF输出结果中"混合因子"问题显著.基于PMF解析结果及获得的先验信息,在ME-2模型中建立4个限制源谱进一步解析,结果表明,与PMF模型相比,ME-2结果的示踪物在源中分配更集中,对示踪物浓度与相应源贡献的时间序列也提供了更好的拟合效果.二次硝酸盐、老化海盐、工业排放源在PMF模型中被高估了9%~51%,而二次硫酸盐、燃煤和生物质燃烧源被低估了19%~40%.本研究中ME-2解析结果比PMF更具有环境和统计学意义,为污染防治提供了更精确的控制指向.  相似文献   

12.
为实现较大区域范围内土壤重金属来源贡献程度的定量化,选取江西省乐安河中上游地区表层土壤为研究对象,分析污染源样品化学组分并构建本地污染源成分谱,利用PMF(正定矩阵因子分解)模型对土壤重金属进行源解析,并结合地统计空间分析法识别各源的主要影响区域.结果表明:乐安河中上游地区土壤中w(As)、w(Hg)、w(Cd)、w(Cr)、w(Zn)、w(Cu)、w(Mn)、w(Pb)的平均值分别为21.400、0.105、0.25、73.5、88.4、56.2、577.0、49.5 mg/kg,是江西省土壤背景值平均值的1.0~1.8倍,其中,w(As)、w(Cd)、w(Cu)、w(Pb)平均值超过GB 15618-1995《土壤环境质量标准》一级标准限值.土壤重金属主要受铅锌矿冶炼源、金矿选冶源、铜矿采选源、自然源、混合源的影响.铅锌矿开采冶炼活动对洎水河左岸大部分区域土壤造成了影响,源贡献率均大于30%;金矿选冶活动目前仅影响矿区附近土壤,源贡献率最高可达94%;铜矿采选活动也使德兴铜矿周边较大区域范围土壤受到影响,源贡献率处于19%~89%之间.研究显示,构建本地源成分谱可以辅助解析验证PMF源成分谱的有效性,将PMF模型与地统计空间分析法相结合,可以进一步得到源贡献率在空间上的分布状况,对于土壤污染治理决策可提供行之有效的支撑.   相似文献   

13.
针对西安本地源谱缺乏的现状,总结统计了西安目前灰霾特征和主要成因,对西安市燃煤源进行了测定.研究发现,在煤烟尘PM2.5中SO2-4的含量最高(25%),其次为OC(12%)、NH+4(7%)、Cl-(5%).对固定源燃煤与民用散烧煤,不同脱硫方式、脱硝方式和锅炉类型的固定源成分谱分析得出:1.SO2-4及Al、Si、Ca在固定源煤烟尘PM2.5中含量大于民用燃煤,OC与之相反;2.炉内喷钙法PM2.5中SO2-4明显高于其它脱硫法含量;双碱法PM2.5中Na的含量显著高于其它脱硫工艺流程的含量;氧化镁法PM2.5 中Mg含量为各类脱硫工艺中最高;石灰石膏法颗粒物中Mg、Al、Si、Ca等元素含量均高于大多数工艺;3.不同的脱硝工艺中NO-3离子在各类成分谱中的含量极低;4.链条炉与层燃炉PM2.5中OC、EC含量高于循环流化床炉、煤粉炉.  相似文献   

14.
为了研究南京市PM2.5的污染特征及来源贡献,于2018年3月至2019年2月在南京仙林地区进行PM2.5组分的在线监测,运用PMF和CMB受体模型,开展PM2.5的来源解析.结果表明,观测期间南京市PM2.5平均质量浓度为54.3μg/m3,其中冬季平均浓度76.4μg/m3.PM2.5的主要组分为NO3-(21.3%~30.8%)、SO42-(18.9%~23.5%)、NH4+(14.3%~16.2%).从全年平均来看,PMF模型得到的PM2.5解析结果为:二次无机气溶胶(54.9%)、燃煤源(17.4%)、二次有机气溶胶(7.4%)、机动车排放源(7.1%)、工业源(4.9%)、扬尘源(4.8%)、其他源(3.4%);CMB模型得到的PM2.5解析结果为:硝酸盐(33.0%)、硫酸盐(24.0%)、燃煤源(16.4%)、机动车排放源(8.4%)、二次有机气溶胶(7.1%)、扬尘源(5.7%)、其他源(2.9%)、工业源(2.4%).不同季节PM2.5来源有所差异,夏冬季二次无机气溶胶占比大于春秋季,春冬季燃煤占比最大,二次有机气溶胶在秋季占比最大.结合2017年南京市大气污染源排放清单,对二次气溶胶贡献进行再解析,得到南京仙林地区PM2.5主要贡献来自燃煤源(PMF:34.14%,CMB:33.82%),机动车排放源(PMF:27.33%,CMB:29.33%)以及工业源(PMF:26.76%,CMB:24.77%).可见,影响南京仙林地区PM2.5的污染源主要来自燃煤源、机动车排放源和工业源,基于在线组分监测、利用PMF和CMB模型得到的PM2.5源解析结果具有较好的一致性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号