首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
成都市城区大气细颗粒物水溶性离子污染特征   总被引:1,自引:0,他引:1  
为了解成都市城区大气细颗粒物水溶性离子污染特征,在成都市城区四季采集PM2.5有效样品共计102 个,测得颗粒物质量浓度以及水溶性离子质量浓度(NH4+、Ca2+、Na+、Mg2+、K+、F-、NO3-、SO42-、Cl-),并分析其浓度变化特征,重点关注二次无机离子的污染特征及形成影响.结果表明,成都市城区水溶性离子与大气细颗粒物的污染浓度变化基本一致,其中二次无机离子(NH4+、NO3-、SO42-)是离子中最主要的组成部分,占总水溶性离子浓度的84.8%.大气细颗粒物春秋冬三季为酸性,其原位PH值分别为1.9、2.6和2.0.城区硫酸盐和硝酸盐化学特性存在差异,硫酸盐主要表现为非均相反应过程中形成的NH4HSO4,并主要受区域传输过程的影响;硝酸盐主要表现为均相反应过程形成的NH4NO3,并主要受局地排放的影响.  相似文献   

2.
基于2019年6月至2020年8月胶州湾沿岸的大气降水样品,分析降水主要水溶性离子(Na+、K+、Ca2+、Mg2+、NH4+、F-、Cl-、SO42-、NO3-、MAS-(甲基磺酸根))的组成特征和湿沉降通量,评估其对近海营养成分输入的贡献和潜在生态效应,并利用气团后向轨迹和正定矩阵因子分解法(PMF)解析其主要来源.结果表明,观测期间,胶州湾大气降水雨量加权平均(Volume-weighted Mean,VWM)pH为6.41,电导率的VWM值为19.3μS/cm,降水中水溶性离子以Na+、NH4+、NO3-、Cl-和SO42-...  相似文献   

3.
为研究北京市林水复合生态系统干湿沉降水溶性离子化学组分特征及来源,本实验在北京奥林匹克森林公园收集四季干沉降样品,并于采样地收集植物叶片进行室内湿沉降实验,测定了干沉降10种离子和湿沉降9种离子的含量.本实验对干沉降和湿沉降中水溶性离子的浓度进行了量化对比,并分别分析了干湿沉降的主要来源.结果表明,干湿沉降在离子组分特征及来源均不相同.大气干沉降可溶性离子化学组分的年平均离子浓度由高到低排序为SO42-、NO3-、Cl-、Na+、NH4+、Ca2+、K+、HCOO-、Mg2+、F-.湿沉降离子浓度由高到低排序为Ca2+、SO42-、Na+、NO3-、Cl-  相似文献   

4.
为研究邢台市秋季PM2.5污染特征,于2017年10月15日~11月14日在邢台市区对PM2.5样品进行了采集,并对其中水溶性离子(包括Cl-、NO3-、SO42-、NH4+、Ca2+、Na+、Mg2+、K+)进行了分析.结果显示,观测期间邢台市ρ(PM2.5)平均值为(130.0±74.9)μg/m3,其中水溶性离子质量浓度为(69.8±11.4)μg/m3,占ρ(PM2.5)的53.3%,NO3-、SO42-和NH4+为主要离子,占水溶性离子比例达到了89.7%. 当污染加重,水溶性离子质量浓度随ρ(PM2.5)增大而升高,且NO3-、NH4+及SO42-占比亦逐渐升高,但其他离子占比随之下降,Ca2+尤为明显,表明ρ(PM2.5)升高时主要受二次无机转化影响;观测期间SOR(硫转化率)与NOR(氮转化率)的平均值分别为0.36和0.25,表明秋季SO2与NO2转化速率较强,二次无机污染严重,另外SOR及NOR与温度及相对湿度呈正相关,且SOR对二者更为敏感;邢台市秋季PM2.5呈弱碱性,NH4+主要以(NH42SO4和NH4NO3的形式存在;ρ(NO3-)/ρ(SO42-)平均值为2.13,表明移动源对秋季大气颗粒物的来源贡献较大;PMF分析结果表明,二次转化源、燃烧源及扬尘源为邢台市秋季PM2.5中水溶性离子的主要来源.  相似文献   

5.
利用高时间分辨率MARGA于2017年2月17日~3月24日在桂林市开展PM2.5组分监测,结合同一点位环境和气象监测数据,分析桂林市大气PM2.5水溶性无机离子组分特征及气溶胶酸性.结果表明:MARGA监测的PM2.5中8种水溶性离子与PM2.5变化趋势一致.8种水溶性离子总浓度均值29.27μg/m3,3种二次水溶性离子SO42-、NO3-和NH4+浓度均值26.91μg/m3,占水溶性离子总浓度的93.50%,是桂林市大气PM2.5的主要组分.二次水溶性离子SO42-、NH4+和NO3-两两之间存在显著正相关性(相关系数均>0.80),提示二次离子产生的机制及在大气中的演化、沉积具有一定的相似性.无论有无降雨,能见度(Vis)均随着水溶性离子,尤其是二次水溶性离子浓度的增加呈幂函数规律递减.24h累计降雨量≥ 10.0mm时,湿清除作用明显.晴天及降雨量不大的天气下,需注意管控机动车尾气、生物质燃烧和扬尘污染.SOR、NOR分别为0.35、0.12,SO2同时通过均相和非均相氧化反应转化为SO42-,NOx主要是通过白天光化学反应转化为NO3-.大多数离子和气态前体物均存在明显的日变化规律,这与物质的来源、形成机制和气象条件不同有关.CE/AE摩尔浓度均值为1.5,桂林市PM2.5总体偏碱性.PM2.5中SO42-、NO3-、Cl-主要以(NH42SO4、NH4NO3和NH4Cl形式存在.PM2.5中NH4+可能与监测点位交通源排放有关,桂林市应加强交通污染物排放管控.  相似文献   

6.
2014年5~6月在东海海域采集PM2.5和PM10气溶胶样品,通过离子色谱法对样品中主要水溶性阳离子(Na+、K+、NH4+、Mg2+、Ca2+)和阴离子(Cl-、NO3-、SO42-、MSA)的浓度进行测定,并结合相关数理统计方法探讨了其主要来源.结果表明,PM2.5和PM10样品中主要水溶性离子的总浓度范围分别为7.9~23.7μg/m3和10.4~47.9μg/m3,平均值分别为(14.9±5.8)μg/m3和(21.3±10.7)μg/m3.二次离子(nss-SO42-、NO3-和NH4+)浓度最高,分别占测定离子总浓度的80.8%和73.3%,其中SO42-和NH4+主要富集在细颗粒物(PM2.5)中,NO3-主要富集在粗颗粒物(PM10)中.富集因子及相关性分析表明K+主要来自陆源,Mg2+受海源和陆源双重输入影响.阴阳离子浓度平衡计算结果表明,细颗粒物样品呈弱碱性;粗颗粒物样品酸碱基本中和.两种样品中NH4+的主要结合方式均为(NH42SO4和NH4NO3.来源分析结果表明,PM2.5和PM10样品中生源硫化物对nss-SO42-的贡献率分别为13.7%和8.7%.根据估算的干沉降通量结果,NH4+对氮沉降的贡献程度小于NO3-.  相似文献   

7.
于2010年3月~2011年2月和2017年1~12月在重庆主城区连续采集PM1.0、PM1.0~2.5和PM2.5~10样品,采用离子色谱测定了样品中9种水溶性无机离子(WSIIs)含量,研究了近年来不同粒径颗粒物中主要离子的污染特征.结果表明,2017年重庆市PM1.0、PM1.0~2.5和PM2.5~10中WSIIs年均浓度和占比分别为24.10,32.89,39.11μg/m3和41.8%、40.3%、38.6%,较2010年均有所下降(39.85,47.84,57.12μg/m3和49.2%、46.6%、36.2%),但NO3-浓度和占比呈上升趋势(分别上升12.3%~27.8%和53.1%~78.2%),且成为2017年冬季首要离子.SO42-、NO3-、NH4+、Cl-、K+和Na+主要分布在细粒子中,F-、Mg2+和Ca2+主要分布在粗粒子中.重庆颗粒物呈弱碱性,其中粗粒子碱性强于细粒子,NH4+主要以(NH42SO4和NH4NO3的形式存在.与2010年不同,2017年细粒子中SO42-和NO3-浓度均随相对湿度增大而快速上升,非均相反应已成为2017年SO42-和NO3-形成的重要途径,且在PM1.0中尤为突出.随污染加重,不同粒径下各类WSIIs演化特征各异,其中2017年细粒子中NO3-浓度及其对WSIIs贡献大幅升高,并成为重污染形成的主因,而SO42-和扬尘源示踪物(Mg2+、Ca2+)贡献呈下降趋势.与2010年相比,2017年各粒径中NO3-/SO42-比值随污染加重大幅升高,且重污染日比值均大于1.0.细粒子中WSIIs主要来源于二次转化,粗粒子主要来源于扬尘.2017年扬尘污染较2010年有所减缓,但二次源对WSIIs贡献上升明显,尤其是NO3-的二次生成,因此对NOx排放源的管控是WSIIs减排的重要途径.研究结果对了解近年来重庆市大气颗粒物污染来源及形成机制研究具有重要参考价值.  相似文献   

8.
使用MARGA离子在线分析仪ADI 2080对2017年12月27日~2018年1月5日南京市PM2.5化学组分进行连续采样分析,结合气象要素和大气环境监测数据,探讨了霾污染过程中水溶性离子的时间分布特征及其来源特征.结果表明:霾日中南京水溶性离子浓度为121.41μg/m3,是洁净日的3.2倍.霾污染过程中水溶性离子平均浓度大小顺序为NO3- > SO42- > NH4+ > Cl- > K+ > Ca2+ > Mg2+,SNA离子占总水溶性离子浓度的91.97%.霾日中水溶性离子日变化均为三峰型,洁净日中Cl-、SO42-和NH4+的日变化为单峰型,Ca2+为双峰型,K+、Mg2+为三峰型.随着空气污染状况的加重,总水溶性离子在PM2.5中的占比不断减少,空气质量为优时占比95.93%,严重污染时为63.25%.霾日中随着污染加重,NH4+占总离子的比例稳定在23%左右,SO42-占比缓慢减小,NO3-占比不断增大.NOR、SOR的日变化在霾日呈双峰型分布,洁净日则较为平稳.观测期间的水溶性离子主要来源有二次转化、煤烟尘、扬尘以及生物质燃烧.  相似文献   

9.
选取北京市地区典型生物质燃料(玉米芯、玉米秆、黄豆秆、草梗、松木、栗树枝、桃树枝)以及民用煤(烟煤、蜂窝煤)在实验室内进行了模拟燃烧实验,采用Thermo Fisher 42i型化学发光NO-NO2-NOx分析仪、43i型脉冲荧光SO2分析仪、48i型CO分析仪对烟气中的NOx、SO2、CO进行全程在线监测;对燃烧产生的颗粒物样品进行采集,采用ICS 90A、ICS2000离子色谱仪对不同粒径段颗粒物中的水溶性无机离子进行测定.研究表明:3类民用燃料排放因子均值由大到小的顺序,SO2为民用煤 > 薪柴 > 秸秆;CO为秸秆 > 民用煤 > 薪柴;NOx为薪柴 > 民用煤 > 秸秆.薪柴燃烧产生的PM2.5中SO42-含量最高,占总水溶性无机离子的22%~30%;秸秆类燃烧产生PM2.5中的水溶性无机离子K+占绝对优势,占总水溶性无机离子的36%~49%,其次为Cl-或SO42-,两者之和占总水溶性无机离子的35%~44%.3类民用燃料中秸秆类燃烧排放的颗粒物中水溶性无机离子的排放因子最高,其次为薪柴类燃料,民用煤最低.本实验对不同粒径段颗粒物中9种水溶性无机离子进行了分析(Na+、K+、Mg2+、Ca2+、NH4+、F-、Cl-、NO3-、SO42-),薪柴类燃料燃烧排放的颗粒物中,Na+、K+、NH4+、F-的排放因子在0~2.5μm粒径段内最大,Mg2+和Ca2+的排放因子在2.5~10μm粒径段内最大.秸秆类燃料除Ca2+、Mg2+外,其余离子的排放因子均在0~2.5μm粒径段内达到最大.对于烟煤而言,除了K+、Mg2+和Ca2+外,其余离子的排放因子均在0~2.5μm粒径段内达到最大;蜂窝煤中Na+、K+、Cl-、NO3-、SO42-的排放因子均在0~2.5μm粒径段内达到最大.  相似文献   

10.
基于实验室模拟燃烧和稀释通道采样系统,采用荷电低压撞击采样器采集了6种典型木柴燃烧排放的14级粒径段颗粒物.采用离子色谱分析了8种水溶性离子,获得水溶性离子的分粒径排放因子和排放特征.结果表明,Ca2+的排放因子呈双峰分布,在0.25~0.38和2.5~3.6μm粒径段出现峰值,分别为0.14和0.16mg/kg.其余离子的排放因子为单峰分布.NH4+、NO3-和SO42-的排放因子在0.25~0.38μm粒径段出现峰值,分别为0.41、0.58和0.84mg/kg.K+和Cl-的排放因子在0.15~0.25μm内出现峰值,分别为0.89和0.99mg/kg.木柴燃烧排放总水溶性离子的质量中值粒径为(0.30±0.07)μm,各离子的质量中值粒径范围为0.24~0.44μm.PM0.094、PM0.94、PM2.5和PM10中水溶性离子的排放因子变化范围分别为1.04~9.33、5.00~48.87、5.46~52.00和6.14~53.68mg/kg.木柴燃烧排放颗粒物中K+/Cl-、K+/NO3-、K+/SO42-和SO42-/NO3-比值随粒径变化而变化,其排放初始值在应用于源解析和生物质燃烧排放气溶胶传输老化研究时需引起关注.木柴燃烧排放PM10中的阴阳离子当量比值为0.80±0.11,颗粒物的酸度随颗粒物粒径而改变,亚微米颗粒物和细颗粒物的酸度高于超细颗粒物和粗颗粒物的酸度.本研究对构建生物质燃烧排放分粒径水溶性离子清单,更新和改进相关气候和空气质量模型的参数设置,识别烟气传输过程中的老化具有重要意义.  相似文献   

11.
为探讨东北亚冬季PM2.5水溶性离子空间分布特征及来源,测定了2017~2018年沈阳冬季PM2.5水溶性离子浓度.结果显示:沈阳冬季PM2.5水溶性离子平均质量浓度为28.5±11.9μg/m3,二次离子(SO42-、NO3-和NH4+)的浓度最高,分别占总水溶性离子质量浓度的31.0%、22.4%和19.2%.运用离子化学计量学关系、相关性和主成分分析,探讨了沈阳冬季PM2.5水溶性离子的可能来源.并整合了东北亚冬季(中国东北、韩国、日本)近20a来PM2.5水溶性离子数据,发现沿着东亚冬季风,东北亚冬季PM2.5水溶性离子浓度从中国东北,经韩国海岸、韩国和济州岛,日本海岸至日本整体呈下降趋势,在韩国和日本出现局部上升,且在不同区域,不同水溶性离子占比明显不同.其中,韩国冬季PM2.5中SO42-、Ca2+和K+受外来源影响显著,NO3-和NH4+主要来自本地源,Cl-、Na+和Mg2+主要来自本地源或海源;日本中部冬季PM2.5中SO42-、NO3-、NH4+和K+主要来自本地源,Cl-、Ca2+、Na+和Mg2+主要来自本地源或海源.  相似文献   

12.
基于PM、10nm~10μm气溶胶数谱、水溶性离子和气象要素数据,分析了2017年5月3日~8日一次沙尘远距离输送过程中长三角地区气溶胶粒径分布及其化学组成的污染特征.结果表明,此次沙尘伴随天气系统由北往南的传输过程中,PM的浓度逐渐降低,但是高浓度PM持续时间逐渐增加.沙尘在呼和浩特市影响时间为38h,而在南京的影响时间超过60h.沙尘期间气溶胶数浓度谱的峰值向大粒径段偏移,沙尘和非沙尘期间峰值分别位于33和26nm.表面积浓度谱在非沙尘期间为三峰型分布,但是在沙尘期间为四峰型分布.在沙尘期间PM2.5和PM10中水溶性离子的排序为Ca2+ > NH4+ > SO42- > NO3- > Mg2+ > Na+ > Cl- > NO2- > K+ > F-,非沙尘期间为NH4+ > SO42- > NO3- > Mg2+ > Ca2+ > Cl- > NO2- > K+ > Na+ > F-.沙尘期间不同水溶性离子的浓度变化不同,沙尘天PM2.5和PM10中Ca2+浓度分别是非沙尘天的9.5和13.7倍,Na+分别是非沙尘天的4.4倍和4.6倍.沙尘天PM2.5和PM10中Ca2+占总离子的比例分别为24.7%和24.9%,是非沙尘天的4.9和5.7倍.NO3-在PM10中的占总离子的比例为18.7%,高于非沙尘天(13.9%),但是在PM2.5中占总离子的比例仅为7.9%,低于非沙尘天(13.2%).沙尘天F-、Cl-、SO42-、NH4+和K+离子在PM2.5和PM10中所占总离子的比例均低于非沙尘天.  相似文献   

13.
针对2017~2018年采暖季太原市PM2.5及其水溶性离子、碳质组分和无机元素开展在线观测,结合气象数据分析不同污染水平下的组分特征.分析表明,2017~2018年太原市采暖季细颗粒物主要化学成分为SO42-、NO3-、NH4+、Cl-、Ca2+、OC、EC,且呈现OC>SO42- > NO3- > NH4+ > Cl- > Ca2+ > EC的趋势,随污染水平增长最多的是二次无机物;优良、轻度污染和重污染3种污染水平下OC、EC相关系数分别为0.69、0.66、0.55,N/S分别为1.06、1.29、0.93,表明随着污染水平的提高,OC和EC的来源一致性逐步变差,且排放源虽仍处于氮排放源(移动源和工业源)和硫排放源(燃煤源)的共同控制,但硫排放源贡献率显著升高.重污染事件分析表明太原市重污染应对过程中不仅需要加强机动车、工业源等污染源的管控,更需要重点加强燃煤管控.  相似文献   

14.
为研究庐山冬季不同粒径雾滴化学成分特征,于2015年和2016年在庐山开展冬季云雾物理化学特征的很高综合观测实验,利用主动式分档雾水采集器(three-stage CASCC)共采集44组3级粒径雾滴的雾水样品,其分档空气动力学直径为4~16μm(S3级),16~22μm(S2级)和>22μm(S1级).用850professional IC型色谱仪(瑞士万通)分析雾水中的水溶性离子浓度,讨论3级分档雾水化学特征和不同粒径雾水中各离子组分的来源及相关性.结果表明,2015年和2016年庐山冬季3级雾水多呈酸性,2016年酸性更强,pH值与雾滴的粒径大小有依赖性关系,4~16μm的小雾滴酸性更强.雾水中主要离子有Ca2+,NH4+,SO42-,NO3-和Cl-.NH4+,SO42-,NO3-主要集中在4~16μm的小雾滴中,受海洋和土壤源的影响比较小,主要是人为活动所导致,2015年雾水Cl-主要受人为源的影响,2016年人为输入显著降低,主要受海洋源影响.Mg2+,Ca2+主要集中在>22μm的大雾滴中.SO2、NOx排放逐年降低导致2016年雾水中SO42-和NO3-浓度明显小于2015年.  相似文献   

15.
选取北京、石家庄和唐山作为京津冀区域典型城市,基于实地样品采集和组分分析结果,探讨PM2.5组分中二次无机水溶性离子(SNA)浓度变化特征,并利用空气质量模型模拟结果分析重污染前后京津冀地区各类污染源大气污染物排放对PM2.5和SNA质量浓度的贡献.结果显示:3个城市PM2.5质量浓度整体呈现逐年下降的趋势,多数情况下SO42-、NO3-和NH4+浓度极大值同时出现在冬季,PM2.5化学组分较为稳定.相对于常规时段,重污染期间SO42-、NO3-和NH4+质量浓度明显增加,重污染前一天SNA浓度占PM2.5比值达到最高.重污染的形成是本地源排放和外来区域传输共同作用的结果,外来源对NO3-的贡献整体高于SO42-和NH4+.交通源、居民源和工业源对PM2.5、SO42-和NO3-浓度贡献最高,NH4+主要来自居民源的排放.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号